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1 Experimental Setup

1.1 Implementation Details

As demonstrated in the Fig. 3 of the main paper, our method is built on Point-
net++ [8] and a cross-modal transformer [2]. A 256D global feature FO and a
256D per-point feature map FP of the scene are extracted from the input point
cloud. The feature of an arbitrary point e is computed through the inversed
distance weighted interpolation on the 3 nearest neighbors of e from the scene
point cloud (Eq. 2 of the main paper), where we query the 256D gaze feature
fg and obtain the 256D scene context feature fm v of the current motion from
SMPL-X per-vertex features. The 32D motion parameter x is embedded into
256D motion feature fm through a linear layer. The motion embedding is then
fed to a motion-scene transformer with fm v as query and further fed to another
motion-gaze transformer with gaze feature fg as the query. The gaze feature is
updated by a gaze-motion transformer queried by motion feature fm. We then
concatenate the global scene feature FO, the updated motion feature fm g and
gaze feature fg m to get the 768D multi-modal embedding, which is used to
predict the 32D future motion parameter by a cross-modal transformer. All the
transformers adopt a 6 layer architecture as proposed in [2] with 256D latent
embedding. Note that here the input and output motion parameter x consists
of a 3D global translation vector t, a 3D global orientation vector r (represented
as axis angle), and a 32D pose embedding h obtained from VPoser [6]. We omit
predicting the hand poses p and the shape parameter β since the global body
pose can be well represented by parameter {t, r, h}, and we aim at future work
to include hand poses and the body shape for more detailed motion prediction.

For the baseline methods, we re-implement spatio-temporal transformer [1],
a RNN based network [4], and MultimodalNet [5] to adapt for our experimental
settings. The 3D joint angle representation is used as motion input and output
to train the spatio-temporal transformer and RNN as introduced in [4], while
MultimodalNet is based on the 32D motion parameter the same as ours. An
8 layer transformer [9] with 512 embedding size and 8 heads attention is used
in spatio-temporal transformer [1]. A three layer RNN with 1024 hidden size
is deployed to predict future motion with simple motion input or motion and
gaze input [3]. In MultimodalNet [5], the motion input is firstly embedded into
256D feature space through linear layers and then fed to a transformer encoder
to get the motion embeddings. The gaze embedding is also obtained with linear
layers and a transformer encoder. The global scene feature from PointNet [7], the
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Fig. 1: An overview of the scanned scenes in our dataset.

Fig. 2: Subjects in the scenes.

gaze embedding and the motion embedding are stacked and fed to a transformer
decoder to generate future motion. The transformer encoders and decoder are all
based on a 6 layer architecture with 256 latent size. Therefore, all the baselines
share similar network capacity with our method.

1.2 Training Loss

We employ the L1 loss between the predicted motion parameter and ground
truth to train our method. The full loss consists of translation loss, orientation
loss and pose embedding loss. The translation loss is formulated as:

Ltrans =
1

T

T

Σ
k=1

||t̂k − tk||1 (1)



GIMO: Gaze-Informed Human Motion Prediction in Context 3

Fig. 3: Motion trajectories from our dataset. Better visualized in the supplemen-
tary video.

where T is the length of output pose, and t̂k is the predicted global translation
parameter of the k-th pose in the T-length future motion, and tk is the ground
truth. We compute the orientation loss as:

Lori =
1

T

T

Σ
k=1

||r̂k − rk||1 (2)
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Fig. 4: Human evaluation. Two human subjects are required to watch a egocen-
tric video (without gaze or with gaze) and infer the final pose of the trajectory.
The subjects choose a pose from a pose database which comes from the training
set, and put the pose into the 3D scene as the final position of the motion ac-
cording to the egocentric video. We show that humans can easily solve the task
with the intention clues extracted from gaze, while without the gaze information
even human intelligence can be confused.

where r̂k is the predicted global orientation parameter. The pose embedding loss
is designed as:

Lp =
1

T

T

Σ
k=1

||ĥk − hk||1 (3)

where ĥk is the predicted pose embedding. Finally, the full loss is formulated as:

L = λtLtrans + λoLori + λpLp (4)

where we set λt, λo, λp to 1 during training.

2 GIMO Dataset

Our dataset consists of 217 motion trajectories collected in 19 scenes by 11
subjects. Fig. 1 provides an overview of the scanned scenes in our dataset, which
cover a wide range of daily indoor environments, including living rooms, meeting
rooms, library, lab, etc. Fig. 2 shows the recruited subjects collecting data in
the scenes. More motion trajectories are demonstrated in Fig. 3. For better
visualization, please refer to the supplementary video.
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Fig. 5: More Qualitative results.
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Fig. 6: Failure cases of our method. When the noisy gazes account for a large
portion of the input, our method is confused to interpret the subject’s intention.

3 More Results

3.1 Human Evaluation

We conduct a human evaluation experiment to validate the function of gaze in
disambiguating future motion prediction. For simplification, the subjects predict
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the final pose of the motion instead of the full motion trajectory. To this end, two
human subjects are recruited and required to watch an ego-centric video (without
gaze or with gaze) and infer the final pose of the trajectory. The subjects first
choose a pose from a pose database which is constructed by poses from the
training set, and then put the pose into the 3D scene as the final position of
the motion according to the ego-centric video they have seen. Fig. 4 shows that
humans can easily extract the intention clues from the gaze and solve the problem
accurately, while without the gaze information even human intelligence can be
confused.

3.2 More Results of Baselines and Failure cases

Fig. 5 provides more results of the baseline methods, further demonstrating the
superiority of our method in predicting future motion from the multi-modal gaze,
motion and scene information. However, we find that when the input gazes are
quite noisy which convey little intention clues, our method can fail to interpret
the subject’s goal and generate inaccurate results, as shown in 6. Since our
method predicts future motion from sparse inputs (2fps), the uninformative gazes
can account for a large portion of the input. The problem might be mitigated
by leveraging high fps inputs since we find that in the recorded sequences the
most attention is paid to objects related to the destination of the motion.
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