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Abstract. This document supplements paper Watermark Vaccine: Ad-
versarial Attacks to Prevent Watermark by providing theoretically anal-
ysis, dataset details, additional experiments and more results, and more
visualizations.

1 Theoretically Analysis

In this section, we will theoretically analyze why our proposed vaccines work
effectively and give the lower bound or upper bound of the watermark protection
for DWV and IWV.

Definition 1. Let x be a host image, w be a watermark, and δ be a watermark
vaccine. For simplicity, we make plus denote the watermarking and vaccination
operations. Thus, the watermarked image with the perturbation can be written
as (x + w + δ). Let f denotes the watermark-removal network, then we can let
f(x + w, δ) denote the watermark removed image of (x + w + δ). Next, define
∥f(x+w, δ)−(x+w+δ)∥ as the distance between the watermark removed image
with vaccine and the ground truth, which is used to evaluate the effectiveness of
the watermark vaccine.

Assumption 1 We assume that the f satisfies a local Lipschitz condition on a
set Ω such that

∀x,∃δ ∥f(x, δ)− f(x+ w, δ)∥ ≤ L ∥w∥ , (1)

where for the any x, there exists a δ, and after adding a w, there exists (x +
w, δ) ∈ Ω. In particular, we assume that the watermark is small enough, so the
watermarking variation ∥w∥ of an image is also small.
⋆ Corresponding Author
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Proposition 1. Assume that f satisfies Assumption 1, let the DWV δ1 disturbs
the removed image of the host image x, which is equal to maximize the distance
between the watermark removed image f(x, δ1) and the ground truth (x + δ1),
such that

∥f(x, δ1)− (x+ δ1)∥ ≥ M, (2)

where M is the lower bound for optimization. And for any random noise δ0, there
always exists ∥f(x, δ0)− (x+ δ0)∥ ≪ M . Thus, there exists the lower bound for
the distance between the watermark removed image and watermarked images:

∥f(x+ w, δ1)− (x+ w + δ1)∥ ≥ M − (L+ 1) ∥w∥ ≫ ∥f(x, δ0)− (x+ δ0)∥. (3)

Proposition 2. Assume that f satisfies Assumption 1, let the IWV δ2 disturbs
the removed image of the host image x, which is equal to minimize the distance
between the removed image f(x, δ2) and x+ δ2, such that

∥f(x, δ2)− (x+ δ2)∥ ≤ N, (4)

where N is the upper bound for optimization. And for any random noise δ0,
there always exists ∥f(x, δ0)− (x+δ0)∥ ≫ N . Thus, there exists the upper bound
for the distance between the removed image with watermarks and watermarked
images:

∥f(x+ w, δ2)− (x+ w + δ2)∥ ≤ N + (L+ 1) ∥w∥ ≪ ∥f(x, δ0)− (x+ δ0)∥. (5)

Proof. For the Proposition 1, by assumption there exists Lipschitz constant L
such that ∥f(x, δ1)− f(x+ w, δ1)∥ ≤ L ∥w∥. Then, so long as DWV δ1 satisfies
∥f(x, δ1)− (x+ δ1)∥ ≥ M , we can inductively get:

∥f(x+ w, δ1)− (x+ w + δ1)∥ = ∥f(x+ w, δ1)− f(x, δ1)

+ f(x, δ1)− (x+ δ1)− w∥
≥ |∥(x+ w, δ1)− f(x, δ1)∥−

∥f(x, δ1)− (x+ δ1)− w∥|
≥ |M − ∥f(x, δ1)− (x+ δ1)− w∥|
= M − ∥f(x, δ1)− (x+ δ1)− w∥ (∗)
≥ M − ∥f(x, δ1)− (x+ δ1)∥ − ∥w∥
≥ M − L∥w∥ − ∥w∥
= M − (L+ 1)∥w∥ .

In the (∗) step, because the lower bound M is expected to be larger when
generating the DWV, and ∥w∥ is assumed to be very small in the Assumption,
the term in the absolute value is always a positive number. In addition, due to
∥f(x, δ0)− (x+ δ0)∥ ≪ M , we can get:

∥f(x+ w, δ1)− (x+ w + δ1)∥ ≥ M − (L+ 1)∥w∥ ≫ ∥f(x, δ0)− (x+ δ0)∥.
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Similarly, for Proposition 2, by assumption, there exists Lipschitz constant
L such that ∥f(x, δ2)− f(x+ w, δ2)∥ ≤ L ∥w∥. Then, if the IWV δ2 satisfies the
condition ∥f(x, δ2)− (x+ δ2)∥ ≤ N , we can also inductively get:

∥f(x+ w, δ2)− (x+ w + δ2)∥ = ∥f(x+ w, δ2)− f(x, δ2)

+ f(x, δ2)− (x+ w + δ2)∥
≤ ∥f(x+ w, δ2)− f(x, δ2)∥

+ ∥f(x, δ2)− (x+ w + δ2)∥
≤ L∥w∥+ ∥f(x, δ2)− (x+ δ2)∥+ ∥w∥
≤ L∥w∥+N + ∥w∥
= N + (L+ 1)∥w∥.

due to the ∥f(x, δ0)− (x+ δ0)∥ ≫ N and ∥w∥ is small enough, then we can
get:

∥f(x+ w, δ2)− (x+ w + δ2)∥ ≤ N + (L+ 1)∥w∥ ≪ ∥f(x, δ0)− (x+ δ0)∥

Although the above Propositions are only valid under certain assumptions,
they explain why our vaccines can successfully prevent the watermark from being
removed. According to the Equation (3), if the lower bound M becomes larger
or watermarking variation ∥w∥ becomes smaller, the lower bound for disrupting
distance will be larger. Thus, the effect of DWV is better. Similarly, according
to the Equation (5) the upper bound N or the watermarking variation ∥w∥ is
smaller, the upper bound for inerasable distance will be smaller, and the effect
of IWV will be better. These conclusions are consistent with our intuitions.

2 Dataset Description

To the best of our knowledge, there are several visible watermark datasets syn-
thesized in recent work: LVW [3], LOGO-L [1], LOGO-H [1], and CLWD [4].
However, LWV mainly contains gray-scale watermarks, which is not applica-
ble to real scenes. In addition, LOGO-L and LOGO-H both only contain the
processed watermarked images (each watermarked image is fixed in size and po-
sition) and do not have the raw watermark patterns. For our experiments, it
may not be appropriate to use them. Therefore, we only use the CLWD dataset
in our paper to evaluate our watermark vaccines.
CLWD. Colored Large-scale Watermark Dataset (CLWD) [4] contains 60K wa-
termarked images made up of 160 colored watermarks for training, and 10K
watermarked images made up of 40 colored watermarks for testing. The host
images are all sourced from the PASCAL VOC2012 training and testing sets,
while the watermarks are taken from the open-sourced logo images distributed
online. A watermarked image in CLWD is synthesized by one PASCAL image
and attached to one processed watermark onto it. The size, location, rotation
angle, and transparency for each watermark are selected previously. As described
in our main paper, we only train the pre-trained model with the watermarked
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images in CLWD but use the raw watermark patterns to create the watermarked
images to evaluate the universality of watermark vaccines in the attack stage.

3 More Visualization Results of Effectiveness

In Section 4.2 of our manuscript, we have shown the effect of the watermark
vaccine by a few examples. In order to further verify the effectiveness of the
watermark vaccine, in this section, we show more visualization results for the
Disrupting watermark vaccine (DWV) and Inerasable watermark vaccine (IWV)
under different blind watermark removal networks. Just like in the main paper,
we choose the WDNet [4], BVMR [3], and SplitNet [1] as our models. Qualitative
visualizations are shown in Figure 3, 4 and 5 respectively. In order to show the
diversity, we select different watermark patterns w and parameters θ for each
row.

4 Sensitivity to Hyperparameters

In this section, we discuss the sensitivity of watermark vaccines to three hyper-
parameters: balance parameter β, step size α, and iteration T . We select the β
from 1.0 to 3.0, the T from 20 to 60, and the α from 1/255 to 8/255, respec-
tively. When one of the hyperparameters changes, the other parameters will be
fixed at the setting value in the main paper. Empirically, we choose the RMSEh

for DWV as the evaluation metrics and the RMSEw
w for IWV as the evaluation

metrics. In addition, we also compare the DWV and IWV with clean input in
different watermark-removal networks for a better presentation, and the results
are shown in Figure 6, 7 and 8.

In Figure 6, we can see that the RMSEw
w has an oscillating change as the β

changes. However, whatever the β is, the RMSEw
w for them are always much lower

than those for clean input, which means the IWV is always effective regardless of
β. In Figure 7, the iteration T shows a similar oscillating change to β for DWV
and IWV. Thus, the watermark vaccines are also not sensitive to the iteration T .
However, in Figure 8, the effects of the watermark vaccine diminish as the step
sizeα increases, and the worst result is obtained when α = 8. At this time, the
Projected Gradient Descent method [5] in our algorithm has degenerated into
the Fast Gradient Sign method [2]. Therefore, we conclude that our watermark
vaccines are not sensitive to balance parameter β and iteration T but are less
effective if the step size α is too large. In this way, our watermark vaccines are
easy to apply in reality without excessive tuning of hyperparameters for every
host image.

5 Budgets

In this section, we explore the impact of the perturbation budget ϵ on the per-
formance of the watermark vaccine. The same as our manuscript, we choose
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(a) DWV budget (b) IWV budget

Fig. 1. The impact of watermark vaccine budgets on metrics on WDNet [4]. The x-axis
shows the perturbation budgets ϵ *255 and the vertical axis shows the value of RMSEh

for DWV or RMSEw
w for IWV.

the WDNet as an example and choose the RMSEh for DWV as the evaluation
metrics and the RMSEw

w for IWV as the evaluation metrics. For quantitative
analysis, we calculate the metrics averaging 1,000 images with different budgets
and plot the Figure 1. It can be seen that the larger perturbation budgets ϵ
cause RMSEh to change dramatically for the DWV, and then it flattens out.
Therefore, the DWV can generate an adversarial effect with only a small bud-
get. However, for the IWV, there is a noticeable drop until the budget ϵ is larger
than 4/255 and then oscillate.

We also give a qualitative study on the budget’s impact ϵ. In Figure 9 and
10, the top row shows the watermarked image with DWV/IWV as the budget
increases. The middle row shows the corresponding watermark removed images,
and the bottom row shows their masks. Usually, we choose the perturbation
less than 8/255 because such perturbations can be imperceptible. In Figure 9,
we can find the image has been destroyed when ϵ = 2/255, and most areas of
the watermark removed image are distorted when ϵ = 6/255. In Figure 10, the
watermark removed image can not be purified by IWV until ϵ = 4/255, and
there is a best protection when ϵ = 8/255.

Combing the quantitative and qualitative analysis, we can learn that the
DWV can ruin the watermark removed images even if the perturbation budget
is small, but the protection of IWV is not the best even if the budget is large
enough because its effect trends to be oscillating. Anyway, our watermark vaccine
can still be effective on a small budget that is imperceptible to humans.

6 More Results of Universality

In Section 4.3 of the main paper, we have shown a good universality of our
watermark vaccines on WDNet [4]. In this section, we show the visualization of
universality results in Figure 2 and present the universality of watermark vaccine
on BVMR [3] and SplitNet [1]. As said in the main paper, we test 1,000 host
images with ten random sizes/ locations/ patterns/ transparencies of watermarks
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(a) Size (b) Location

(c) Watermark Pattern (d) Transparency

Fig. 2. The visualization of watermark vaccines on different settings on WDNet [4].
Each row shows the watermark removed images under different sizes/ locations/ pat-
terns/ transparencies of watermarks.

and then calculate the mean and variance of these results from different settings.
The final results are shown in Table 1 for BVMR and Table 2 for SplitNet.

In Figure 2, the DWV can always ruin the watermark removed image re-
gardless of size/ location/ pattern/ transparency of the watermarks on it, while
the IWV can keep the watermark on them under different settings. It is worth
noting that in Figure 2 (a), when the size of the watermark is larger, the effect
of IWV has a slight reduction (e.g. the watermark pattern is not fully preserved
with size = 100). This is also consistent with our analysis in the main paper. In
Table 1 and 2, the large means difference compared to the clean input and the
small standard deviation prove that our watermark vaccine can be universal for
different watermark settings. In addition, we can see that the standard deviation
for the size of watermarks is larger than others, which is probably because the
watermarking variation ∥w∥ is quite important for the watermark vaccine.
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Table 1. Mean and standard deviation over evaluation metrics of DWV and IWV on
BVMR [3] for random patterns/ locations/ sizes/ transparencies of watermarks. Both
two vaccines are compared with the clean input.

Watermark Location Size Transparency

Metrics Clean DWV Clean DWV Clean DWV Clean DWV

PSNRh 40.82±0.09 29.42±0.02 42.59±0.20 29.34±0.02 38.64±0.58 29.52±0.06 40.70±0.04 29.34±0.01

SSIMh 0.9947±0.0002 0.6642±0.0026 0.9960±0.0004 0.6478±0.0023 0.9861±0.0024 0.7064±0.0085 0.9933±0.0002 0.6600±0.0007

RMSEh 2.37±0.02 8.72±0.02 1.98±0.04 8.78±0.01 3.26±0.19 8.59±0.05 2.42±0.01 8.78±0.01

RMSEh
w 25.04±1.00 27.56±0.92 25.31±1.48 27.95±0.81 27.53±1.19 31.02±1.37 26.74±0.54 30.45±0.41

(a) DWV

Watermark Location Size Transparency

Metrics Clean IWV Clean IWV Clean IWV Clean IWV

PSNRw 40.81±0.13 42.56±0.29 42.95±0.22 44.53±0.22 39.29±0.61 40.55±0.72 41.36±0.10 43.64±0.08
SSIMw 0.9874±0.0007 0.9914±0.0006 0.9925±0.0007 0.9954±0.0006 0.9723±0.0040 0.9817±0.0036 0.9888±0.0004 0.9945±0.0002
RMSEw 2.40±0.03 2.05±0.05 1.95±0.05 1.63±0.04 3.12±0.19 2.82±0.19 2.31±0.02 1.84±0.01
RMSEw

w 42.54±1.47 36.42±1.66 39.52±2.59 34.39±2.16 38.59±2.41 34.73±2.21 38.26±0.97 29.04±0.84

(b) IWV.

7 More Results of Resistance to Image Processing
Operations

We have shown that our watermark vaccines can resist JPEG compression oper-
ation and Gaussian Blur operation in the main paper. In this section, we will give
more results for SplitNet [1] and BVMR [3], and we will consider four other oper-
ations: brightness adjustment, contrast adjustment, saturation adjustment and
hue adjustment. Empirically, we choose the RMSEh for DWV as the evaluation
metrics and the RMSEw

w for IWV for a better illustration.
Figure 11 and 12 show the effect of JPEG Compression and Gaussian Blur on

DWV/IWV for BVMR and SplitNet. We can find that our watermark vaccines
can resist a higher 70% compression rate or lower 1 radius of a gaussian blur
for BVMR, while they only resist a higher 80% compression rate or lower 0.75
radius of a gaussian blur for SplitNet. Although an excessive compression ratio
or a big radius of blur will reduce the performance of the watermark vaccines,
as the main paper says, these excessive operations will also degrade the image
quality at the same time.

In Figure 13, 14, 15 and 16, we can see that our watermark vaccines can
also resist other image operations. Among these operations, we find contrast
adjustment and saturation adjustment have little effect on watermark vaccine
for three networks, while if the hue adjustment is too strong, the effect of water-
mark vaccine is significantly reduced like JPEG compression and Gaussian Blur.
Therefore, we conclude that our watermark vaccines can resist the moderate
change by most common image operations.
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Table 2. Mean and standard deviation over evaluation metrics of DWV and IWV on
SplitNet [1] for random patterns/ locations/ sizes/ transparencies of watermarks. Both
two vaccines are compared with the clean input.

Watermark Location Size Transparency

Metrics Clean DWV Clean DWV Clean DWV Clean DWV

PSNRh 43.01±0.16 33.68±0.08 44.67±0.15 33.78±0.09 40.50±0.40 33.67±0.13 42.47±0.02 33.64±0.15

SSIMh 0.9963±0.0003 0.8846±0.0026 0.9976±0.0002 0.8858±0.0019 0.9917±0.0011 0.8952±0.0037 0.9960±0.0001 0.8887±0.0025

RMSEh 1.84±0.03 5.43±0.04 1.53±0.03 5.40±0.04 2.66±0.13 5.44±0.08 1.96±0.01 5.47±0.07

RMSEh
w 21.72±1.60 44.26±2.83 20.73±0.77 71.51±1.69 21.88±0.73 62.46±2.04 20.44±0.77 69.44±2.73

(a) DWV

Watermark Location Size Transparency

Metrics Clean IWV Clean IWV Clean IWV Clean IWV

PSNRw 41.72±0.19 44.05±0.36 43.47±0.13 45.78±0.22 39.34±0.48 41.50±0.63 41.70±0.08 45.11±0.22
SSIMw 0.9875±0.0005 0.9927±0.0005 0.9928±0.0003 0.9958±0.0004 0.9687±0.0036 0.9766±0.0035 0.9887±0.0004 0.9951±0.0001
RMSEw 2.14±0.04 1.77±0.07 1.76±0.03 1.44±0.04 3.09±0.17 2.71±0.19 2.15±0.01 1.62±0.04
RMSEw

w 50.03±1.74 5.16±0.79 47.84±1.53 28.63±1.51 48.01±1.48 33.83±2.14 46.16±1.41 24.64±0.85

(b) IWV.

Fig. 3. Qulitative comparison of the protective effects of DWV and IWV under the
WDNet [4]. In each row, we show the watermark removal results on the images without
vaccine, the images with DWV, and the images with IWV under the same model.
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Fig. 4. Qulitative comparison of the protective effects of DWV and IWV under the
BVMR [3]. In each row, we show the watermark removal results on the images without
vaccine, the images with DWV, and the images with IWV under the same model.

Fig. 5. Qulitative comparison of the protective effects of DWV and IWV under the
SplitNet [1]. In each row, we show the watermark removal results on the images without
vaccine, the images with DWV, and the images with IWV under the same model.
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(a) WDNet (b) BVMR (c) SplitNet

Fig. 6. The effect of IWV on three watermark-removal network with different balance
parameters β. We choose the RMSEw

w as an evaluation metric for IWV. The blue lines
show the results of clean input, and the red lines show the results of IWV.

(a) WDNet (b) BVMR (c) SplitNet

Fig. 7. The effect of DWV/IWV on three watermark-removal network with different
iteration T . We choose the RMSEh as an evaluation metric for DWV, and the RMSEw

w

for IWV. The solid lines show the results with watermark vaccines, while the dashed
lines show the results of clean input. The red lines show the results of RMSEh, and
the blue lines show the results of RMSEw

w.

(a) WDNet (b) BVMR (c) SplitNet

Fig. 8. The effect of DWV/IWV on three watermark-removal network with different
step size α, where α = 1 means the step size is 1/255. We choose the RMSEh as an
evaluation metric for DWV, and the RMSEw

w for IWV. The solid lines show the results
with watermark vaccines, while the dashed lines show the results of clean input. The
red lines show the results of RMSEh, and the blue lines show the results of RMSEw

w.
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Fig. 9. Watermark removal results with increasing budget ϵ of DWV. The top row
shows that the watermarked images with DWV we produced, and the second and the
bottom row show the removed images and masks we predict.

Fig. 10. Watermark removal results with increasing budget ϵ of IWV. The top row
shows that the watermarked images with IWV we produced, and the second and the
bottom row show the removed images and masks we predict.
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Fig. 11. Effect of two image-based transformation operations (JPEG Compression,
Blur) on watermark vaccine for BVMR [3]. The solid lines show the change of RMSEh,
while the dashed lines show the RMSEw

w change.

Fig. 12. Effect of two image-based transformation operations (JPEG Compression,
Blur) on watermark vaccine for SplitNet [1]. The solid lines show the change of RMSEh,
while the dashed lines show the RMSEw

w change.

(a) WDNet (b) BVMR (c) SplitNet

Fig. 13. Effect of Brightness Adjustment on watermark vaccine for three models. The
solid lines show the change of RMSEh, while the dashed lines show the RMSEw

w change.
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(a) WDNet (b) BVMR (c) SplitNet

Fig. 14. Effect of Contrast Adjustment on watermark vaccine for three models. The
solid lines show the change of RMSEh, while the dashed lines show the RMSEw

w change.

(a) WDNet (b) BVMR (c) SplitNet

Fig. 15. Effect of Saturation Adjustment on watermark vaccine for three models. The
solid lines show the change of RMSEh, while the dashed lines show the RMSEw

w change.

(a) WDNet (b) BVMR (c) SplitNet

Fig. 16. Effect of Hue Adjustment on watermark vaccine for three models. The solid
lines show the change of RMSEh, while the dashed lines show the RMSEw

w change.
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