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A Preliminaries: the Shapley value

Originally introduced in game theory [6], the Shapley value was used to distribute
the total award/contribution obtained by all players to each individual fairly.
Specifically, given the set of n input players N = {1, 2, ..., n} who participate in
the game v, they can obtain the score v(N). Here, the game v is formulated as a
function to map any participating players to a real number. The award obtained
by players N is then calculated as v(N) − v(∅), where v(∅) is considered as
the baseline score when no players participate in the game v. In order to fairly
allocate the overall award, the Shapley value ϕ(i|N) is calculated as the average
marginal award obtained by player i, when player i joined any potential subset
S ⊆ N\{i}, i.e. v(S ∪ {i}) − v(S). In this way, the Shapley value ϕ(i|N) is
calculated as follows.

ϕv(i|N) =
∑

S⊆N\{i}

|S|! |N − 1− S|!
|N |!

(v(S ∪ {i})− v(S)) (1)

Moreover, the Shapely value satisfies four properties to ensure its fairness
and trustworthiness [10]:

– Linearity property: Considering three games u, v and w, where u, v are com-
bined as w. If such games satisfy w(S) = u(S)+v(S), then the Shapley value
of each player i in the game w can be combined by the Shapley value of each
player i in the game u and the game v, i.e. ϕw(i|N) = ϕu(i|N) + ϕv(i|N).

– Dummy property: If v(S ∪ {i}) − v(S) = 0 for any subset S ⊆ N\{i}, then
the player i is considered as a dummy player. Its contribution is measured as
ϕv(i|N) = v({i})− v(∅), which indicates that player i participates the game
v independently.

– Symmetry property: If v(S ∪ {i}) = v(S ∪ {j}) for any subset S ⊆ N\{i, j},
then the player i and player j are considered to have the same contribution,
i.e. ϕv(i|N) = ϕv(j|N).

– Efficiency property: The overall award/contribution can be added up by the
award/contribution of each player i, i.e.

∑
i ϕv(i|N) = v(N)− v(∅).

B More about verification of hypothesis 1

In this section, we provide more results of different backbones to verify the
hypothesis. Specifically, following the same setting in Table 1, we used another
model, i.e. ResNet-34 [2], as the backbone of ϕvs and ϕvt . Results in Table 8
are consistent with Table 1, indicating that the learned artifact-relevant visual
concepts of well-trained deepfake detection models are neither source-relevant
nor target-relevant. Such results further support the hypothesis.

Moreover, to further verify the fairness of the proposed metric Q, we evalu-
ated the relationship between the proposed metric Q and the Accuracy (ACC) of
deepfake detection models. Specifically, as shown in Fig. 5, values of Q and Ac-
curacy (ACC) of models are positively correlated. Such results show that when
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deepfake detection models achieve high accuracy, they indicate fake
images based on visual concepts, which are neither source-relevant
nor target-relevant.

Table 8. More results about verification of hypothesis 1: comparison of the
proposed metric Q (×10−2) for different deepfake detection models among various
manipulation algorithms. The backbones of vs and vt are all ResNet-34 [2]. Results are
consistent with Table 1, which further supports hypothesis 1.

Backbone of vs/vt Forgery Methods
Backbone of vd (Q(×10−2))

ResNet-18 ResNet-34 Efficient-b3 MAT [11] Xception [5]

ResNet-34 [2]

FaceSwap [3] 2.67 2.80 2.04 2.53 2.99

Face2Face [9] 2.07 2.42 1.96 2.51 2.40

FaceShifter [4] 2.36 3.18 2.14 2.34 -0.68

Deepfake [1] 2.39 2.57 2.20 2.79 2.49

NeuralTexture [8] 2.11 2.49 1.93 2.48 0.91

C More about verification of hypothesis 2

In this section, we provide more results of different backbones to verify the
hypothesis. Specifically, following the same setting in Table 2, we used ResNet-
34 [2] as the backbone and trained two models on the paired training set and
unpaired training set respectively. Results in Table 9 are consistent with Table
2, which further support the hypothesis, indicating that the FST-Matching in
the training set is of great importance to learn deepfake detection models.

Table 9. More results about verification of hypothesis 2: performance compari-
son between models trained on the whole FF++ [5] dataset (denoted as the Baseline),
the paired training set and the unpaired training set. Results are consistent with Table
2, which further demonstrates the effectiveness of the FST-Matching.

Models Forgery Methods
Baseline Pair Unpair

ACC AUC ACC AUC ACC AUC

ResNet-34 [2]

FaceSwap [3] 98.93 100 97.14 99.82 68.21 71.76

Face2Face [9] 98.21 99.26 97.50 99.28 71.07 78.56

FaceShifter [4] 98.21 99.77 97.50 99.93 79.29 87.21

Deepfake [1] 98.93 100 99.29 99.99 77.14 82.83

NeuralTexture [8] 98.21 99.28 96.79 98.26 70.00 77.61

D More about verification of hypothesis 3

In this section, we provide more results of different backbones to verify the hy-
pothesis. Specifically, we followed the same setting in Table 3 and used ResNet-34
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[2], EfficientNet-b3 [7] as backbones. Results in Table 10 are consistent with Ta-
ble 3, indicating that the learned source/target visual concepts are more robust
to video compression among different backbones, compared to the implicitly
learned artifact visual concepts. Such results further support the hypothesis.

Table 10. More results about verification of hypothesis 3: comparisons between
the stability metric δ of different visual concepts. Results are consistent with Table 3
among different backbones, i.e. learned source and target visual concepts are more
consistent to video compression than implicitly learned artifact visual concepts.

Visual Concept Backbones
Forgery Methods (δ)

FaceSwap Face2Face FaceShifter Deepfake NeuralTexture

Source (ϕvs ) ResNet-34 [2]
0.72 0.73 0.72 0.73 0.74

Target (ϕvt ) 0.74 0.76 0.72 0.75 0.76

Artifact (ϕvd
) ResNet-34 [2] 0.34 -0.02 0.18 0.00 0.04

Source (ϕvs ) Efficient-b3 [7]
0.65 0.66 0.64 0.66 0.67

Target (ϕvt ) 0.70 0.73 0.63 0.72 0.74

Artifact (ϕvd
) Efficient-b3 [7] 0.23 0.02 0.13 -0.09 -0.12

E More about the FST-Matching Deepfake Detection
Model

E.1 Comparison with the baseline in terms of δ.

In this section, we compared the proposed metric δ between the baseline (i.e.
the detection encoder vd) and the FST-Matching Deepfake Detection Model.
Results in Table 11 show that compared to the baseline, artifact visual concepts
learned by our model are more stable among compressed images. Such results
demonstrate the effectiveness of our method.

Table 11. Comparison of the proposed metric δ between the baseline (i.e. the detection
encoder vd) and the FST-Matching Deepfake Detection Model. The backbones of the
baseline and our model are all ResNet-18 [2]. Results show that compared to the
baseline, our model considers more similar visual concepts as artifact-relevant among
compressed images.

Visual Concept
Forgery Methods (δ)

FaceSwap Face2Face FaceShifter Deepfake NeuralTexture

Artifact (Baseline) 0.17 -0.02 0.14 -0.15 -0.14

Artifact (FST-Matching) 0.54 0.46 0.47 0.45 0.40
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E.2 Evaluation of the proposed metric Q.

Besides, we also evaluated the proposed FST-Matching Deepfake Detection Model
via the proposed Q to demonstrate its robustness to video compression. All
models were trained on the raw dataset and tested on c23 and c40 compressed
datasets afterwards. We calculated the proposed metric Q between the baseline
model and our model. The backbone of each model is set as ResNet-18 [2]. Re-
sults in Table 12 show that our model has a significantly larger value of Q on the
c23 and c40 images, indicating the robustness of our model to different compres-
sion rates. Note that there exists a performance gap between the baseline and the
FST-Matching Deepfake Detection Model on raw images. To this end, compared
with the baseline in Table 12, our method is designed to explicitly disentangle
the source/target-irrelevant representation from source/target visual concepts
on images. Intuitively, such disentangled representation is less enriched than the
overall representation of raw images learned by the baseline, causing the perfor-
mance drop on raw images. However, the disentangled source/target-irrelevant
representation is verified to be robust to video compression in the paper, which
facilitates our model to achieve great performance on compressed videos.

Table 12. Comparison of proposed metric Q (×10−2) between the baseline and the
FST-Matching Deepfake Detection Model. Here Q is averaged among different thresh-
olds τ same as Table 1. Such results show that our model considers similar image
regions as artifact-relevant visual concepts among different compressed images.

Forgery Methods
Raw (Q(×10−2)) C23 (Q(×10−2)) C40 (Q(×10−2))

Baseline FST-Matching Baseline FST-Matching Baseline FST-Matching

FaceSwap [3] 2.77 2.08 0.37 1.41 -0.52 1.15

Face2Face [9] 2.31 1.97 -0.87 1.30 -1.35 0.94

FaceShifter [4] 2.45 2.09 -0.61 1.05 -0.67 0.72

Deepfake [1] 2.53 2.06 -1.64 1.22 -1.42 0.87

NeuralTexture [8] 2.30 1.84 -1.78 0.71 -1.44 0.05
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(a) Positive correlation between Q and
ACC on Deepfake [1].
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(b) Positive correlation between Q and
ACC on Face2Face [9].
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(c) Positive correlation between Q and
ACC on FaceSwap [3].
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(d) Positive correlation between Q and
ACC on FaceShifter [4].
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(e) Positive correlation between Q and
ACC on NeuralTexture [8].
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(f) Positive correlation between Q and
ACC on all manipulation algorithms of
FF++ [5].

Fig. 5. The positive correlation between the proposed metric Q and the Accuracy
(ACC) of deepfake detection models. Different points represent models of different it-
erations trained on FF++ [5]. The correlation is calculated as the Pearson correlation.
The backbones of models are ResNet-18 [2]. Fig. 5(f) shows that the positive corre-
lations between the metric Q and the Accuracy (ACC) are similar among different
manipulation algorithms. Such results show that models with high accuracy
consider source/target-irrelevant visual concepts as artifact-relevant.
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