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Fig. 1. Left: We propose a novel approach to protect facial images from several image
manipulation models simultaneously. We leverage neural network to encode the gener-
ation of quasi-imperceptible perturbations for different manipulation models and fuse
them together using attention mechanism to generate manipulation-agnostic pertur-
bation. This perturbation, when added to the real image, forces the face manipulation
models to produce a predefined manipulation target as output (white/blue image in
this case). This is several orders of magnitude faster and can also be used for real-
time applications. Right: Without any protection applied, manipulation models can
be misused to generate fake images for malicious activities.

Abstract. Face manipulation methods can be misused to affect an in-
dividual’s privacy or to spread disinformation. To this end, we introduce
a novel data-driven approach that produces image-specific perturbations
which are embedded in the original images. The key idea is that these
protected images prevent face manipulation by causing the manipula-
tion model to produce a predefined manipulation target (uniformly col-
ored output image in our case) instead of the actual manipulation. In
addition, we propose to leverage differentiable compression approxima-
tion, hence making generated perturbations robust to common image
compression. In order to prevent against multiple manipulation meth-
ods simultaneously, we further propose a novel attention-based fusion of
manipulation-specific perturbations. Compared to traditional adversar-
ial attacks that optimize noise patterns for each image individually, our
generalized model only needs a single forward pass, thus running orders
of magnitude faster and allowing for easy integration in image processing
stacks, even on resource-constrained devices like smartphones 1.

1 Project Page: https://shivangi-aneja.github.io/projects/tafim

https://shivangi-aneja.github.io/projects/tafim
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1 Introduction

The spread of disinformation on social media has raised significant public at-
tention in the recent few years, due to its implications on democratic processes
and society in general. The emergence and constant improvement of generative
models, and in particular face image manipulation methods, has signaled a new
possible escalation of this problem. For instance, face-swapping methods [8, 37]
whose models are publicly accessible can be misused to generate non-consensual
synthetic imagery. Other examples include face attribute manipulation methods
[9, 10, 39, 41] that change the appearance of real photos, thus generating fake
images that might then be used for criminal activities [1]. Although a variety
of manipulation tools have been open-sourced, surprisingly only a handful of
methods have achieved widespread applicability among users (for details see the
supplemental material). One reason is that re-training these methods is not only
compute intensive but they also require specialized knowledge and skill sets for
training. As a result, most end users only apply easily accessible pre-trained
models of a few popular methods. In this work, we exploit these popular ma-
nipulation methods and their models which are known in advance and propose
targeted adversarial attacks to protect against facial image manipulations.

As powerful face image manipulation tools became easier to use and more
widely available, many efforts to detect image manipulations were initiated by
the research community [13]. This has led to the task of automatically detecting
manipulations as a classification task where predictions indicate whether a given
image is real or fake. Several learning-based approaches [2, 4, 6, 11, 12, 27, 28,
36, 43, 56, 62] have shown promising results in identifying manipulated images.
Despite the success and high classification accuracies of these methods, they
can only be helpful if they are actually being used by the end-user. However,
manipulated images typically spread in private groups or on social media sites
where manipulation detection is rarely available.

An alternative avenue to detecting manipulations is to prevent manipula-
tions from happening in the first place by disrupting potential manipulation
methods [19, 44, 57–59]. Here, the idea is to disrupt generative neural network
models with low-level noise patterns, similar to the ideas of adversarial attacks
used in the context of classification tasks [18,48]. Methods optimizing noise pat-
terns for every image from scratch [44,57–59] require several seconds to process a
single image. In practice, this slow run time largely prohibits their use on mobile
devices (e.g., as part of the camera stack). At the same time, these manipulation
prevention methods aim to either disrupt [19, 29, 44, 47] or nullify [58, 59] the
results of image manipulation models, which makes it difficult to identify which
face manipulation technique was used.

To address these challenges, we propose a targeted adversarial attack against
face image manipulation methods. More specifically, we introduce a data-driven
approach that generates quasi-imperceptible perturbations specific to a given
image. Our objective is that when an image manipulation is attempted, a pre-
defined manipulation target is generated as output instead of the originally in-
tended manipulation. In contrast to previous optimization-based approaches, our
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perturbations are generated by a generalizable conditional model requiring only
a few milliseconds for generation. We additionally incorporate a differentiable
compression module during training, to achieve robustness against common im-
age processing pipelines. Finally, to handle multiple manipulation models si-
multaneously, we propose a novel attention-based fusion mechanism to combine
model-specific perturbations. In summary, the contributions in the paper are:

– A data-driven approach to synthesize image-specific perturbations that out-
puts a predefined manipulation target (depending on the manipulation model
used), instead of per-image optimization; this is not only significantly faster
but also outperforms existing methods in terms of image-to-noise quality.

– Incorporation of differentiable compression during training to achieve ro-
bustness to common image processing pipelines.

– An attention-based fusion and refinement of model-specific perturbations to
prevent against multiple manipulation models simultaneously.

2 Related Work

Image Manipulation. Recent advances in image synthesis models have made
it possible to generate detailed and expressive human faces [7, 20–23, 38, 51]
which might be used for unethical activities/frauds. Even more problematic can
be the misuse of real face images to synthesize new ones. For instance, face-
attribute modification techniques [9, 10, 39, 41] and face-swapping models [8, 37]
facilitate the manipulation of existing face images. Similarly, facial re-enactment
tools [17,24,46,50,60] also use real images/videos to synthesize fake videos.

Facial Manipulation Detection. The increasing availability of these im-
age manipulation models calls for the need to reliably detect synthetic images in
an automated fashion. Traditional facial manipulation detection leverages hand-
crafted features such as gradients or compression artifacts, in order to find incon-
sistencies in an image [3, 15, 31]. While such self-consistency can produce good
results, these methods are less accurate than more recent learning-based tech-
niques [5, 6,11,12,43], which are able to detect fake imagery with a high degree
of confidence. In contrast to detecting forgeries, we aim to prevent manipula-
tions from happening in the first place by rendering the respective manipulation
models ineffective by introducing targeted adversarial attacks.

Adversarial Attacks. Adversarial attacks were initially introduced in the
context of classification tasks [14, 18, 35, 48] and eventually expanded to seman-
tic segmentation and detection models [16, 40, 55]. The key idea behind these
methods is to make imperceptible changes to an image in order to disrupt the
feature extraction of the underlying neural networks. While these methods have
achieved great success in fooling state-of-the-art vision models, one significant
drawback is that optimizing a pattern for every image individually makes the
optimization process quite slow. In order to address this challenge, generic uni-
versal image-agnostic noise patterns were introduced [33,34]. This has shown to
be effective for misclassification tasks but gives suboptimal results for generative
models, as we show in Sec. 4.
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Fig. 2. We first pass the real imageXi and the global perturbation δG through the face
protection model gΦ to generate the image-specific perturbation δi. This perturbation
is then added to the original image to create the protected image Xp

i . The protected
image is then compressed using the differentiable JPEG Ψq that generates compressed
protected image Xp

ic, which is passed through face manipulation model fΘ to generate

the manipulated output Ŷ
p

i . The output of the face manipulation model is then used
to drive the optimization.

Manipulation Prevention. Deep steganography and watermarking tech-
niques [30, 49, 53, 54, 57, 63] can be used to embed an image-specific watermark
to secure an image. For instance, FaceGuard [57] embeds a binary vector to the
original image representative of a person’s identity and classifies whether the
image is fake by checking if the watermark is intact after being used for face
manipulation tasks. These methods, however, cannot prevent the manipulation
of face images which is the key focus of our work.

Recent works that aim to prevent image manipulations exploit adversarial
attack techniques to break image manipulation models. Ruiz et al. [44] disrupt
the output of deepfake generation models. Yeh et al. [58, 59] aim to nullify the
effect of image manipulation models. Other approaches [29, 47] aim to disturb
the output of face detection and landmark extraction steps, which are usually
used as pre-processing by deepfake generation methods. One commonality of
these methods is that they optimize a pattern for each image separately which is
computationally very expensive, thus having limited applicability for real-world
applications like resource-constrained devices. Very recently, Huang et al [19]
proposed a neural network based approach to generate image-specific patterns
for low-resolution images, however, they do not consider compression, which is
a common practical scenario that can make these generated patterns ineffective
(as shown in Sec. 4). Additionally, this method only considers a single manipu-
lation model at a time, thus limiting its applicability to protect against multiple
manipulations simultaneously. To this end, we propose (a) a novel data-driven
method to generate image-specific perturbations which are robust to compres-
sion and (b) fusion of manipulation-specific perturbations. Our method not only
require less computational effort compared to existing adversarial attacks works,
but can protect against multiple manipulation methods simultaneously.
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Fig. 3. For a given RGB image Xi, we first use the pre-trained manipulation-specific
global noise and protection models {δk

G,g
k
Φ}Kk=1 to generate manipulation-specific per-

turbations {δk
i }Kk=1, which are passed into a shared attention backbone hω to generate

the spatial attention maps {αk
i }Kk=1. These attention maps are then combined with

manipulation-specific {δk
i }Kk=1 using channel-wise hadamard product and blended to-

gether using addition operation. Finally, the blended perturbation is then refined using
FusionNet rρ to generate manipulation-agnostic perturbation δall

i .

3 Proposed Method

Our goal is to prevent face image manipulations and simultaneously identify
which model was used for the manipulation. That is, for a given face image, we
aim to find an imperceptible perturbation that disrupts the generative neural
network of a manipulation method such that a solid color image is produced
as output instead of originally-intended manipulation. Algorithmically, this is a
targeted adversarial attack where the predefined manipulation targets make it
easy for a human to identify the used manipulation method.

3.1 Method Overview

We consider a setting where we are given K manipulation models M = {fkΘ}Kk=1

where fkΘ denotes the k-th manipulation model. For a given RGB image Xi ∈
RH×W×3 of height H and width W , the goal is to find the optimal perturbation
δi ∈ RH×W×3 that is embedded in the original image Xi to produce a valid pro-
tected imageXp

i ∈ RH×W×3. The manipulation model fkΘ, which is parametrized
by its neural network weights Θ, is also given as input to the method. Note
that we use fkΘ only to drive the perturbation optimization and do not alter its
weights. For the given image Xi, the output synthesized by the manipulation
model fkΘ is denoted as Ŷik ∈ RH×W×3. We define the uniformly-colored prede-
fined manipulation targets for the K manipulation models as Y = {Ytarget

k }Kk=1.
In order to protect face images and obtain image perturbations, we propose

two main ideas: First, for a given manipulation model fΘ, we jointly optimize for
a global perturbation pattern δG ∈ RH×W×3 and a generative neural network
gΦ (parameterized by its weights Φ) to produce image-specific perturbations
δi. The global pattern δG is generalized across the entire data distribution.
The generative model gΦ is conditioned on the global perturbation δG as well
as the real image Xi. Our intuition is that the global perturbation provides a
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strong prior for the global noise structure, thus enabling the conditional model to
produce more effective perturbations. We also incorporate a differentiable JPEG
module to ensure the robustness of the perturbations towards compression. This
is shown in Fig. 2.

Second, to handle multiple manipulation models simultaneously, we leverage
an attention network hω (parametrized by ω) to first generate attention maps
{αk}Kk=1 for the K manipulation methods, which are then used to refine the

model-specific perturbations {δki }Kk=1 with an encoder-decoder network denoted

as FusionNet rρ (parametrized by ρ) to generate a single final perturbation δalli

for the given image Xi. δ
all
i can protect the image from the given K manipulation

methods simultaneously. An overview is shown in Fig. 3.

3.2 Methodology

We define an optimization strategy where the objective is to find the smallest
possible perturbation that achieves the largest disruption in the output manipu-
lation; i.e., where the generated output for the k-th manipulation model is closest
to its predefined target image Ytarget

k . This is explained in detail below.

Joint Global and Conditional Generative Model Optimization The
global perturbation δG ∈ RH×W×3 is a fixed image-agnostic perturbation shared
across the data distribution. The conditional generative neural network model
gΦ is a UNet [42] based encoder-decoder architecture. For a given manipulation
method, we jointly optimize global perturbation δG and the parameters Φ of this
conditional model gΦ together in order to generate image-specific perturbations.

δ∗G,Φ
∗ = argmin

δG,Φ
Lk (1)

where Lk refers to overall loss (Eq. 2).

Lk =

[
N∑
i=1

Lrecon
i + λLperturb

i

]
k

, (2)

where the parameter λ regularizes the strength of perturbation added to the
real image, N denotes the number of images in the dataset, i denotes the image
index and k denotes the manipulation method. Lrecon

i and Lperturb
i represent

reconstruction and perturbation losses for i-th image. The model gΦ is condi-
tioned on the globally-optimized perturbation δG as well as the original input
image Xi. Conditioning the model gΦ on δG facilitates the transfer of global
structure from the facial imagery to produce highly-efficient perturbations, i.e.,
these perturbations are more successful in disturbing manipulation models to
produce results close to the manipulation targets. The real image Xi and global
perturbation δG are first concatenated channel-wise, X̂i =

[
Xi, δG

]
, to generate

a six-channel input X̂i ∈ RH×W×6.
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X̂i is then passed through the conditional model gΦ to generate image-specific
perturbation δi = gΦ(X̂i). These image-specific perturbations δi are then added
to the respective input images Xi to generate the protected image Xp

i as

Xp
i = Clampε(Xi + δi). (3)

The Clampε(ξ) function projects higher/lower values of ξ into the valid interval
[−ε, ε]. Similarly, we generate the protected image using global perturbation δG
as

XGp
i = Clampε(Xi + δG). (4)

For the generated conditional and global protected image Xp
i and XGp

i and the

given manipulation model fkΘ, the reconstruction loss Lrecon
i and perturbation

loss Lperturb
i are formulated as

Lrecon
i =

∥∥∥fkΘ(Xp
i )−Ytarget

k

∥∥∥
2
+
∥∥∥fkΘ(XGp

i )−Ytarget
k

∥∥∥
2
. (5)

Lperturb
i =

∥∥∥Xp
i −Xi

∥∥∥
2
+
∥∥∥XGp

i −Xi

∥∥∥
2
. (6)

Finally, the overall loss can then be written as

Lk =

[
N∑
i=1

∥∥∥fkΘ(Xp
i )−Ytarget

k

∥∥∥
2
+
∥∥∥fkΘ(XGp

i )−Ytarget
k

∥∥∥
2
+

λ

(∥∥∥Xp
i −Xi

∥∥∥
2
+
∥∥∥XGp

i −Xi

∥∥∥
2

)]
k

.

(7)

The global perturbation δG is initialized with a random vector sampled from a
multivariate uniform distribution, i.e., δ0G ∼ U(0,1) and optimized iteratively.

Note that XGp
i is used only to drive the optimization of δG. For further details

on the network architecture and hyperparameters, we refer to Sec. 4 and the
supplemental material.

Differentiable JPEG Compression In many practical scenarios, images
shared on social media platforms get compressed over the course of transmis-
sion. Our initial experiments suggest that protected images Xp

i generated from
the previous steps can easily become ineffective by applying image compression.
In order to make our perturbations robust, we propose to incorporate a differ-
entiable JPEG compression into our generative model; i.e., we aim to generate
perturbations that still disrupt the manipulation models even if the input is com-
pressed. The actual JPEG compression technique [52] is non-differentiable due
to the lossy quantization step (details in supplemental) where information loss
happens with the round operation as, x := round(x). Therefore, we cannot train
our protected images against the original JPEG technique. Instead, we leverage
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continuous and differentiable approximations [25, 45] to the rounding operator.
For our experiments, we use the sin approximation by Korus et al. [25]

x := x− sin(2πx)

2π
. (8)

This differentiable round approximation coupled with other transformations
from the actual JPEG technique can be formalized into differentiable JPEG
operation. We denote the full differentiable JPEG compression as Ψq, where q
denotes the compression quality.

For training, we first map the protected image Xp
i to RGB colorspace [0, 255]

before applying image compression, obtaining X̃p
i . Next, the image X̃p

i is passed

through differential JPEG layers Ψq to generate a compressed image X̃p
ic, which

is then normalized again as Xp
ic before passing it to the manipulation model fΘ.

Training with a fixed compression quality ensures robustness to that specific
quality but shows limited performance when evaluated with different compres-
sion qualities. We therefore, generalize across compression levels by training our
model with different compression qualities. Specifically, at each iteration, we
randomly sample quality q from a discrete uniform distribution UD(1, 99), i.e.
q ∼ UD(1, 99) and compress the protected image Xp

i at quality level q.
This modifies the reconstruction loss Lrecon as follows

Lrecon
i =

∥∥∥fkΘ(Ψq(Xp
i ))−Ytarget

k

∥∥∥
2
+
∥∥∥fkΘ(XGp

i )−Ytarget
k

∥∥∥
2

(9)

where Xp
ic = Ψq(Xp

i ) denotes the compressed protected image. Backpropagating
the gradients through Ψq during training ensures that the added perturbations
survive different compression qualities. At test time, we evaluate results with
actual JPEG compression technique instead of approximated/differential used
during training to report the results.

Multiple Manipulation Methods To handle multiple manipulation mod-
els simultaneously, we combine model-specific perturbations {δki }Kk=1 obtained

previously using {δkG,gk
Φ}Kk=1 and feed them to our attention network hω (pa-

rameterized by ω) and fusion network rρ (parameterized by ρ ) to generate

model-agnostic perturbations δalli .

ω∗,ρ∗ = argmin
ω,ρ

Lall. (10)

We leverage the pre-trained global pattern and conditional perturbation
model pairs {δkG,gk

Φ}Kk=1 for each of the K different models to generate the

final perturbation δalli for image Xi. More precisely, for the image Xi, we first
use the pre-trained {δkG,gk

Φ}Kk=1 to generate the model-specific perturbations

{δki }Kk=1 as:

δki = gk
Φ(Xi, δ

k
G). (11)
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Next, these model-specific perturbations {δki }Kk=1 are fed into attention mod-
ule hω coupled with the softmax operation to generate spatial attention maps
{αk

i }Kk=1 as:

αk
i =

exp
(
hω(δ

k
i , Ck)

)
K∑

k=1

exp
(
hω(δ

k
i , Ck)

) . (12)

where αk
i ∈ RH×W and Ck refer to class label for the k-th manipulation model.

These spatial attention maps are then blended with model-specific perturbations
and refined with a fusion network rρ to generate the final perturbation δalli as:

δalli = rρ

(
K∑

k=1

(αk
i ⊙ δki )

)
(13)

Finally, δalli is added to the image Xi to generate the common protected image
Xall

i = Clampε(Xi + δalli ) and total loss is formalized as

Lall =

N∑
i=1

[
K∑

k=1

(∥∥∥fkΘ(Xall
i )−Ytarget

k

∥∥∥
2

)
+ λ

∥∥∥δalli

∥∥∥
2

]
. (14)

4 Results

We compare our method against well-studied adversarial attack baselines I-
FGSM [26] and I-PGD [32]. To demonstrate our results, we perform experi-
ments with three different models: (1) pSp Encoder [41] which can be used for
self-reconstruction and style-mixing (protected with solid white image as ma-
nipulation target), and (2) SimSwap [8] for face-swapping (protected with solid
blue as manipulation target). (3) StyleClip [39] for text-driven manipulation
(protected with solid red as manipulation target). For all these manipulations,
we use the publicly available pre-trained models. For pSp encoder, we use a
model that is trained for a self-reconstruction task. The same model can also be
used for style-mixing to synthesize new images by mixing the latent style fea-
tures of two images. For style-mixing and face-swapping, protection is applied
to the target image. We introduce a custom split on FFHQ [22] for our exper-
iments. We use 10K images for training and 1K images for val and test split
each. More details can be found in supplemental. All results are reported on the
corresponding test sets for each task respectively.

Experimental Setup. All images are first resized to 256× 256 pixels. The
global perturbation and conditional model are jointly optimized for 100k itera-
tions with a learning rate of 0.0001 and Adam optimizer. For the protection gΦ,
attention hω and fusion rρ network, we use the same UNet-64 encoder-decoder
architecture. We use a batch size of 1 for all our experiments. For I-PGD, we use
a step size of 0.01. Both I-FGSM and I-PGD are optimized for 100 steps for ev-
ery image in the test split. More details on training setup and hyperparameters
can be found in the supplemental.
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Fig. 4. Comparison on self-reconstruction task with white image as manipulation tar-
get. Perturbation enlarged (4×) for better visibility. Ours Global refers to the optimized
single global perturbation for all the images. Ours Model (I) refers to the model con-
ditioned only on real images and Ours Model (I + G) refers to the model conditioned
on global perturbation and real image, outperforms alternate baselines.

Metrics. To evaluate the output quality, we compute relative performance
at different perturbation levels, i.e., we plot a graph with the x-axis showing
different perturbation levels for the image and the y-axis showing how close is
the output of the face manipulation model to the predefined manipulation target.
We plot the graph for RMSE, PSNR, LPIPS [61] and VGG loss. In the optimal
setting, for a low perturbation in the image, the output should look identical
to the manipulation target; i.e., a lower graph is better for RMSE, LPIPS and
VGG loss and higher for PSNR.

Baseline Comparisons. To compare our method against other adversarial
attack baselines, we first evaluate the results of our proposed method on a single
manipulation model without compression; i.e., neither training nor evaluating
for JPEG compression. Visual results for self-reconstruction and style mixing
are shown in Figs. 4 and 5. The performance graph for different perturbation
levels is shown in Fig. 6. We observe that the model conditioned on the global
perturbation as well as real images outperforms the model trained only with
real images, indicating that the global perturbation provides a strong prior in
generating more powerful perturbations.

Runtime Comparison. We compare run-time performance against state-
of-the-art in Tab. 1. I-FGSM [26] and I-PGD [32] optimize for perturbation
patterns for each image individually at run time; hence they are orders of mag-
nitude slower than our method that only requires a single forward pass of our
conditional generative neural network. Our model takes only 77.89 ± 2.71 ms
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Fig. 5. Comparison on the style-mixing task (white target). The protection is applied
to the target image. All methods are trained only for the self-reconstruction task and
evaluated on style-mixing. Perturbation enlarged (4×) for better visibility. Ours Global
refers to the optimized single global perturbation. Ours Model (I) refers to the model
conditioned only on real images andOurs Model (I + G) refers to the model conditioned
on global perturbation and real image, outperforms alternate baselines.

Fig. 6. Comparison with different optimization techniques evaluated on self-
reconstruction (white target). We plot the output image quality (y-axis) corresponding
to different levels of perturbations added to the image (x-axis). Orig and Protected refer
to the original and protected image. Output refers to the output of the manipulation
model and Target indicates the predefined manipulation target. Note that our method
outperforms other baselines at all the different perturbation levels.

and 117.0 MB memory to compute the perturbation for a single image on an
Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz. This is an order of magnitude faster
compared to per-image methods that are run on GPUs. We believe this makes
our method ideally suited to real-time scenarios, even on mobile hardware.

Robustness to JPEG Compression. Next, we investigate the sensitivity
of perturbations to different compression qualities. We apply the actual JPEG
compression technique to report results. We observe that without training the
model against different compression leads to degraded results when evaluated
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Table 1. Run-time performance (averaged over 10 runs) to generate a perturbation
for a single image on the self-reconstruction task. Our method runs an order of mag-
nitude faster than existing works that require per-image optimization. All timings are
measured on an Nvidia Titan RTX 2080 GPU.

Method Time

I-FGSM [26] 17517.71 ms (±124.08 ms)
I-PGD [32] 17523.01 ms (±204.15 ms)
Ours 10.66 ms (±0.21 ms)

I-
FG

SM
I-

PG
D

O
ur

s 
w

/o
 

C
om

pr
es

si
on

O
ur

s 
w

/ 
C

om
pr

es
si

on

Input 
Image

4 X 
Perturbation

Manipulation 
w/ Protection

Manipulation 
w/o Protection

Protected 
Image

Input 
Image

4 X 
Perturbation

Manipulation 
w/ Protection

Manipulation 
w/o Protection

Protected 
Image

Fig. 7. Qualitative comparison in the presence of JPEG compression (white target).
Methods trained without compression struggle; in contrast, our model trained with
compression is able to produce perturbations that are robust to compression. Ours w/
Compression refers to the model trained with random compression. Ours w/o Com-
pression refers to model trained without compression. Compression is applied on the
protected images. All methods are evaluated at compression quality C-80.

Fig. 8. Performance comparison in the presence of JPEG compression. Our method
without differentiable JPEG training manages to disrupt the model; however, training
with random compression levels significantly outperforms the uncompressed baselines.
All methods are evaluated at compression quality C-80.



TAFIM: Targeted Adversarial Attacks against Facial Image Manipulations 13

on compressed images, Fig. 7 and 8. Training the model with fixed compression
quality makes the perturbation robust to that specific compression quality; how-
ever, it fails for other compression levels; see Fig. 9. We therefore train across
different compression levels varied during training iterations.
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Fig. 9. Comparison for our method trained without compression, fixed compression,
and random compression for self-reconstruction task (white target). The fixed com-
pression model was trained with compression quality C-80. All methods are evaluated
on compression quality C-30. The randomly compressed model outperforms both fixed
and no compression models.

Multiple Manipulation Models. We leverage manipulation-specific per-
turbations as priors and combine them using attention-based fusion to generate
a single perturbation to protect against multiple manipulations at the same
time. As a baseline, we also compare against a model trained directly for all
manipulation methods combined without manipulation-specific priors or atten-
tion. We notice that this setup is unable to produce optimal perturbations due
to absence of prior information from manipulation-specific perturbations which
provide the most optimal perturbations to produce predefined manipulation tar-
gets. We color-code the manipulation targets with different colors for different
manipulation models. This protection technique has an advantage over simple
disruption since it gives more information about which technique was used to
manipulate the image. We conduct experiments with three different state-of-
the-art methods: pSp [41] with solid white image as the manipulation target,
SimSwap [8] with solid blue image as target and StyleClip [39] with solid red
as target image. Visual results and performance graph comparison are shown in
Fig. 10. Our combined model with attention produces more effective results than
without attention baseline, and without any significant degradation compared
to manipulation-specific baselines when handling multiple manipulation at the
same time.
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Fig. 10. Visual results (top) and performance graph (bottom) for multiple targets si-
multaneously. pSp Only, SimSwap Only, and StyleClip Only refer to the individual pro-
tection models trained only for the respective manipulations. Combined w/o Attention
refers to a model trained directly for all manipulation methods combined. Combined
w/ Attention refers to our proposed attention-based fusion approach. Our proposed
attention model performs much better the no attention baseline, and is comparable to
individual models.

5 Conclusion

In this work, we proposed a data-driven approach to protect face images from po-
tential popular manipulations. Our method can both prevent and simultaneously
identify the manipulation technique by generating the predefined manipulation
target as output. In comparison to existing works, our method not only run
orders of magnitude faster, but also achieves superior performance; i.e., with
smaller perturbations of a given input image, we can achieve larger disruptions
in the respective manipulation methods. In addition, we proposed an end-to-end
compression formulation to make the perturbation robust to compression. Fur-
thermore, we propose a new attention-based fusion approach to handle multiple
manipulations simultaneously. We believe our generalized, data-driven method
takes an important step towards addressing the potential misuse of popular face
image manipulation techniques.
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