
Image-based CLIP-Guided Essence Transfer

Hila Chefer1, Sagie Benaim2, Roni Paiss1, and Lior Wolf1

1 Tel Aviv University
2 University of Copenhagen

T
a
rg
et

S
o
u
rc
e

R
es
u
lt

Fig. 1: Results of our method on various targets and sources. The first row presents
the target images to extract the essence from, the middle row shows the sources
to transfer the essence to, and bottom row presents the results of our method.

Abstract. We make the distinction between (i) style transfer, in which
a source image is manipulated to match the textures and colors of a
target image, and (ii) essence transfer, in which one edits the source
image to include high-level semantic attributes from the target. Crucially,
the semantic attributes that constitute the essence of an image may
differ from image to image. Our blending operator combines the powerful
StyleGAN generator and the semantic encoder of CLIP in a novel way that
is simultaneously additive in both latent spaces, resulting in a mechanism
that guarantees both identity preservation and high-level feature transfer
without relying on a facial recognition network. We present two variants of
our method. The first is based on optimization, while the second fine-tunes
an existing inversion encoder to perform essence extraction. Through
extensive experiments, we demonstrate the superiority of our methods
for essence transfer over existing methods for style transfer, domain
adaptation, and text-based semantic editing. Our code is available at:
https://github.com/hila-chefer/TargetCLIP.
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1 Introduction

Style transfer, which typically refers to rendering the content of an image in the
style of a different image, is a highly researched task in computer vision and
computer graphics [12,5,35,19,10,16,28,32,33,44,6]. This work explores a related
task, which we refer to as essence transfer. The essence of an image is defined to
be the set of attributes that appear in the high-level textual description of the
image. Our blending involves borrowing semantic features from a “target” image
It and transferring them to a “source” image Is, thus creating an output image
Is,t. We find that “essence” features capture properties such as skin complexion
or texture, as do traditional style transfer methods, but also semantic elements
such as gender, age, and unique facial attributes, when considering faces.

A rigorous definition of our goal is elusive, as the set of features defined as the
essence may change from image to image, so we adopt a pragmatic approach. It has
been shown [36,11] that latent spaces of high-level vision networks, (i.e., involving
capabilities such as image understanding [48]) are additive. Ergo, subtracting
the representation of two inputs yields a meaningful shift between the inputs
encoding the difference between the two. Our method transforms source images Is
conditioned on a target image It. It forces the learned transformation to be doubly
additive: once in the latent space of the generator, and once in the latent space
of the understanding engine. Out of all possible ways of transforming a source
image Is according to a target image It, we obtain, for every It a transformation
that is based on a constant shift over all Is in the generator space and leads to a
constant difference in the high-level description of the image.

For the generator network, we employ the powerful StyleGAN [23] generator.
Additivity in the latent space of StyleGAN was demonstrated in [43,49,15], for
linearly interpolating different images along semantic directions, as well as for the
manipulation of semantic attributes ([36] for example). For the image recognition
engine, we employ the CLIP network [39], which has shown impressive zero-
shot capabilities across multiple domains such as image classification [39] and
adaptation of generated images [11]. It was also shown to behave additively [36,11].
Since CLIP was trained in a contrastive manner, using textual descriptions,
different images with the same high-level textual description are expected to
receive a high similarity score, as their textual descriptions will be nearly identical.
This allows our method to enforce consistency based on the semantic properties
of the image, rather than pixel-level similarity.

We propose a method based on two loss terms. The first term ensures that
the transformed image is semantically similar to the target image It in the latent
space of CLIP. The second term links the constant shift in the latent space of the
generator to a constant shift in the latent space of CLIP, leading to a semantically
consistent edit that is independent of the identity of the source Is. We propose
two methods for essence transfer. The first is based on per target optimization,
while the second fine-tunes an inversion encoder to perform essence transfer.
While an optimization-based approach is more accurate in capturing the relevant
semantic properties, our encoder version only requires a forward pass on the
target image to produce the target-specific (source-agnostic) essence vector, which
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defines the essence transfer operator for that image. We compare our method
with state of the art style transfer and semantic editing methods and show that
our novel double-additive formulation is necessary to successfully perform essence
transfer. Finally, we decode to text the learned directions, demonstrating that
the semantic edits we employ correspond to the attributes of the target image.

2 Related Work

Style Transfer Our work most closely relates to style transfer [10,16,28,32,44,33,25].
Unlike [12,20,18], we derive style from CLIP [39], a recently proposed method for
the semantic association of text and images. In this space, two images are close,
or similar, to each other if their textual association is close. Such similarity may
consider unique style elements, such as texture or complexion. It may also con-
sider semantic elements, such as gender and facial attributes. We argue that this
notion of style, which we use here, is more general. CLIP has been used in several
recent works to enable the fine-tuning of StyleGAN for domain adaptation [11,52]
with impressive results, yet, as we show, the existing style transfer and domain
adaptation methods fall short on the task of essence transfer, focusing usually on
colors, textures and domain shifts, and can suffer from severe identity loss.
Image Manipulation Our work is also related to recent image manipulation
works based on a pre-trained generator [7,45,15,36]. One set of works typically
manipulates an image based on finding a set of possibly disentangled and semantic
directions [43,49]. These works typically borrow the semantic meaning from the
generator itself. A recent work called StyleCLIP [36] showed the remarkable
ability to borrow the semantic meaning from the CLIP space, and inspired many
additional works to use CLIP for semantic editing and domain adaptation [52,11,2].
Our method uses CLIP in a similar manner to that presented in [36]. However,
unlike our method, StyleCLIP considers text-driven manipulations, thus it is
limited by what can be described in words, and the knowledge obtained by CLIP.
GAN Inversion GAN inversion aims to extract a latent vector z that cor-
responds to a target image I, i.e. z holds that Gpzq “ I, where G is the
generator. Most inversion methods can be split into two types; optimization-
based methods [51,1,4,8,13,29,53], which employ an optimization process to
find a latent z such that Gpzq is closest to a specific target image I, and en-
coders [47,3,14,21,24,34,37,38,50] which are trained to extract a latent z for any
input image I. Most methods for StyleGAN inversion focus on the W,W` latent
spaces. The W space is more editable, yet suffers from degraded expressiveness [1],
therefore W` has been adopted for inversion. We employ the e4e encoder [47]
since it mitigates the distortion-editability trade-off by training an encoder in
the W` latent space while encouraging the result to be close to the W space.

3 Assumptions and Problem Formulation

We now provide a formal definition of the essence transfer task, and an overview
of the proposed method for any generator G and semantic encoder C.
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We define the essence of an image I as the set of semantic features that
constitute the high-level textual description of the image. The method employs
four input components: (i) A generator G, which, given a vector z, generates
an image Gpzq, (ii) An image recognition engine C, which, given an image I,
provides a latent representation of its high-level textual description, CpIq, in
some latent space, (iii) A target image It, from which the essence is extracted,
and (iv) A set of source images S, which are used to provide the statistics of
images for which the method is applied. For clarity, we define S as a set of z
vectors in a latent space of G, and each source image as Gpzq.

Given these four inputs, our goal is to provide a generator H such that the
image Hpzq transfers the high-level textual features of a target image It to the
source image Is “ Gpzq. If one wishes to transform an image Is rather than a
vector z using H, the image can be converted to a latent z using an inversion
method [47,40,41]. We note that our formulation does not require, at any stage,
the inversion of It. On the generator side, linearity is expressed by:

Hpzq “ Gpz ` bq (1)

for some shift vector b, in the latent space of G. Linearity in the latent space of
the image recognition engine is expressed as:

@z P S d “ CpHpzqq ´ CpGpzqq , (2)

for some fixed d. Put differently, modifying any vector z in G’s latent space with
b induces a constant semantic change in the latent space of C. This property
is what is referred to as a “global semantic direction” by Patashnik et al. [36].
However, our method goes about obtaining said global direction differently. The
source-agnostic behavior is obtained by minimizing the following over H and d:

ÿ

zPS

distpCpHpzqq ´ CpGpzqq, dq , (3)

where distp¨, ¨q calculates the distance between two vectors in the latent space of
the semantic encoder C. For example, CLIP uses cosine similarity to estimate
vector similarities.

Equivalently, to obtain H, we can minimize the following over H:
ÿ

z1,z2PS

dist pCpHpz1qq ´ CpGpz1qq, CpHpz2qq ´ CpGpz2qqq . (4)

So far, we defined the problem of learning a pair of semantic directions b, d, in two
different latent spaces, such that pb, dq match. We wish to add a constraint that ties
the shifts to It. To this end, we wish to maximize similarity in the semantic space
provided by the recognition engine C between It and the generated images Hpzq.
That is, we wish to minimize the sum of distances

ř

zPS distpCpHpzqq, CpItqq.

4 Method

We now define our method, based on the formulation in Sec. 3. Note that in
accordance with the training process of CLIP, we employ cosine similarity to



Image-based CLIP-Guided Essence Transfer 5

Fig. 2: An illustration of our loss calculation flow. Step (1) inverts the source
images to obtain their latents z1, ..., zN , and adds the proposed essence vector
b. In step (2), the StyleGAN generator decodes the source latents z1, ..., zN and
the manipulations z1 ` b, ..., zN ` b to images. Step (3) encodes the sources
(Gpz1q, ..., GpzN q), manipulations (Gpz1 ` bq, .., GpzN ` bq), and target (It) with
CLIP. Lconsistency demands that semantic changes be identical for z1, .., zN .
Lsimilarity ensures that Gpz1 ` bq, ..., GpzN ` bq are semantically similar to It.

estimate semantic similarity between two images.
ř

zPS distpCpHpzqq, CpItqq

becomes the following loss term, applied over a batch of source images, S:

Lsimilarity “
1

N

˜

ÿ

zPS

1 ´
CpItq ¨ CpGpz ` bqq

∥CpItq∥2 ∥CpGpz ` bqq∥2

¸

, (5)

where N “ |S| is the batch size, and z1, .., zN P W`. The similarity loss estimates
the semantic similarity between the image encodings of the target image and
the manipulated images. By setting N “ 1, this loss becomes identical to the
semantic loss employed by other semantic editing methods based on CLIP [36].

The second concept we enforce is consistency. The goal of essence transfer
is to modify the source image using a collection of semantic attributes that
encapsulates the essence of the target image. These attributes are independent of
the source image. We demand that the semantic edits induced by the direction
b in the latent space of G be consistent across the source images, using CLIP’s
latent space. This is expressed in Eq. 4 above and translates to the following loss:

Lconsistency “
1

`

N
2

˘

¨

˝

ÿ

isrc1 ,isrc2PIs

1 ´
∆isrc1 ¨ ∆isrc2

∥∆isrc1∥2 ∥∆isrc2∥2

˛

‚ (6)



6 H. Chefer et al.

where ∆isrc “ CpGpisrc ` bqq ´ CpGpisrcqq, as annotated in Eq. 2 as d, and, as
before, N is the batch size. Lconsistency guarantees that the direction encapsulated
in b produces semantic edits that are identical across a batch of source images S.
Fig. 2 illustrates the steps of obtaining Lsimilarity,Lconsistency from a batch of
sources Is1 , ..., IsN and a target image It.

The optimization problem solved during training in order to recover H, as
defined in Eq. 1, is given as:

b˚ “ argminLsimilarity ` λconsistencyLconsistency ` λL2
∥b∥2 , (7)

where λconsistency, λL2
are hyperparameters. We use the same hyperparameter

values in all our experiments and all our methods: λconsistency “ 0.5, λL2
“ 0.003.

In contrast to other methods [36], ours does not rely on any face recognition
models for preventing identity loss. In order to maintain the identity of the source
images I1, ..., IN we employ a standard L2 regularization to limit the magnitude
of the effect that b has on source images.

Restating Eq. 1, after obtaining the essence vector b˚ for a target image It,
manipulating a source image Is is done as follows:

Is,t “ Gpzs ` b˚q, (8)

where zs is the latent that corresponds to the source image Is, which can be
obtained by inverting the image Is. Thus, we simply add the essence vector b˚

to the latent representing the source image.
Essence Optimization The first method we propose is a simple optimization
process of finding an essence vector b˚ that minimizes the objective in Eq. 7.
Unlike other optimization-based methods for semantic editing, our method is
more stable in the sense that the same set of hyperparameters can be applied
for each target, and no target-specific tuning is required. The implementation
employs the Adam optimizer [26] for 1000 iterations with a learning rate of 0.2.
Due to resource limitations, we use only N “ 4 images for our double additivity
losses (Eq. 5, 6). For difficult edits, i.e. edits containing unconventional or extreme
semantic attributes such as blue skin, we found it beneficial to initialize the
direction b in the optimization process to be the inversion of the target produced
with the e4e encoder. This can be attributed intuitively to the fact that the
inversion of the target contains, among other identity-specific attributes, the
semantic attributes that constitute the high-level textual description of the image,
i.e. its essence. Therefore, initializing the direction b to be the inversion of the
target steers the optimization toward semantic properties that are related to the
target image.
Essence Encoder For our second method, we fine-tune a pre-trained e4e en-
coder [47] over the pSp framework [40] to output the essence vector b˚ of the
input image instead of its inversion. Since the encoder is pre-trained for inver-
sion, the initial output for each image It contains, among other features, the
semantic features that comprise its essence. The goal of the fine-tuning process
is to shift the weights of the encoder such that the output for each image It
will be the semantic parts of the inversion that correspond to the essence vector.
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Fig. 3: Examples of using our optimization-based method. Output images preserve
the identity of the sources, while borrowing the semantic essence of the targets.

This fine-tuning is performed on a small dataset of 200 random images from the
CelebA-HQ dataset [31], and evaluated on 50 random images from the CelebA-
HQ test set. We use a learning rate of 1e ´ 4 for 3000 iterations, with a batch
size of 1 target image and N “ 5 source images for our double additivity losses
(Eq. 5, 6). The objective and its hyperparameters are identical to the ones used
for the optimization-based method (Eq. 7). Unlike other methods that train an
encoder or a generator for each target text or image, such as [36,11], our encoder
is fine-tuned once and can accommodate any target after the fine-tuning. Other
methods require training for each target text or image from scratch, which takes
at least a few minutes and in some cases hours, while our inference time per
target is just a few seconds.

5 Experiments

We present qualitative and quantitative results that demonstrate the advantage
of our method for the task of essence transfer over the most recent methods
for style transfer and domain adaptation. For a complete evaluation, we make
an effort to be inclusive and compare also with methods that have somewhat
different goals, i.e. text-based image editing methods.
Qualitative results Fig. 3, Fig. 4 contain results of our optimization-based
method and encoder-based method, using a wide variety of target and source
images. All source images were inverted with e4e [47], and were not part of the
training batch of sources used for optimization. The manipulation of the sources
with the essence vector was done as detailed in Eq. 8. We present different choices
of sources and targets in Fig. 3 and Fig. 4, in order to demonstrate the diversity
of both our methods. For completeness, the complementary versions of the figures,
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Fig. 4: Examples of using our essence encoder on various targets and sources.
Output images preserve the identity of the sources while borrowing the semantic
essence of the targets.

in which the sources and targets in Fig. 3 are edited with the encoder, and the
sources and targets in Fig. 4 are edited with the optimizer, are also presented in
the supplementary material.

As can be seen, our essence transfer results display the most notable semantic
attributes of the target. For example, when using Doc Brown as target (first
row in Fig. 3), the signature wild, white hair is transferred from the target to
all sources, as are the wide open eyes. Our methods also preserve the identity
of the sources well, despite training with only N “ 4 (N “ 5) images to enforce
semantic consistency for our optimization (encoder) method. Additionally, the
semantic edits are consistent across all sources, demonstrating that our method
is indeed able to produce source-agnostic essence vectors.
Quantitative Results Our experiments use as sources a set of 68 images inverted
with e4e. For each target image It and source image Is we use our methods and
the baseline methods to edit the source according to the target and produce
Is,t. We then evaluate the quality of the produced edits for each method. Since
there are many works involving style transfer and domain adaptation, we focus
on the most recent state of the art, including unpublished works. We focus on
works that are applicable to our use-case, i.e., methods that are able to perform
one-shot editing. Our baselines include BlendGAN [30] and JoJoGAN [6] for face
stylization, StyleGAN-NADA [11] and Mind The Gap (MTG) [52] for domain
adaptation, and as a CLIP-aided text-based image editing method, we include
StyleCLIP’s [36] global directions method. We note that since the StyleCLIP
method is text-based, it can only be used in manipulations where the target
is a well-known character. Despite its inherent limitation, we also present this
comparison for completeness, since the global directions method resembles ours in
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Quality Identity scores Semantic scores

FID (Ó) Source (Ò) Target (Ó) BLIP (Ò) CLIP (Ò)
C
el
eb

ri
ti
es

T
es
t StyleGAN-NADA [11] 215.7˘26.1 23.0˘4.7 33.0˘7.1 84.5˘3.6 94.0˘1.3

Mind The Gap [52] 180.4˘19.3 27.2˘5.6 39.4˘8.1 75.8˘5.6 75.4˘7.0
JoJoGAN [6] 186.1˘12.7 36.0˘6.1 50.7˘6.9 72.6˘7.3 71.8˘6.2

BlendGAN [30] 177.8˘12.6 37.6˘6.5 5.2˘7.7 60.8˘6.2 58.4˘5.2
StyleCLIP [36] 166.9˘9.0 70.7˘26.0 6.2˘6.8 54.8˘6.6 55.7˘5.0
Our encoder 188.7˘23.2 39.0˘6.5 31.9˘5.7 69.0˘6.0 72.6˘5.5

Our optimization 163.6˘16.7 43.5˘6.8 17.0˘6.6 66.9˘6.0 74.4˘3.2

F
F
H
Q

T
es
t StyleGAN-NADA [11] 220.2˘41.8 24.1˘5.5 28.3˘9.2 81.1˘4.2 91.0˘3.2

JoJoGAN [6] 175.2˘15.2 42.3˘4.0 41.7˘11.4 76.0˘6.0 67.1˘7.4
BlendGAN [30] 175.1˘14.5 37.6˘5.3 2.4˘6.0 64.4˘6.7 54.7˘7.8
Our encoder 175.6˘23.5 42.5˘5.5 30.8˘6.9 72.8˘4.9 66.7˘6.1

Our optimization 161.1˘17.2 45.2˘8.6 17.0˘7.2 74.1˘4.9 74.8˘5.8

Table 1: Quantitative comparison with baselines. The StyleCLIP baseline can
only be applied to well-known characters (celebrities test), and Mind the Gap
provides no public code at this time, thus can only be applied to the celebrities
test (see main text). Results that indicate identity loss of the source are marked
in orange; results that indicate that no semantic attributes were transferred are
marked in red.

that it outputs a target-dependent and source-agnostic direction in the StyleGAN
S space to perform a manipulation according to an input textual description. Since
our methods strive to transfer the features of the high-level textual description
of the target, we find this comparison to be relevant as well.

The goal of essence transfer is twofold. First, we wish to transfer the semantic
properties that constitute the high-level textual description from a target image
It to a source image Is. Second, we wish to maintain the identity of Is as much
as possible. We therefore suggest two types of metrics to evaluate the quality of
a proposed essence transfer result, Is,t. The first type employs the ArcFace [9]
network for face recognition to ensure that the manipulation maintains the
identity of Is as much as possible, while avoiding an identity shift towards It, i.e.
we calculate:

ID-scoresourcepIs,tq “ xRpIsq, RpIs,tqy, ID-scoretargetpIs,tq “ xRpItq, RpIs,tqy,

where R denotes a pre-trained ArcFace face recognition representation, and x¨, ¨y

computes cosine similarity. Since neither of our methods uses face recognition in
the training process, this metric faithfully measures how well our manipulations
preserve the source identity. Intuitively, since we add semantic features from the
target, we shift the identity of the source to some extent. For example, modifying
the gender of the source induces an inherent change in one of the identity
attributes of the source. The combination of scores ID-scoresource, ID-scoretarget
reveals whether the manipulation was able to remain close to the identity of the
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source or shifted toward the identity of the target. A successful essence transfer is
expected to maintain a high ID-scoresource score, and a low ID-scoretarget score,
indicating that the manipulation’s identity fits the source better than the target.

Next, to estimate the semantic quality of the manipulation, we use the latent
spaces of BLIP [27] and CLIP [39], as follows:

Semantic-scorepIs,tq “ xCpItq, CpIs,tqy,

where C notates a pre-trained BLIP or CLIP image encoder, and x¨, ¨y computes
cosine similarity. Since our method, as well as most baselines [11,52,36], use
the latent space of CLIP in the training process, BLIP provides an important
alternative for estimating the semantic similarity between the target image It
and the manipulation Is,t. For each target It, the overall identity scores and
semantic scores are calculated as an average of the scores for all source images.
The aggregated scores for the models are calculated as an average of the score
for each target, i.e. we average the results across the sources for each target, and
then average across the targets to obtain the model’s final score. We also present
the standard deviations as an indication of the method’s consistency.

Additionally, in accordance with previous works on style transfer, we present
the Fréchet inception distance (FID) [17] as implemented in [42] to estimate the
quality of the manipulations, which is calculated as follows:

FID-scorepIs1,t, ..., Is68,tq “ FIDptIs1,t, ..., Is68,tu, tI1, ..., I7,000uq,

where tIs1,t, ..., Is68,tu are the manipulations of the sources induced by the target
t, and tI1, ..., I7,000u is a set of 7, 000 randomly chosen images from the FFHQ [22]
dataset, which provides the background distribution of natural faces. Since some
of our baselines are trained to adapt the domain of the target, we calculate the
FID score only for the targets describing a human face, in order to avoid biasing
the results against these baselines. Note that this calculation produces a relatively
high FID score for all methods, since the produced dataset tIs1,t, ..., Is68,tu is
inherently limited in its diversity, due to the fact that all images share semantic
properties transferred from t, leading to a shift from the distribution of unedited
faces, which are more diverse. However, methods that suffer from mode collapse
or overfitting are expected to achieve a much higher (lower is better) score than
those that preserve the original identity of the source images, since identity
preservation will lead to greater diversity among the results.

We present two experiments. For the first, we construct a comparison in a
setting that is more similar to the setting the baselines were trained for, i.e.
we construct a dataset of 31 images of celebrity faces with notable or extreme
semantic properties, such as unusual hair colors and styles, beards, glasses,
as well as a variety of ages, genders, and ethnicities, and also out-of-domain
animated characters (see the supplementary material for all examples used in this
experiment). For the text-based baseline, we employ the same course of action as
in the StyleCLIP paper, where the textual prompt for the manipulation is of the
form “an image of {name of target}”. Our second experiment involves targets
with less extreme semantic features. We use the first 50 images of the FFHQ [22]
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Ours BlendGAN StyleCLIP

Fig. 5: Comparison to methods that only partially transfer the semantic properties.
First three rows are manipulations with our optimizer, and the last three are
with our encoder.

Target

S
rc
.

Ours JoJoGAN Mind The Gap

Fig. 6: Comparison to methods that suffer from high loss of source identity. First
three rows are manipulations with our optimizer, and last three with our encoder.

dataset as targets, and the same 68 source images as before. Since our targets
are no longer well-known characters, the baseline for text-based image editing
is no longer applicable. Additionally, for the Mind The Gap baseline [52], no
official code was released- although the authors kindly provided results for the
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first experiment, but not the second one - therefore this baseline is not presented
in our second experiment.

Tab. 1 presents the results of both our experiments. We divide the methods
into three types. (i) Methods that demonstrate underfitting, i.e., fail to transfer the
essence of the target. These methods perform very well on the identity metrics and
very poorly on the semantic metrics. As can be seen in Tab. 1, both BlendGAN
and the StyleCLIP demonstrate this phenomenon. Marked in red in the tables are
the similarity scores for the methods by BLIP and CLIP. Both are significantly
lower than the semantic scores of the other methods. See Fig. 5 for examples
of this case from our first experiment. BlendGAN focuses on modifying almost
only the colors, and StyleCLIP either hardly changes the semantic properties
or distorts the sources. (ii) methods that demonstrate overfitting, i.e. methods
that suffer from identity preservation issues. These methods transfer most or all
of the semantic features of the target, and eliminate the source identity in the
process or create a blended identity of source and target. This results in very
high semantic compatibility scores, but on the other hand, a failure in identity
preservation. As can be expected, the methods designed for domain adaptation,
i.e., StyleGAN-NADA and Mind The Gap fall in this category, as does JoJoGAN.
The values marked in orange in Tab. 1 demonstrate that both StyleGAN-NADA
and Mind The Gap obtain very low source identity scores (significantly lower
than the other methods), while JoJoGAN receives the highest (lower is better)
target identity score in both experiments (50.7% on the celebrities test and
41.7% on the FFHQ test, surpassing all other baselines by more than 10%).
This indicates that StyleGAN-NADA and Mind The Gap fall short on identity
preservation, while JoJoGAN results in an image derived from the identity of the
target instead of the source. For example, the Ariel target (first row in Fig. 6)
demonstrates that the baselines result in a unified identity with the semantic
features of the target. Similarly, the Keanu Reeves and Ed Sheeran targets (fourth
and fifth rows in Fig. 6) result in blended identities with the baselines. We omit
StyleGAN-NADA from Fig. 6 for brevity, as the other two methods scored higher
in terms of identity preservation. The full comparison, as well as comparisons
from our second experiment can be found in the supplementary material.

Lastly, (iii) methods that successfully transfer the semantic properties of the
target (have high BLIP and CLIP similarity scores) while also preserving the
identity of the source more than the target (i.e., ID-scoresource ą ID-scoretarget),
which both our methods fall under. When analyzing the quality of the manipulated
images, our optimization-based method scores the best overall FID score in both
experiments by a significant margin, indicating that it is able to produce high-
quality manipulations. In addition, our optimization demonstrates a very low
(lower is better) target identity score, suggesting that our essence transfer does
not borrow from the identity of the target in order to obtain the semantic changes.
While our encoder preserves the identity quality (ID-scoresource ą ID-scoretarget),
notice that it achieves a higher target identity score, indicating that our encoder is
not as successful as our optimizer in identity preservation. This can be attributed
to two facts. First, our encoder is based on a pre-trained inversion encoder that
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Fig. 7: Examples of essence decoding. (a) presents the targets, sources, and
manipulation results, with E representing the essence extraction, i.e. we add the
essence of the right image to the left image, and (b) demonstrates the decoding
of the essence vectors for each example.

encapsulates the target identity by design. Second, while our optimizer learns an
essence vector for each target, the encoder is only fine-tuned on a small set of
images and is not optimized for each target at inference time.

Essence Interpretability To demonstrate that our methods indeed produce
essence vectors that correspond to the semantic attributes of the target image It,
we present results of decoding the essence vectors to text. We observe semantic
differences by applying a decoder on the vector d “ CpIs,tq ´ CpIsq where C
represents the semantic image encoder of CLIP or BLIP, i.e. we decode the
difference between the source image after and before the manipulation. Fig. 7
shows examples for four different edits and their interpretations. The Donald
Trump and the Joker edits (first and second row of Fig. 7) were performed with
our optimization-based method, encoded with CLIP, and decoded with [46], and
the rest were performed using our encoder approach and encoded/decoded with
BLIP. As can be seen, the textual interpretations of each direction correspond
well to the semantic properties of the targets, and for the Donald Trump and
Joker edits, the directions are decoded as Trump and the Joker, demonstrating
the ability of our method to capture essential semantic features of the targets
used. For targets with less distinct semantic properties, the decoding shows
that the apparent gender is transferred along with other significant semantic
properties such as hair color and eye glasses. See the supplementary material for
more examples of essence interpretability using decoding.

Limitations of the encoder-based approach Unlike the optimizer, the encoder
is not re-trained for each target. This results in an accuracy-runtime trade-off,
i.e., while the encoder produces an essence vector in a few seconds, in some cases
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Fig. 8: A comparison between our optimizer (a), and encoder (b).

- where the target contains unconventional semantic properties - it produces a
result that does not encapsulate all the semantic attributes one would expect to
be included in the essence. In contrast, since the optimization is performed from
scratch for each target, it takes longer (a few minutes) to produce the result,
but it is more accurate. Fig. 8 presents two examples of such challenging targets,
where the optimization-based method is superior to the encoder. For Donald
Trump (first row in Fig. 8), optimization results in an essence that includes all
notable semantic properties- the wrinkles, lips, and unique hair color - while
the result of the encoder fails to capture the unique attributes with the same
accuracy. Similarly, for Katy Perry (second row in Fig. 8), optimization captures
the unconventional hair color, while the encoder fails to do so. As evident from
Tab. 1, while both the encoder and optimizer receive high semantic scores, the
optimizer allows for results with higher quality (lower FID, lower target ID score).
Ablation Study We refer the reader to the supplementary material for an
ablation study that examines the impact of each loss term of our method.

6 Conclusions

We define a novel task referred to as essence transfer. Unlike style transfer or
domain adaptation, essence transfer draws semantic features that correspond to
the high-level textual description of an image. Essence transfer is particularly
challenging since the set of attributes that constitute the high-level description
may differ from image to image. We propose an optimizer and an encoder,
both based on double-additivity in the latent spaces of StyleGAN and CLIP,
and measure our method against state of the art methods adapted from style
transfer and domain adaptation. Our extensive experiments demonstrate that our
novel formulation is significantly preferable to the baselines in terms of identity
preservation, the quality of the produced images, and the identification of the
essential attributes of an image.
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