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Abstract. Over the last years, Convolutional Neural Networks (CNNs)
have been the dominating neural architecture in a wide range of com-
puter vision tasks. From an image and signal processing point of view,
this success might be a bit surprising as the inherent spatial pyramid de-
sign of most CNNs is apparently violating basic signal processing laws,
i.e. Sampling Theorem in their down-sampling operations. However, since
poor sampling appeared not to affect model accuracy, this issue has been
broadly neglected until model robustness started to receive more atten-
tion. Recent work [18] in the context of adversarial attacks and distri-
bution shifts, showed after all, that there is a strong correlation between
the vulnerability of CNNs and aliasing artifacts induced by poor down-
sampling operations. This paper builds on these findings and introduces
an aliasing free down-sampling operation which can easily be plugged
into any CNN architecture: FrequencyLowCut pooling. Our experiments
show, that in combination with simple and Fast Gradient Sign Method
(FGSM) adversarial training, our hyper-parameter free operator substan-
tially improves model robustness and avoids catastrophic overfitting. Our
code is available at https://github.com/GeJulia/flc_pooling
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1 Introduction

The robustness of convolutional neural networks has evolved to being one of
the most crucial computer vision research topics in recent years. While state-
of-the-art models provide high accuracy in many tasks, their susceptibility to
adversarial attacks [9] and even common corruptions [20] is hampering their
deployment in many practical applications. Therefore, a wide range of publica-
tions aim to provide models with increased robustness by adversarial training
(AT) schemes [15,43,48], sophisticated data augmentation techniques [35] and
enriching the training with additional data [4,16]. As a result, robuster models
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can be learned with common CNN architectures, yet arguably at a high training
cost - even without investigating the reasons for CNN’s vulnerability. These rea-
sons are of course multifold, starting with the high dimensionality of the feature
space and sparse training data such that models easily tend to overfit [36,45].
Recently, the pooling operation in CNNs has been discussed in a similar con-
text for example in [18] who measured the correlation between aliasing and a
network’s susceptibility to adversarial attacks. [50] have shown that commonly
used pooling operations even prevent the smoothness of image representations
under small input translations.

Our contributions are summarized as follows:

■ We introduce FrequencyLowCut pooling, ensuring aliasing-free down-sampling
within CNNs.

■ Through extensive experiments with various datasets and architectures, we
show empirically that FLC pooling prevents single step AT from catastrophic
overfitting, while this is not the case for other recently published improved
pooling operations (e.g. [50]).

■ FLC pooling is substantially faster, around five times, and easier to integrate
than previous AT or defence methods. It provides a hyperparameter-free plug
and play module for increased model robustness.

1.1 Related Work

Adversarial Attacks. Adversarial attacks reveal CNNs vulnerabilities to in-
tentional pixel perturbations which are crafted either having access to the full
model (so-called white-box attacks) [15,33,42,33,3,27,37] or only having access to
the model’s prediction on given input images (so-called back-box attacks) [1,7].
The Fast Gradient Sign Method [15], FGSM, is an efficient single step white box
attack. More effective methods use multiple optimization steps, e.g. as in the
white-box Projected Gradient Descent (PGD) [27] or in black-box attacks such
as Squares [1]. AutoAttack [9] is an ensemble of different attacks including an
adaptive version of PGD and is widely used to benchmark adversarial robust-
ness because of its strong performance [8]. In relation to image down-sampling,
[47] and [30] demonstrate steganography-based attacks on the pre-processing
pipeline of CNNs.
Adversarial Training. Some adversarial attacks are directly proposed with a
dedicated defence [15,37]. Beyond these attack-specific defences, there are many
methods for more general adversarial training (AT) schemes. These typically add
an additional loss term which accounts for possible perturbations [12,48] or in-
troduces additional training data [4,39]. Both are combined for example in [43],
while [16] use data augmentation which is typically combined with weight aver-
aging [35]. A widely used source for additional training data is ddpm [17,34,35],
which contains one million extra samples for CIFAR-10 and is generated with
the model proposed by [21]. [17] receive an additional boost in robustness by
adding specifically generated images while [34] add wrongly labeled data to the
training-set. RobustBench [8] gives an overview and evaluation of a variety of
models w.r.t. their adversarial robustness and the additional data used.
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A common drawback of all AT methods is the vast increase in computation
needed to train networks: large amounts of additional adversarial samples and
slower convergence due to the harder learning problem typically increase the
training time by a factor between seven and fifteen [27,43,46,48].
Catastrophic Overfitting. AT with single step FGSM is a simple approach
to achieve basic adversarial robustness [6,36]. Unfortunately, the robustness of
this approach against stronger attacks like PGD is starting to drop again after
a certain amount of training epochs. [45] called this phenomenon catastrophic
overfitting. They concluded that one step adversarial attacks tend to overfit to
the chosen adversarial perturbation magnitude (given by ϵ) but fail to be robust
against multi-step attacks like PGD. [36] introduced early stopping as a coun-
termeasure. After each training epoch, the model is evaluated on a small portion
of the dataset with a multi-step attack, which again increases the computation
time. As soon as the accuracy drops compared with a hand selected threshold
the model training is stopped. [25] and [41] showed that the observed overfitting
is related to the flatness of the loss landscape. They introduced a method to
compute the optimal perturbation length ϵ′ for each image and do single step
FGSM training with this optimal perturbation length to prevent catastrophic
overfitting. [2] showed that catastrophic overfitting not only occurs in deep neural
networks but can also be present in single-layer convolutional neural networks.
They propose a new kind of regularization, called GradAlign to improve FGSM
perturbations and flatten the loss landscape to prevent catastrophic overfitting.
Anti-Aliasing. The problem of aliasing effects in the context of CNN-based
neural networks has already been addressed from various angles in literature:
[50] improve the shift-invariance of CNNs using anti-aliasing filters implemented
as convolutions. [51] further improve shift invariance by using learned instead of
predefined blurring filters. [29] rely on the low frequency components of wavelets
during pooling operations to reduce aliasing and increase the robustness against
common image corruptions. In [22] a depth adaptive blurring filter before pooling
as well as an anti-aliasing activation function are used. Anti-aliasing is also
relevant in the context of image generation. [24] propose to use blurring filters
to remove aliases during image generation in generative adversarial networks
(GANs) while [11] and [23] employ additional loss terms in the frequency space to
address aliasing. In [18], we empirically showed via a proposed aliasing measure
that adversarially robust models exhibit less aliasing in their down-sampling
layers than non-robust models. Based on this motivation, we here propose an
aliasing-free down-sampling operation that avoids catastrophic overfitting.

2 Preliminaries

2.1 Adversarial Training

In general, AT can be formalized as an optimization problem given by a min-max
formulation:

min
θ

max
δ∈∆

L(x+ δ, y; θ) , (1)
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where we seek to optimize network weights θ such that they minimize the loss
L between inputs x and labels y under attacks δ. The maximization over δ can
thereby be efficiently performed using the Fast Gradient Sign Method (FGSM),
which takes one big step defined by ϵ into the direction of the gradient [15]:

x′ = x+ ϵ · sign(∇xL(θ, x, y)) . (2)

Specific values of the perturbation size ϵ are usually set to be fractions of eight-
bit encodings of the image color channels. A popular choice on the CIFAR-10 [26]
dataset is ϵ = 8

255 which can be motivated by the human color perception [14].
The Projected Gradient Descent method, PGD, works similar to FGSM but
instead of taking one big step in the direction of the gradient with step size ϵ,
it iteratively optimizes the adversarial example with a smaller, defined step size
α. Random restarts further increase its effectiveness. The final attack is clipped
to the maximal step size of ϵ.

x′
N+1 = ClipX,ϵ{x′

N + α · sign(∇xL(θ, x, y))} (3)

PGD is one of the strongest attacks, due to its variability in step size and its
random restarts. Yet, its applicability for AT is limited as it requires a relatively
long optimization time for every example. Additionally, PGD is dependent on
several hyperparameters, which makes it even less attractive for training in prac-
tice. In contrast, FGSM is fast and straight-forward to implement. Yet, models
that use FGSM for AT tend to overfit on FGSM attacks and are not robust to
other attacks such as PGD, i.e. they suffer from catastrophic overfitting [45].

2.2 Down-sampling in CNNs

Independent of their actual network topology, CNNs essentially perform a series
of stacked convolutions and non-linearities. Using a vast amount of learnable
convolution filters, CNNs are capable of extracting local texture information
from all intermediate representations (input data and feature maps). To be able
to abstract from this localized spatial information and to learn higher order rela-
tions of parts, objects and entire scenes, CNNs apply down-sampling operations
to implement a spatial pyramid representation over the network layers.

This down-sampling is typically performed via a convolution with stride
greater than one or by so-called pooling layers (see Fig. 1). The most com-
mon pooling layers are AveragePooling and MaxPooling. All of these operations
are highly sensitive to small shifts or noise in the layer input [29,5,50].
Aliasing. Common CNNs sub-sample their intermediate feature maps to aggre-
gate spatial information and increase the invariance of the network. However, no
aliasing prevention is incorporated in current sub-sampling methods. Concretely,
sub-sampling with too low sampling rates will cause pathological overlaps in the
frequency spectra (Fig. 3). They arise as soon as the sampling rate is below
the double bandwidth of the signal [40] and cause ambiguities: high frequency
components can not be clearly distinguished from low frequency components.
As a result, CNNs might misconceive local uncorrelated image perturbations
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Fig. 1. Standard down-sampling operations used in CNNs. Left: down-sampling via
convolution with stride two. First the feature map is padded and the actual convolution
is executed. The stride defines the step-size of the kernel. Hence, for stride two, the
kernel is moved two spatial units. In practice, this down-sampling is often implemented
by a standard convolution with stride one and then discarding every second point in
every spatial dimension. Right: down-sampling via MaxPooling. Here the max value
for each spatial window location is chosen and the striding is implemented accordingly.
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Fig. 2. Examples of AT facing catastrophic overfitting and its relationship to aliasing
as well as robust overfitting and our FLC pooling. While FGSM training is prone to
catastrophic overfitting, PGD training takes much longer and is also prone to robust
overfitting. Our method, FLC pooling, is able to train with the fast FGSM training
while preventing catastrophic overfitting.

as global manipulations. [18] showed that aliasing in CNNs strongly coincides
with the robustness of the model. Based on this finding, one can hypothesize
that models that overfit to high frequencies in the data tend to be less robust.
This thought is also in line with the widely discussed texture bias [13]. To sub-
stantiate this hypothesis in the context of adversarial robustness, we investigate
and empirically show in Figure 2 that catastrophic overfitting coincides with
increased aliasing during FGSM AT. Based on this observation, we expect net-
works that sample without aliasing to be better behaved in AT FGSM settings.
The FrequencyLowCut pooling, which we propose, trivially fulfills this property.



6 Grabinski et al.

F(x) F(x) F(x)

Oversampled
Signal 

xmax xmax

Undersampled
Signal

Continous Signal in
the Fourier domain 

xmax-xmax 000
xmax/2

Aliasing

Fig. 3. Aliasing is apparent in the frequency domain. Left: The frequency spectrum of
a 1D signal with maximal frequency xmax. After down-sampling, replica of the signal
appear at a distance proportional to the sampling rate. Center: The spectrum after
sampling with a sufficiently large sampling rate. Right: The spectrum after under-
sampling with aliases due to overlapping replica.

3 FrequencyLowCut Pooling

Several previous approaches such as [50,51] reduce high frequencies in features
maps before pooling to avoid aliasing artifacts. They do so by classical blurring
operations in the spatial domain. While those methods reduce aliasing, they
can not entirely remove it due to sampling theoretic considerations in theory
and limited filter sizes in practice (see Appendix A.3 or [14] for details). We
aim to perfectly remove aliases in CNNs’ down-sampling operations without
adding additional hyperparameters. Therefore, we directly address the down-
sampling operation in the frequency domain, where we can sample according to
the Nyquist rate, i.e. remove all frequencies above samplingrate

2 and thus discard
aliases. In practice, the proposed down-sampling operation first performs a Dis-
crete Fourier Transform (DFT) of the feature maps f . Feature maps with height
M and width N to be down-sampled are then represented as

F (k, l) =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m,n)e−2πj( k
M m+ l

N n) . (4)

In the resulting frequency space representation F (eq. (4)), all frequencies k, l,
with |k| or |l| > samplingrate

2 have to be set to 0 before down-sampling. CNNs com-
monly down-sample with a factor of two, i.e. sampling rate = 1

2 . Down-sampling
thus corresponds to finding Fd(k, l) = F (k, l) ,∀ frequencies k, lwith |k|, |l| < 1

4 .
Practically, the DFT(f) returns an array F of complex numbers with size K×L
= M ×N , where the frequency k, l = 0 is stored in the upper left corner and the
highest frequency is in the center. We thus shift the low frequency components
into the center of the array via FFT-shift to get Fs and crop the frequencies
below the Nyquist frequency as Fsd = Fs[K

′ : 3K ′, L′ : 3L′] for K ′ = K
4 and

L′ = L
4 , for all samples in a batch and all channels in the feature map. After

the inverse FFT-shift, we obtain array Fd with size [K̂, L̂] = [K2 ,
L
2 ], containing

exactly all frequencies below the Nyquist frequency Fd, which we can backtrans-
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Fig. 4. FrequencyLowCut pooling, the proposed, guaranteed alias-free pooling opera-
tion. We first transform feature maps into frequency space via FFT, then crop the low
frequency components. The result is transformed back into the spatial domain. This
corresponds to a sinc-filtered and down-sampled feature map and is fed into the next
convolutional layer.

form to the spatial domain via inverse DFT for the spatial indices m̂ = 0 . . . M
2

and n̂ = 0 . . . N
2 .

fd(m̂, n̂) =
1

K̂L̂

K̂−1∑
k=0

L̂−1∑
l=0

Fd(k, l)e
2πj( m̂

K̂
k+ n̂

L̂
l). (5)

We thus receive the aliasing-free down-sampled feature map fd with size [M2 , N
2 ].

Fig. 4 shows this procedure in detail. In the spatial domain, this opera-
tion would amount to convolving the feature map with an infinitely large (non-

bandlimited) sinc(m) = sin(m)
m filter, which can not be implemented in practice.

4 Experiments

4.1 Native Robustness of FLC pooling

We evaluate our proposed FLC pooling in a standard training scheme with
Preact-ResNet-18 (PRN-18) architectures on CIFAR-10 (see Appendix A.1 for
details). Table 1 shows that both the decrease in clean accuracy as well as the
increase in robustness are marginal compared to the baseline models. We argue
that these results are in line with our hypothesis that the removal of aliasing
artifacts alone will not lead to enhanced robustness and we need to combine cor-
rect down-sampling with AT to compensate for the persisting problems induced
by the very high dimensional decision spaces in CNNs.

4.2 FLC pooling for FGSM training

In the following series of experiments we apply simple FGSM AT with ϵ = 8
255

on different architectures and evaluate the resulting robustness with different
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Table 1. Clean training of Preact-ResNet-18 (PRN-18) architectures on CIFAR-10.
We compare clean and robust accuracy against FGSM [15] with Linf , ϵ =

8
255

, PGD [27]
with Linf , ϵ =

1
255

as well as L2 with ϵ = 0.5 (20 iterations) and common corruptions
(CC) [20] (mean over all corruptions and severities).

Method Clean
FGSM
ϵ = 8

255

PGD Linf

ϵ = 1
255

PGD L2

ϵ = 0.5
CC

Baseline 95.08 34.08 7.15 6.68 74.38
FLC Pooling 94.66 34.65 10.00 11.27 74.70

Table 2. FGSM AT of PRN-18 and Wide-ResNet-28-10 (WRN-28-10) architectures
on CIFAR-10. Comparison of clean and robust accuracy (high is better) against PGD
[27] and AutoAttack [9] on the full dataset with Linf with ϵ = 8/255 and L2 with
ϵ = 0.5. FGSM test accuracies indicate catastrophic overfitting on the AT data, hence
this column is set to gray.

Method Clean
FGSM
ϵ = 8

255

PGD Linf

ϵ = 8
255

AA Linf

ϵ = 8
255

AA L2

ϵ = 0.5
AA Linf

ϵ = 1
255

Preact-ResNet-18
Baseline: FGSM training 90.81 90.37 0.16 0.00 0.01 53.10
Baseline & early stopping 82.88 61.71 11.82 3.76 17.44 72.95
BlurPooling [50] 86.24 78.36 1.33 0.06 1.96 66.88
Adaptive BlurPooling [51] 90.35 77.39 0.23 0.00 0.07 39.00
Wavelet Pooling [28] 85.02 64.16 12.13 5.92 19.65 10.08
FLC Pooling (ours) 84.81 58.25 38.41 36.69 55.58 80.63

WRN-28-10
Baseline: FGSM training 86.67 83.64 1.64 0.09 1.47 59.39
Baseline & early stopping 82.29 56.36 31.26 28.54 46.03 76.87
Blurpooling [50] 91.40 89.44 0.22 0.00 0.00 38.45
Adaptive BlurPooling [51] 91.10 89.76 0.00 0.00 0.00 7.42
Wavelet Pooling [28] 92.19 90.85 0.00 0.00 0.00 10.08
FLC Pooling (ours) 84.93 53.81 39.48 38.37 52.89 80.27

pooling methods. We compare the models in terms of their clean, FGSM, PGD
and AutoAttack accuracy, where the FGSM attack is run with ϵ = 8/255, PGD
with 50 iterations and 10 random restarts and ϵ = 8/255 and α = 2/255. For
AutoAttack, we evaluate the standard Linf norm with ϵ = 8/255 and a smaller
ϵ of 1/255, as AutoAttack is almost too strong to be imperceptible to humans
[31]. Additionally, we evaluate AutoAttack with L2 norm and ϵ = 0.5.

CIFAR-10. Table 2 shows the evaluation of a PRN-18 as well as a Wide-ResNet-
28-10 (WRN-28-10) on CIFAR-10 [26]. For both network architectures, we ob-
serve that our proposed FLC pooling is the only method that is able to prevent
catastrophic overfitting. All other pooling methods heavily overfit on the FGSM
training data, achieving high robustness towards FGSM attacks, but fail to gen-
eralize towards PGD or AutoAttack. Our hyper-parameter free approach also
outperforms early stopping methods which are additionally suffering from the
difficulty that one has to manually choose a suitable threshold in order to main-
tain the best model robustness.
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Table 3. FGSM AT on CINIC-10 for PRN-18 architectures. We compare clean and
robust accuracy (higher is better) against PGD [27] as well as AutoAttack [9] on the
full dataset with Linf with ϵ = 8/255 and L2 with ϵ = 0.5. FGSM test accuracies
indicate catastrophic overfitting on the AT data, hence this column is set to gray.

Method Clean
FGSM
ϵ = 8

255

PGD Linf

ϵ = 8
255

AA Linf

ϵ = 8
255

AA L2

ϵ = 0.5
AA Linf

ϵ = 1
255

Baseline 87.46 58.83 1.31 0.12 1.55 55.21
Baseline & early stopping 82.79 42.58 27.55 30.76 50.28 79.88
Blurpooling [50] 87.13 54.16 1.29 0.20 4.68 70.56
Adaptive BlurPooling [51] 90.21 52.27 0.05 0.00 0.01 40.96
aWavelet Pooling [28] 88.81 64.16 1.76 0.12 3.38 66.61
FLC Pooling (ours) 82.56 38.39 36.28 49.61 60.51 78.50

Table 4. FGSM AT on CIFAR-100 for PRN-18 architectures. We compare clean and
robust accuracy (higher is better) against PGD [27] and AutoAttack [9] on the full
dataset with Linf with ϵ = 8/255 and L2 with ϵ = 0.5. FGSM test accuracies indicate
robustness to training data, so this column is set to gray. Here, none of the models
overfit, while FLC pooling still yields best overall robustness.

Method Clean
FGSM
ϵ = 8

255

PGD Linf

ϵ = 8
255

AA Linf

ϵ = 8
255

AA L2

ϵ = 0.5
AA Linf

ϵ = 1
255

Baseline 51.92 23.25 15.41 11.13 25.67 44.53
Baseline & early stopping 52.09 23.34 15.51 10.88 25.78 44.61
Blurpooling [50] 52.68 23.40 16.81 12.43 26.79 45.68
Adaptive BlurPooling [51] 52.08 9.77 18.68 6.05 11.32 21.04
Wavelet Pooling [28] 55.08 25.70 18.36 13.76 27.51 47.52
FLC Pooling (ours) 54.66 26.82 19.83 15.40 26.30 47.83

CINIC-10. Table 3 shows similar results on CINIC-10 [10]. Our model exhibits
no catastrophic overfitting, while previous pooling methods do. It should be
noted that CINIC-10 is not officially reported by AutoAttack. This might explain
why the accuracies under AutoAttack are higher on CINIC-10 than on CIFAR-
10. We assume that AutoAttack is optimized for CIFAR-10 and CIFAR-100 and
therefore less strong on CINIC-10.

CIFAR-100. Table 4 shows the results on CIFAR-100 [26], using the same
experimental setup as for CIFAR-10 in Table 2. Due to the higher complexity of
CIFAR-100, with ten times more classes than CIFAR-10, AT tends to suffer from
catastrophic overfitting much later (in terms of epochs) in the training process.
Therefore we trained the Baseline model for 300 epochs. While the gap towards
the robustness of other methods is decreasing with the amount of catastrophic
overfitting, our method still outperforms other pooling approaches in most cases
- especially on strong attacks.

ImageNet. Table 5 evaluates our FLC Pooling on ImageNet. We compare
against results reported on RobustBench [8], with emphasis on the model by
[45] which also uses fast FGSM training. The clean accuracy of our model us-
ing FLC pooling is about 8% better than the one reached by [45], with a 1%
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Table 5. Comparison of ResNet-50 models clean and robust accuracy against AutoAt-
tack [9] on ImageNet. We compare against models reported on RobustBench [8].

Method Clean
PGD Linf

ϵ = 4
255

Standard [8] 76.52 0.00

FGSM & FLC Pooling (ours) 63.52 27.29
Wong et al., 2020 [45] 55.62 26.24

Robustness lib, 2019 [12] 62.56 29.22
Salman et al., 2020 [38] 64.02 34.96

improvement in robust accuracy. All other models are trained with more time
consuming methods like PGD (more details can be found in the Appendix A.2).

Analysis. The presented experiments on several datasets and architectures show
that baseline FGSM training, as well as other pooling methods, strongly overfit
on the adversarial data and do not generalize their robustness towards other
attacks. We also show that our FLC pooling sufficiently prevents catastrophic
overfitting and is able to generalize robustness over different networks, datasets,
and attack sizes in terms of different ϵ-values.
Attack Structures. In Figure 5, we visualize AutoAttack adversarial attacks.
Perturbations created for the baseline trained with FGSM differ substantially
from those created for FLC pooling trained with FGSM. While perturbations
for the baseline model exhibit high frequency structures, attacks to FLC pooling
rather affect the global image structure.

4.3 Training Efficiency

Most AT approaches use adversarial image perturbations during training [15,27]
[45]. Thereby the time and memory needed depend highly on the specific attack
used to generate the perturbations. Multi-step attacks like PGD [27] require
substantially more time than single step attacks like FGSM [45]. TRADES [48]
incorporates different loss functions to account for a good trade-off between clean
and robust accuracy. With our FLC pooling, we provide a simple and fast method
for more robust models. Therefore we compare our method with state-of-the-art
training schedules in terms of time needed per epoch when trained in their most
basic form. Table 6 shows that FGSM training is fastest. However, FGSM with
early stopping is not able to maintain high robustness against AutoAttack [9]
due to catastrophic overfitting. PGD training can establish robustness against
AutoAttack. It relies on the same training procedure as FGSM but uses expensive
multi-step perturbations and thereby increases the computation time by over a
factor of four (4.23). For Adversarial Weight Perturbations (AWP) the training
time per epoch is over six times (6.57), for TRADES by eight times (8.04) higher.
Our FLC pooling increases the training only by a factor of 1.26 while achieving
a good clean and robust accuracy. When adding additional data like the ddpm
dataset to the training as it is done in all leading RobustBench [8] models, the
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Fig. 5. Spatial and spectral differences of adversarial perturbations created by AutoAt-
tack with ϵ = 8

255
on the baseline model as well as our FLC Pooling. On the left side

for one specific example of an airplane and on the right side the average difference over
100 images.

training time is increased by a factor of twenty. The ddpm dataset incorporates
one million extra samples, which is over sixteen times more than the original
CIFAR-10 dataset. We report our training times for ImageNet in Appendix A.2
to show that FLC pooling is scalable in terms of practical runtime.

4.4 Black Box Attacks

PGD and AutoAttack are intrinsically related to FGSM. Therefore, to allow for
a clean evaluation of the model robustness without bias towards the training
scheme, we also evaluate black box attacks. Squares [1], which is also part of the
AutoAttack pipeline, adds perturbations in the form of squares onto the image
until the label flips. Besides Squares, we evaluate two transferred perturbations.
The first perturbation set is constructed through the baseline network which is
not robust at all. The second set is constructed from the baseline network which
is trained with FGSM and early stopping. We evaluate against different PRN-18
and WRN-28-10 models on CIFAR-10 as well as PRN-18 models on CIFAR-100
provided by RobustBench [8]. Note that all networks marked with * are models
which rely on additional data sources such as ddmp [21]. Other RobustBench
models like [17] rely on training data that is not available anymore such that
fair comparison is currently not possible. Arguably, we always expect models to
further improve as training data is added.
Table 7 shows that for PRN-18 models our FLC pooling is consistently able to
prevent black box attacks better while maintaining clean accuracy compared to
other robust models from RobustBench. For WRN-28-10 models, we see a clear
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Table 6. Runtime of AT in seconds per epoch over 200 epochs and a batch size of 512
trained with a PRN-18 for training on the original CIFAR-10 dataset without additional
data. Experiments are executed on one Nvidia Tesla V100. Evaluation for clean and
robust accuracy, higher is better, on AutoAttack [9] with our trained models. The
models reported by the original authors may have different numbers due to different
hyperparameter selection. The top row reports the baseline without AT.

Method Seconds per epoch (avg) Clean Acc AA Acc

Baseline 14.6 ± 0.1 95.08 0.00

FGSM & early stopping [45] 27.3 ± 0.1 82.88 11.82
FGSM & FLC Pooling (Ours) 34.5 ± 0.1 84.81 38.41
PGD [27] 115.4 ± 0.2 83.11 40.35
Robustness lib [12] 117 ± 19.0 76.37 32.10
AWP [46] 179.4 ± 0.4 82.61 49.43
MART [44] 180.4 ± 0.8 55.49 8.63
TRADES [48] 219.4 ± 0.5 81.49 46.91

trend that models trained with additional data can achieve higher robustness.
This is expected as wider networks can leverage additional data more effectively.
One should note that all of these methods require different training schedules
which are at least five times slower than ours and additional data which further
increases the training time. For example, incorporating the ddpm dataset into
the training increases the amount of training time by a factor of twenty. For
CIFAR-100 (Table 8) our model is on par with [36].

4.5 Corruption Robustness

To demonstrate that our model generalizes the concept of robustness beyond
adversarial examples, we also evaluate it on common corruptions incorporated
with CIFAR-C [19]. We compare our model against our baseline as well as other
RobustBench [8] models. Similar to the experiments on black box adversarial
attacks we distinguish between models using only CIFAR-10 training data and
models using extra-data like ddpm (marked by *). Table 7 shows that our FLC
pooling, when trained only on CIFAR-10, can outperform other adversarially
robust models as well as the baseline in terms of robustness against common
corruptions for the PRN-18 architecture. As discussed above, WRN-28-10 models
are designed to efficiently leverage additional data. As our model is exclusively
trained on the clean CIFAR-10 dataset we can not establish the same robustness
as other methods on wide networks. However, we can also see a substantial boost
in robustness. Table 8 reports the results for CIFAR-100. There we can see that
FLC pooling not only boosts clean accuracy but also robust accuracy on common
corruptions.

4.6 Shift-Invariance

Initially, anti-aliasing in CNNs has also been discussed in the context of shift-
invariance [50]. Therefore, after evaluating our model against adversarial and
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Table 7. Robustness against black box attacks on PRN-18 and WRN-28-10 models
with CIFAR-10. First against Squares [1] with ϵ = 1/255 and then against perturba-
tions which were created on the baseline network, meaning transferred perturbations
(TP), and the baseline model including early stopping (TPE). As well as the accuracy
under common corruptions (CC).

Model Clean Squares TP TPE CC

Preact-ResNet-18
Baseline 90.81 78.04 0.00 69.33 71.81
FGSM & early stopping 82.88 77.58 77.67 3.76 71.80
FGSM & FLC Pooling (ours) 84.81 81.40 83.64 80.49 76.15
Andriushchenko and Flammarion, 2020 [2] 79.84 76.78 78.65 75.06 72.05
Wong et al., 2020 [45] 83.34 80.25 82.03 78.81 74.60
Rebuffi et al., 2021 [35] * 83.53 81.24 82.36 80.28 75.79

WRN-28-10
Baseline 86.67 76.17 0.09 67.3 77.33
FGSM & early stopping 82.29 78.01 80.8 28.54 72.55
FGSM & FLC Pooling (ours) 84.93 81.06 83.85 72.56 75.44
Carmon et al., 2019[4] * 89.69 87.70 89.12 83.55 81.30
Hendrycks et al., 2019 [20] 87.11 85.02 86.47 80.12 85.02
Wang et al., 2020 [44] * 87.50 85.30 86.74 80.65 85.30
Zhang et al., 2021 [49] 89.36 87.45 88.70 83.08 80.11

Table 8. Robustness against black box attacks for PRN-18 on CIFAR-100. First
against Squares [1] with ϵ = 1/255 and then against perturbations which were cre-
ated on the baseline network, meaning transferred perturbations (TP), and the base-
line model including early stopping (TPE). As well as the accuracy under common
corruptions (CC).

Model Clean Squares TP TPE CC

Baseline 51.92 45.74 11.13 23.91 41.22
FGSM & early stopping 52.09 45.75 23.90 10.88 41.15
FGSM & FLC Pooling (ours) 54.66 48.85 45.59 45.31 44.18
Rice et al., 2020 [36] 53.83 48.92 45.97 46.11 43.48

common corruptions, we also analyze its behavior under image shifts. We com-
pare our model with the baseline as well as the shift-invariant models from [50]
and [51].

FLC pooling can outperform all these specifically designed approaches in
terms of consistency under shift, while BlurPooling [50] does not outperform the
baseline. We assume that BlurPooling is optimized for larger image sizes like
ImageNet, 224 by 224 pixels, compared to 32 by 32 pixels for CIFAR-10. The
adaptive model from [51] is slightly better than the baseline but can not reach
the consistency of our model.

5 Discussion & Conclusions

The problem of aliasing in CNNs or GANs has recently been widely discussed
[11,23,24]. We contribute to this field by developing a fully aliasing-free down-



14 Grabinski et al.

Table 9. Consistency of PRN-18 model prediction under image shifts on CIFAR-10.
Each model is trained without AT with the same training schedule (see Appendix A.1
for details).

Model Clean Consistency under shift

Baseline 94.78 86.48
BlurPooling [50] 95.04 86.19
adaptive BlurPooling [51] 94.97 91.47
FLC Pooling (ours) 94.66 94.46

sampling layer that can be plugged into any down-sampling operation. Previous
attempts in this direction are based on blurring before down-sampling. This can
help to reduce aliasing but can not eliminate it. With FLC pooling we developed
a hyperparameter-free and easy plug-and-play down-sampling which supports
CNNs native robustness. Thereby, we can overcome the issue of catastrophic
overfitting in single-step AT and provide a path to reliable and fast adversarial
robustness. We hope that FLC pooling will be used to evolve to fundamentally
improved CNNs which do not need to account for aliasing effects anymore.
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