
Detecting and Recovering
Sequential DeepFake Manipulation

Rui Shao , Tianxing Wu , and Ziwei Liu⋆

S-Lab, Nanyang Technological University
{rui.shao, twu012, ziwei.liu}@ntu.edu.sg

https://rshaojimmy.github.io/Projects/SeqDeepFake

Abstract. Since photorealistic faces can be readily generated by fa-
cial manipulation technologies nowadays, potential malicious abuse of
these technologies has drawn great concerns. Numerous deepfake detec-
tion methods are thus proposed. However, existing methods only focus
on detecting one-step facial manipulation. As the emergence of easy-
accessible facial editing applications, people can easily manipulate facial
components using multi-step operations in a sequential manner. This
new threat requires us to detect a sequence of facial manipulations,
which is vital for both detecting deepfake media and recovering origi-
nal faces afterwards. Motivated by this observation, we emphasize the
need and propose a novel research problem called Detecting Sequential
DeepFake Manipulation (Seq-DeepFake). Unlike the existing deepfake
detection task only demanding a binary label prediction, detecting Seq-
DeepFake manipulation requires correctly predicting a sequential vector
of facial manipulation operations. To support a large-scale investigation,
we construct the first Seq-DeepFake dataset, where face images are ma-
nipulated sequentially with corresponding annotations of sequential fa-
cial manipulation vectors. Based on this new dataset, we cast detecting
Seq-DeepFake manipulation as a specific image-to-sequence (e.g. image
captioning) task and propose a concise yet effective Seq-DeepFake Trans-
former (SeqFakeFormer). Moreover, we build a comprehensive bench-
mark and set up rigorous evaluation protocols and metrics for this new
research problem. Extensive experiments demonstrate the effectiveness
of SeqFakeFormer. Several valuable observations are also revealed to fa-
cilitate future research in broader deepfake detection problems.
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1 Introduction

In recent years, hyper-realistic face images can be generated by deep generative
models which are visually extremely indistinguishable from real images. Mean-
while, the significant improvement for image synthesis brings security concerns
on potential malicious abuse of these techniques that produce misinformation
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Fig. 1: Comparison between (a) existing deepfake detection and (b) proposed detecting
and recovering sequential deepfake manipulation.

and fabrication, which is known as deepfake. To address this security issue, vari-
ous deepfake detection methods have been proposed to detect such forged faces.
As illustrated in Fig. 1 (a), given the manipulated face image generated by face
swap algorithm [33] and the original face image, the existing deepfake detection
task requires the model to predict the correct binary labels (Real/Fake).

With the increasing popularity of easy-accessible facial editing applications,
such as YouCam Makeup [2], FaceTune2 [1], and YouCam Perfect [3], it is conve-
nient for people to edit face images in daily life. Compared to existing deepfake
techniques mainly carrying out one-step facial manipulation [33,14], we can now
easily manipulate face images using multi-step operations in a sequential man-
ner. As shown in Fig. 1 (b), the original image can be manipulated by adding
eyeglasses, making a bigger smile and removing beard sequentially. This ex-
pands the scope of existing deepfake problem by adding sequential manipulation
information and poses a new challenge for current one-step deepfake detection
methods. This observation motivates us to introduce a new research problem —
Detecting Sequential Deepfake Manipulation (Seq-Deepfake). We summarize
several key differences between detecting Seq-Deepfake and the existing deepfake
detection: 1) rather than only predicting binary labels (Real/Fake), detecting
Seq-Deepfake aims to detect sequences of facial manipulations with diverse se-
quence lengths. For example, the model is required to predict a 3-length sequence
as ‘Eyeglasses-Smiling-Beard’ for the manipulated image as shown in Fig. 1 (b).
2) As illustrated in Fig. 1 (b), beyond pure forgery detection, we can further
recover the original faces (refer to Section 5.4 of Experiments) based on the
detected sequences of facial manipulation in Seq-Deepfake. This greatly enriches
the benefits of detecting Seq-Deepfake manipulation.

To facilitate the study of detecting Seq-Deepfake, this paper contributes the
first Seq-Deepfake dataset. Fig. 2 shows some samples in Seq-Deepfake dataset.
From Fig. 2, it can be seen that one face image can be sequentially manipulated
with different number of steps (from minimum 1 step to maximum 5 steps), which
leads to facial manipulation sequences with diverse lengths. It is extremely dif-
ficult to distinguish the original and manipulated face images, and even harder
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Fig. 2: Illustration of sequential facial manipulation. Two types of facial manipulation
approaches are considered, i.e. facial components manipulation [19] in the first row and
facial attributes manipulation [16] in the second row.

to figure out the exact manipulation sequences. To make our study more com-
prehensive, we consider two different facial manipulation techniques, facial com-
ponents manipulation [19] and facial attributes manipulation [16], which are
displayed in the first and second row, respectively in Fig. 2.

Most current facial manipulation applications are built based on Generative
Adversarial Network (GAN). It is well known that the semantic latent space
learned by GAN is difficult to be perfectly disentangled [42,21]. We argue that
this defect is likely to leave some spatial as well as sequential manipulation
traces unveiling sequential facial manipulations. Based on this observation, to
detect such two types of manipulations traces, we cast detecting Seq-Deepfake
as a specific image-to-sequence (e.g. image captioning) task and thus propose
a concise yet effective Seq-DeepFake Transformer (SeqFakeFormer). Two key
parts are devised in SeqFakeFormer: Spatial Relation Extraction and Se-
quential Relation Modeling with Spatially Enhanced Cross-attention.
Given a manipulated image, to adaptively capture subtle spatial manipulation
regions, SeqFakeFormer feeds the image into a deep convolutional neural net-
work (CNN) to learn its feature maps. Then we extract the relation of spa-
tial manipulations captured in feature maps using the self-attention modules of
transformer encoder, obtaining features of spatial relation, i.e. spatial manipu-
lation traces. After that, the decoder of SeqFakeFormer models the sequential
relation of extracted features of spatial relation via cross-attention modules in
an autoregressive mechanism, contributing to the detection of sequential manip-
ulation traces, and thus detecting the facial manipulation sequences. To enable
more effective cross-attention given limited annotations of facial manipulation
sequences in Seq-DeepFake, SeqFakeFormer further integrates a Spatially En-
hanced Cross-Attention (SECA) module in the decoder. This module enriches
the spatial information of annotations of manipulation sequences by learning a
spatial weight map. After fusing the spatial weight map with the cross-attention
map, a spatially enhanced cross-attention can be achieved.

Main contributions of our paper can be summarized as follows:
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– We introduce a new research problem named Detecting Sequential Deepfake
Manipulation (Seq-DeepFake), with the objective of detecting sequences
of facial manipulations, which expands the scope and poses a new challenge
for deepfake detection.

– We contribute the Sequential Deepfake Dataset with sequential manipulated
face images using two different facial manipulation techniques. Correspond-
ing annotations of manipulation sequences are provided.

– We propose a powerful Seq-DeepFake Transformer (SeqFakeFormer). A
comprehensive benchmark is built and rigorous evaluation protocols and
metrics are designed for this novel research problem. Extensive quantitative
and qualitative experiments demonstrate its superiority.

2 Related Work

Deepfake detection. Nowadays, security of facial information [29] is threaten
by physical attacks [36,34,37,39,35,41,26,51] and digital attacks [40,38,32,49].
This paper focuses on detecting one of the digital attacks, deepfake. Current
deepfake detection methods can be roughly categorized into spatial-based and
frequency-based deepfake detection. The majority of spatial-based deepfake de-
tection methods focus on capturing visual cues from spatial domain. Face X-
ray [23] is proposed to detect the blending boundary left in the face forgery
process as visual cues for real/fake detection. A multi-attentional deepfake de-
tection network is proposed in [52] to integrate low-level textural features and
high-level semantic features. Zhu et al. [55] introduce 3D decomposition into
forgery detection and propose a two-stream network to fuse decomposed fea-
tures for detection. Pair-wise self-consistency learning (PCL) [53] is introduced
to detect inconsistency of source features within the manipulated images. In-
consistencies in semantically high-level mouth movements are captured in [12]
by fine-tuning a temporal network pretrained on lipreading. On the other hand,
some methods pay attention to the frequency domain for detecting spectrum ar-
tifacts. There exist distinct spectrum distributions and characteristics between
real and fake images in the high-frequency part of Discrete Fourier Transform
(DFT) [8,9]. Qian et al. [31] propose a F3-Net to learn local frequency statis-
tics based on Discrete Cosine Transform (DCT) to mine forgery. Liu et al. [25]
present a Spatial-Phase Shallow Learning method to fuse spatial image and phase
spectrum for the up-sampling artifacts detection. A two-stream model is devised
in [28] to model the correlation between extracted high-frequency features and
regular RGB features to learn generalizable features. A frequency-aware discrim-
inative feature learning framework [22] is introduced to integrate metric learning
and adaptive frequency features learning for face forgery detection.

So far, several deepfake datasets have been released to public, such as Face-
Forensics++ [33], Celeb-DF [24], Deepfake Detection Challenge (DFDC) [7], and
DeeperForensics-1.0 (DF1.0) [15]. However, only binary labels are provided in
most of existing deepfake datasets, and thus most of the above works are trained
to carry out binary classification, which results in performance saturation and
poor generalization.
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Fig. 3: Illustration of Seq-Deepfake dataset. Samples of Seq-Deepfake are provided with
annotations of manipulation sequences. We also show sequence length distribution.

Facial editing. Several methods have been proposed for editing facial compo-
nents (i.e. eye, nose, month). Lee et al. [20] present a geometry-oriented face
manipulation network MaskGAN for diverse and interactive face manipulation
guided by semantic masks annotations. A semantic region-adaptive normaliza-
tion (SEAN) [54] is proposed to facilitate manipulating face images by encod-
ing images into the per-region style codes conditioned on segmentation masks.
StyleMapGAN [19] introduces explicit spatial dimensions to the latent space and
manipulates facial components by blending the latent spaces between reference
and original faces. Moreover, some works target editing specific facial attributes
such as age progression [50], and smile generation [48]. Some recent works dis-
cover semantically meaningful directions in the latent space of a pretrained GAN
so as to carry out facial attributes editing by moving the latent code along these
directions [42,43,56,45,44]. InterFaceGAN [42,43] tries to disentangle attribute
representations in the latent space of GANs by searching a hyperplane, of which
a normal vector is used as the editing direction. Fine-grained facial attributes
editing is achieved by [16] through searching a curving trajectory with respect
to attribute landscapes in the latent space of GANs.

3 Sequential Deepfake Dataset

To support the novel research problem, we generate a large-scale Sequential
Deepfake (Seq-Deepfake) dataset consisting of sequential manipulated face im-
ages based on two representative facial manipulation techniques, facial compo-
nents manipulation [19] and facial attributes manipulation [16]. Unlike most
of existing deepfake datasets [33,14] only providing binary labels, the proposed
dataset contains annotations of manipulation sequences with diverse sequence
lengths. Details of generation pipelines based on the two facial manipulation
techniques are as follows.
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Sequential facial components manipulation. We adopt the StyleMapGAN
proposed in [19] for facial components manipulation. Facial components ma-
nipulation is carried out based on original images from CelebA-HQ [27,17] and
corresponding facial component masks from CelebAMask-HQ [20] dataset. Fa-
cial components manipulation aims to transplant some facial components of a
reference image to an original image with respect to a mask that indicates the
components to be manipulated. Specifically, we project the original image and
the reference image through the encoder of StyleMapGAN to obtain stylemaps,
which are intermediate latent spaces with spatial dimensions. Then, the facial
components manipulation is carried out by blending the stylemaps extracted
from reference and original faces based on facial component masks. Due to the
inevitable appearance of degraded images in the generation process, we adopt the
Generated Image Quality Assessment (GIQA) algorithm [11] to quantitatively
evaluate the quality of each generated image and then filter out some low-quality
ones based on the pre-defined threshold. Fig. 3 (a) shows some samples with cor-
responding annotations of sequential facial components manipulation. Through
this data generation pipeline, we can finally generate 35,166 manipulated face
images annotated with 28 types of manipulation sequences in different lengths
(including original). As illustrated in Fig. 3 (a), the proportions of 1-5 different
lengths of manipulation sequences are: 20.48%, 20.06%, 18.62%, 20.88%, 19.96%.
Sequential facial attributes manipulation. Unlike facial components ma-
nipulation methods that swap certain local parts from a reference image to an
original image, facial attributes manipulation approaches directly change specific
attributes on the original face image without any reference images. To take this
manipulation type into consideration, we utilize the fine-grained facial editing
method proposed by [16]. This method aims to learn a location-specific semantic
field for each editing type on the training set, then edit this attribute of interest
on the given face image to a user-defined degree by stepping forward or backward
on the learned curve in latent space. Based on this idea, we further generate face
images with sequential facial attributes manipulation by performing the edit-
ing process in a sequential manner. Specifically, we first sample latent codes
from the StyleGAN trained on FFHQ dataset [18] to generate original images.
Then according to pre-defined attribute sequences, we progressively manipulate
each attribute on the original face to another randomly chosen degree using the
above method. After generating the final manipulation results, we also perform
GIQA algorithm to filter out low-quality samples. Using this pipeline, we gener-
ate 49,920 face images with 26 manipulation sequence types, with the length of
each sequence ranging from 1 to 5, as shown in Fig. 3 (b).

4 Our Approach

4.1 Motivation

Most current facial manipulation applications are constructed using algorithms
of Generative Adversarial Network (GAN). However, it is a well known fact that
due to imperfect semantic disentanglement in the latent space of GAN [42,21],
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Fig. 4: Effect of different sequential order for facial manipulation. Switching the se-
quential order of manipulations between (a) eye and nose and (b) bangs and smiling
results in different facial manipulations.

manipulating one facial component or attribute is likely to affect the others.
As shown in the first row of Fig. 2, manipulating the nose in the step of ‘Eye-
Nose’ simultaneously results in some little modification on the eye and mouth
components compared to the former step ‘Eye’, which alters the overall spa-
tial relation among facial components. We can thus discover some spatial
manipulation traces from the spatial relation. Furthermore, as illustrated in
Fig. 4, switching the sequential order of manipulations (e.g., manipulation order
between eye and nose in (a) and bangs and smiling in (b) in Fig. 4) causes dif-
ferent facial manipulation results (e.g., distinct gazes in (a) and distinct amount
of bangs in (b) in Fig. 4), which indicates that when changing the sequential
order of manipulations, the above overall spatial relation of facial components
altered by manipulations will also be changed. This means there exists sequential
information from spatial relation that reflects the sequential order of manipula-
tions, which corresponds to the facial manipulation sequence. That is, we can
extract the spatial relation among facial components to unveil the spatial ma-
nipulation traces and model their sequential relation to detect the facial
manipulation sequence. We thus regard the sequential relation as sequential
manipulation traces.

4.2 Overview

Based on the above observation, we cast detecting Seq-Deepfake manipulation
as a specific image-to-sequence task, where inputs are manipulated/original im-
ages and outputs are facial manipulation sequences. Three challenges will be
encountered when addressing the task. 1) From Fig. 2 and 3, it can be seen
that distinguishing original faces and sequential manipulated faces is extremely
hard. Besides, with respect to different people, differences in face contour cause
diverse manipulation regions for the same type of facial components/attributes
manipulation. Thus, given indistinguishable and diverse facial manipulations,
how to adaptively capture subtle manipulation regions and model their spa-
tial relation accurately is quite challenging. 2) Based on the spatial relation of
manipulated components/attributes, how to precisely model their sequential re-
lation so as to detect the sequential facial manipulation is another challenge. 3)
Compared to normal image-to-sequence task (e.g. image captions), the annota-
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Fig. 5: Overview of proposed Seq-DeepFake Transformer (SeqFakeFormer). We first
feed the face image into a CNN to learn features of spatial manipulation regions, and
extract their spatial relation via self-attention modules in the encoder. Then sequential
relation based on features of spatial relation is modeled to detect the sequential facial
manipulation. A spatial enhanced cross-attention module is integrated into the decoder,
contributing to a more effective cross-attention.

tions of manipulation sequences are much shorter and thus less informative in
our task. Therefore, how to effectively learn the sequential information of facial
manipulations given limited annotations of manipulation sequences should also
be considered.

To cope with the above three challenges, as shown in Fig. 5, we propose
a Seq-DeepFake Transformer (SeqFakeFormer), which is composed of two
key parts: Spatial Relation Extraction, Sequential Relation Modeling
with Spatially Enhanced Cross-attention. To capture spatial manipula-
tion traces, features of subtle manipulation regions are first adaptively captured
by a CNN and their spatial relation are extracted via self-attention modules in
the transformer encoder. After that, we capture sequential manipulation traces
by modeling sequential relation based on features of spatial relation through
cross-attention modules deployed in the decoder with an auto-regressive mecha-
nism. To achieve more effective cross-attention given limited annotations of ma-
nipulation sequences, a spatially enhanced cross-attention module is devised to
generate different spatial weight maps for corresponding manipulations to carry
out cross-attention. In the following subsections, we describe all components in
detail.

4.3 Spatial Relation Extraction

To adaptively capture subtle and various facial manipulation regions, we exploit
a CNN to learn feature maps of the input image. Given an input image x ∈
R3×H′×W ′

, we first feed it into a CNN [13] to extract its visual feature maps
fori = CNN(x), fori ∈ RC×H×W , where H ′,W ′, and H,W are the height and
width of the input image and its corresponding feature maps, respectively. C is
the number of channels of feature maps.



SeqDeepFake 9

Since the transformer architecture is permutation-invariant, we supplement
original visual features maps fori with fixed positional encodings [30,4], resulting
in feature maps denoted as fpos. Since transformer encoder accepts a sequence as
input, we reshape the spatial dimensions of fpos to one dimension, generating re-
shaped features fpos ∈ RC×HW . After feeding into the transformer encoder, fpos

conducts self-attention by generating the key, query, and value features K,Q, V
so as to extract the relations among all spatial positions. Through this self-
attention operation on CNN features, spatial relation of manipulation regions
are exploited and thus spatial manipulation traces can be extracted. To further
facilitate spatial relation extraction, this paper adopts multi-head self-attention
which splits features fpos into multiple groups along the channel dimension. The
multi-head normalized attention based on dot-product is as follows:

fspa
i = Softmax(KT

i Qi/
√
d)Vi, f

spa = Concat(fspa
1 , ..., fspa

D ) (1)

where Ki, Qi, Vi denote the i-th group of the key, query, and value features, d
is dimension of queries and keys, and total D groups are generated. We then
concatenate all the groups to form the features of spatial relation fspa as the
output of encoder.

4.4 Sequential Relation Modeling with Spatially Enhanced
Cross-Attention

Given features of spatial relation fspa extracted from the encoder, we propose
to model the sequential relation among them to detect the facial manipulation
sequences. To this end, we carry out cross-attention between features of spatial
relation fspa and corresponding annotations of manipulation sequences in an
auto-regressive manner. To achieve this, we send original annotations of manip-
ulation sequences Sori ∈ RC×N (e.g., N=5 in Fig. 5 before a Tokenizer) into a
Tokenizer, where we transform each manipulation in the sequence into one token
and insert Start of Sentence (SOS) and End of Sentence (EOS) tokens into the
beginning and end of sequence. After that, we obtain tokenized manipulation
sequences Stok ∈ RC×(N+2) to be cross-attended with features of spatial rela-
tion fspa. With the auto-regressive mechanism, the decoding process of facial
manipulation sequence in the transformer decoder (aided by cross-attention) is
triggered by SOS token and will be automatically stopped once the EOS to-
ken is predicted. In this way, we can predict facial manipulation sequences with
adaptive lengths.

Normally, cross-attention between tokenized sequences Stok and features of
spatial relation fspa should be performed directly. However, as mentioned above,
compared to the normal image-to-sequence task, annotations of manipulation se-
quences are much shorter and thus less informative (Stok only has (N+2)-length
and maximum of N is 5). To effectively cross-attend features of spatial relation
with limited annotations of manipulation sequences, inspired by [10], we pro-
pose a sequential relation modeling with spatially enhanced cross-attention. We
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argue that each manipulation in Stok corresponds to one specific facial compo-
nent/attribute which has a strong prior of spatial regions, thus we can enrich
the information of manipulation sequences guided by this prior. To this end, we
generate the spatial weight map for each manipulation by dynamically predict-
ing the spatial center and scale of each manipulation component/attribute in
annotations of manipulation sequences as follows:

th, tw = sigmoid(MLP(Stok)), rh, rw = FC(Stok) (2)

where th, tw and rh, rw are estimated 2-dimensional coordinates corresponding to
spatial centers and scales of specific manipulations in the sequences, respectively.
Then the Gaussian-shape spatial weight map can be generated as:

M(h,w) = exp

(
− (h− th)

2

λr2h
− (w − tw)

2

λr2w

)
(3)

where (h,w) ∈ [0, H]× [0,W ] are 2-dimensional coordinates of the spatial weight
map M , and λ is a hyper-parameter to modulate the bandwidth of the Gaussian-
shape distribution. From Eq. 3, it can be seen that spatial weight map M can
assign higher importance to spatial regions closer to the centers and lower weights
to locations farther from the centers. Moreover, as analyzed before, since diverse
manipulation regions are presented for different people, the above dynamically
learned scales can further tune the height/width ratios of spatial weight map
based on each manipulation, contributing to a more adaptive spatial weight
map. Based on this idea, we can enhance the cross-attention between features
of spatial relation and annotations of manipulation sequences with generated
spatial weight map M as follows:

S = FC(Stok),K, V = FC(fspa),

fseq
i = Softmax(KT

i Qi

√
d+ logM)Vi,

fseq = Concat(fseq
1 , ..., fseq

D )

(4)

where FC denotes a single fully-connected layer, and fseq
i denotes features of

sequential relation. The cross-attention of the i-th head is further element-wise
added with logarithm of spatial weight map M , which contributes to spatially
enhanced cross-attention. Furthermore, to model the sequential relation of fa-
cial manipulation, the auto-regressive mechanism is integrated into the above
cross-attention process. This is implemented by masking out (setting to −∞) all
values in the input of the Softmax function in Eq. 4 which correspond to illegal
connections. Through concatenation of features of sequential relation from all
cross-attention heads, we can obtain the final features of sequential relation fseq

as the output of decoder.
The features of sequential relation are then fed into a Fast Forward Network

(FFN) and transformed to a class score for each manipulation. Finally, we jointly
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train the CNN, transformer encoder and decoder by minimizing the cross-entropy
loss between each class score and corresponding annotation of manipulation in
the sequence.

5 Experiments

5.1 Experimental Setup

Baseline Methods. The most straightforward solution for detecting Seq-Deepfake
manipulation is to regard it as a multi-label classification problem [46]. It treats
all manipulations in the sequences as independent classes and classifies the ma-
nipulated images into multiple manipulation classes. Specifically, we design a
simple multi-label classification network (denoted as Multi-Cls) as one of the
baselines. We use ResNet-34 [13] and ResNet-50 [13] pre-trained on ImageNet [6]
dataset as backbones for the multi-label classification network, which is concate-
nated with N classification heads (N = 5). Moreover, we study a more complex
transformer structure DETR [5] modified for our problem. To examine the per-
formance of existing deepfake detection methods for our research problem, we
compare three state-of-the-art deepfake detection methods, a Dilated Residual
Network variant (DRN) [47], a two-stream network (Two-Stream) [28], and a
multi-attentional deepfake detection (MA) [52]. More details of baseline meth-
ods can be found in Supplementary Material.
Evaluation Metrics. We propose two evaluation metrics for this new task.

– Fixed Accuracy (Fixed-Acc):Given prediction with fixedN -length (N =
5) by above baselines, as in the training process, the first type of evaluation
pads ‘no manipulation’ class into the annotated manipulation sequences and
compares each manipulation class in the predicted sequences with its corre-
sponding annotation to calculate the evaluation accuracy.

– Adaptive Accuracy (Adaptive-Acc): Since the proposed method ex-
ploits sequential information to detect facial manipulation sequences based
on the auto-regressive mechanism, predictions will be automatically stopped
once predicting the EOS token. Thus, the proposed method can detect facial
manipulation sequences with adaptive lengths. To conduct the evaluation in
this scenario, the second type of evaluation is devised, which compares pre-
dicted manipulations and corresponding annotations within the maximum
steps of manipulations (N ≤ 5) between them. This makes the evaluation
focus more on accuracy of manipulations.

More details of two evaluation metrics can be found in Supplementary Ma-
terial.

5.2 Benchmark for Seq-Deepfake

We tabulate the first benchmark for detecting sequential facial manipulation
based on facial components manipulation and facial attributes manipulation in
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Table 1: Accuracy of detecting Seq-Deepfake based on sequential facial components
manipulation

Methods
ResNet-34 ResNet-50

Fixed-Acc Adaptive-Acc Fixed-Acc Adaptive-Acc
Multi-Cls 69.66 50.54 69.65 50.57
DETR [5] 69.87 50.63 69.75 49.84

Ours 72.13 54.80 72.65 55.30

Table 2: Accuracy of detecting Seq-Deepfake based on sequential facial attributes
manipulation

Methods
ResNet-34 ResNet-50

Fixed-Acc Adaptive-Acc Fixed-Acc Adaptive-Acc
Multi-Cls 66.99 46.68 66.66 46.00
DETR [5] 67.93 48.15 67.62 47.99

Ours 67.99 48.32 68.86 49.63

Tables 1 to 3. We note that, both baselines and the proposed method obtains
much higher performance under evaluation metric Fixed-Acc than Adaptive-
Acc. This validates that detecting sequential facial manipulation with adaptive
lengths is much harder than its simplified version with fixed length. It can be ob-
served from Tables 1 and 2, that the proposed SeqFakeFormer obtains the best
performance of detecting facial manipulation sequences compared to all con-
sidered baselines in both facial components manipulation and facial attributes
manipulation. In addition, SeqFakeFormer also performs better than other base-
lines with both CNNs (ResNet-34 and ResNet-50), indicating the compatibil-
ity of the proposed method with different feature extractors. Specifically, the
proposed method has achieved about 3-4% improvement in facial components
sequential manipulation and 1-2% improvement in facial attributes sequential
manipulation under two evaluation metrics. In particular, there exists a larger
performance gap between SeqFakeFormer and other baselines under evaluation
metric Adaptive-Acc than Fixed-Acc, which demonstrates that the effectiveness
of the proposed method is more significant in the harder case. Moreover, we tab-
ulate the comparison between three SOTA deepfake detection methods and our
method in Table 3. SeqFakeFormer also outperforms all SOTA deepfake detec-
tion methods in both manipulation types. Since all the baselines treat detecting
Seq-Deepfake as a multi-label classification problem, only spatial information
of manipulated images are extracted. In contrast, SeqFakeFormer is capable of
exploiting both spatial and sequential manipulation traces and thus more useful
sequential information can be modeled, which is the key to enhance the perfor-
mance of Seq-Deepfake Detection.

5.3 Ablation study

In this sub-section we investigate the impact of two key components in SeqFake-
Former, auto-regressive mechanism and Spatially Enhanced Cross-Attention mod-
ule (SECA), to the overall performance. The considered components and the cor-
responding results obtained for each case are tabulated Tables 4 and 5. As evident
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Table 3: Accuracy of detecting Seq-Deepfake compared to deepfake detection methods

Methods
Face Components Manipulation Face Attributes Manipulation
Fixed-Acc Adaptive-Acc Fixed-Acc Adaptive-Acc

DRN [47] 66.06 45.79 64.42 43.20
MA [52] 71.31 52.94 67.58 47.48

Two-Stream [28] 71.92 53.89 66.77 46.38
Ours 72.65 55.30 68.86 49.63

Table 4: Ablation study of detecting Seq-Deepfake based on sequential facial compo-
nents manipulation

Components ResNet-34 ResNet-50
Auto-regressive SECA Fixed-Acc Adaptive-Acc Fixed-Acc Adaptive-Acc

% % 70.64 52.19 71.22 53.43

% " 70.77 51.71 70.99 52.66

" % 71.88 53.84 72.18 54.64

" " 72.13 54.80 72.65 55.30

from Tables 4 and 5, removing either auto-regressive mechanism or SECA will de-
grade the overall performance. This validates that auto-regressive mechanism fa-
cilitates the sequential relation modeling and SECA benefits the cross-attention.
These components complement each other to produce better performance for
detecting Seq-Deepfake.

5.4 Face Recovery

After detecting facial manipulation sequences, we are able to perform more chal-
lenging tasks, like recovering the original face from the manipulated face image.
Specifically, we formulate the Face Recovery task as: given a sequentially ma-
nipulated face image, reverse the manipulation process to get an image as close
as possible to the original image. For example, in the facial attributes manip-
ulation case, given an image generated by sequential manipulations on differ-
ent attributes on the original face, we want to recover the original image. In
fact, this task can be seen as an inverse sequential facial attribute manipula-
tion problem, which can be effectively solved by the data generation pipeline
described in Section 3 in an inverse manner. Specifically, as can be observed
in Fig. 6, once we detect the correct facial manipulation sequence, i.e. correct
manipulations ordered with correct manipulation steps, we can recover origi-
nal face by performing face attribute manipulation based on the inverse order
of detected facial manipulation sequence (process with green arrow). Compara-
tively, recovering the face image with wrongly ordered manipulation sequences
may encounter different problems, such as incomplete recovery of age, smile,
glasses, etc. (process with red arrow). Fig. 7 evaluates the results using identity
preservation metrics as in [16], where smaller feature distance means identity is
better preserved. The average feature distance between randomly selected 100
original faces and recovered faces using correct manipulation sequences is clearly
smaller than that of the wrongly ordered sequence, indicating that the identity
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Table 5: Ablation study of detecting Seq-Deepfake based on sequential facial attributes
manipulation

Components ResNet-34 ResNet-50
Auto-regressive SECA Fixed-Acc Adaptive-Acc Fixed-Acc Adaptive-Acc

% % 66.98 45.87 68.14 48.49

% " 67.36 47.22 68.77 49.54

" % 66.70 46.56 68.17 48.81

" " 67.99 48.32 68.86 49.63

Original Bangs-Young-Eyeglasses

Eyeglasses-Young-Bangs Young-Eyeglasses-Bangs

Original Beard-Smiling-Young Original Beard-Eyeglasses-Young

Young-Eyeglasses-Beard Young-Beard-EyeglassesYoung-Smiling-Beard Smiling-Beard-Young

Fig. 6: Face recovery based on correct and wrong facial manipu-
lation sequences.
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Fig. 7: Identity
preservation.

can be better recovered with correct manipulation sequence. Based on the above
analysis and experiments, we prove that the detection of facial manipulation
sequences is highly useful for face recovery, and we hope it can be applied to
more meaningful tasks in the future.

6 Conclusion

This paper studies a novel research problem – Detecting Sequential DeepFake
Manipulation, aiming to detect a sequential vector of multi-step facial manipu-
lation operations. We also introduce the first Seq-DeepFake dataset to provide
sequentially manipulated face images. Supported by this new dataset, we cast
detecting Seq-DeepFake manipulation as a specific image-to-sequence task and
propose a Seq-DeepFake Transformer (SeqFakeFormer). Two modules, Spatial
Relation Extraction and Sequential Relation Modeling with Spatially Enhanced
Cross-Attention, are integrated into SeqFakeFormer, complementing each other.
Extensive experimental results demonstrate the superiority of SeqFakeFormer
and valuable observations pave the way for future research in broader deepfake
detection.
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