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Fig. A: The checkerboard artifacts in images and the artificial finger-
prints in 2D spectra. The greater the size of the checkerboard artifacts in
images, the narrower the grids become in the artificial fingerprints in the fre-
quency domain.

A Additional Analysis

The generator network for GAN models can be divided into two categories: the
networks based on deconvolution and the networks based on interpolation. Con-
ventionally, most previous upsampling networks for image generation gradually
increase the image resolutions through the activation layer and the deconvolu-
tion layer. To improve the image quality, a number of methods [1,2,4,9,18,19]
additionally use the normalization layer, such as the batch normalization [10],
adaptive instance normalization [12], and spectral normalization [15]. Also, anti-
aliasing methods can be used, such as blur and low-pass filter [5,11,12,16,17].
Since the deconvolution layer for upsampling operation is known to be the cause
of aliasing, the interpolation-based networks replace the deconvolution layer with
interpolation, such as bicubic and linear for improved image quality [3, 5].

A number of studies have confirmed that the images generated by GAN mod-
els contain the fingerprints appearing as the unique patterns in the frequency
domain and utilizing those fingerprints can be the key to robust detection of the
generated images [6,8]. As shown in Fig. A, the artificial fingerprints generated
by the deconvolution layer are easily discovered in the 2D spectra. Interest-
ingly, however, these fingerprints are not found in the generated images by the



interpolation-based methods, which can be concluded that each network creates
unique fingerprints varying from each other.

We first analyze the frequency-level fingerprints generated by the deconvo-
lution networks. To show the relation between the frequency-level fingerprints
and the pixel-level checkerboard artifacts generated by the deconvolution layers,
we express the pixel-level artifacts by using newly derived frequency-level fin-
gerprints. To ease the derivation, we consider the 1-D sequence in the following
derivations. When the size of the given sequence is N,

yln] = hin] + g[n], (a)

where n is an integer in [0, N), and y, h, and g are the reconstructed sequence,
the original sequence, and the pixel-level artifacts, respectively. Thus, when a,,
and T represent a scale factor for m-th impulse sequence and the period be-
tween the impulse sequences, respectively, we can represent the frequency-level
fingerprints by the weighted impulse train as follows:
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where F and d[k] are the Fourier transformation function and an unit impulse
sequence of the frequency component k, respectively.

Then, to acquire the pixel-level artifacts from the frequency-level fingerprints,
we estimate the inverse Fourier transformation of the frequency-level fingerprints
as:
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where the summation over k is canceled out since the impulse sequence has non-
zero value only when k& = mT. Because we consider the real-valued sequence,
a., satisfies the symmetry property that is b,, = b_,, and ¢, = —c_,, where
bm = Re(am) and ¢, = Im(amy,), i.€. Gm = by +jcm. When the real and imaginary

parts of exp (j 2”]\7,1Tn) are separated respectively to p,,(n) = cos (2”]’\?T n) and
Gm(n) = sin (%n) by Euler’s equation, the equation can be simplified with

the sum formula for cosine functions as:
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where o = arctan(c,, /b,,). Then, by using the derivation of the summation of
cosine series [14], we can acquire the final derivation of:
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Fig. B: The 2D spectra of the images reconstructed from zero image.
The patterns of the frequency-level fingerprints appear more frequently when
more deconvolution layers are applied. Thus, by using the autoencoders with
the various numbers of deconvolution layers, we can reconstruct different types
of frequency-level fingerprints.

From the derivation, we can obtain three interesting characteristics of the
pixel-domain artifacts. First, the fingerprints in the frequency domain are easier
to discover because of their composition in the impulse train format, unlike the
pixel-level artifacts based on the smooth trigonometric functions. This charac-
teristic verifies that the impressive performance of the GAN detectors using the
frequency-level fingerprints [6-8].

Second, the maximum amplitude of pixel-domain artifacts is proportional
to the number of included deconvolution layers. When we estimate the upper
bound of g[n],
< 2 sin(rMTn/N) _ 2
— N sin(#Tn/N) — N
because sin(rMTn/N)/sin(zTn/N) < M of which the proof is given in Ap-
pendix. Thus, the upper bound of g[n] is proportional to M, which explains
that the pixel-artifacts become easily distinguished with large M, as shown in
Fig. 1. In Appendix A.1, we show the empirical results where the maximum
value of g[n| increases proportionally to M.

Lastly, the greater the periods of the frequency-level fingerprints, the smaller
the size of the pixel-level artifacts become. When we approximate the relation
among M, T, and N, N = (2M — 1)T =~ 2MT = 2(M — 1)T with large M.
Thus, we can approximate the trigonometric frequencies of sin(rMTn/N) and
cos(m(M — 1)Tn/N + «) as the constant, while the frequency of sin(7Tn/N) is
proportional to the period T

gln] M, (f)

A.1 Proof of Equation f

We discover two interesting relations between the frequency-level fingerprints
and the pixel-level artifacts of the generated images. The first relation presents
that the magnitude of the pixel-level artifacts is proportional to the number of
grids in the frequency-level fingerprints, which is derived by Eq. f. The second
relation demonstrates that the number of grids in the frequency-level fingerprints
is inversely proportional to the frequency of the checkerboards in the pixel-level
artifacts.
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Fig. C: The simplified upsampling process of the generator. The solid-
lined boxes indicate the essential operation, while the dashed-lined boxes indicate
the selective operations.

To derive Eq. f, we need to prove the inequality of sin(n MTn/N)/sin(7Tn/N) <
M. In this appendix, we present the proof for |sin(wMTn/N)/sin(nTn/N)| <
M that is the sufficient condition of sin(xMTn/N)/sin(zTn/N) < M. We first
simplify |sin(rMTn/N)/sin(rTn/N)| < M as:
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where § = 7#Tn/N. Since M is larger than 0,
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By using the Euler’s formula where sin(f) = (e’? — e=79)/2j (j is an imaginary
unit), the derivation becomes:
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Then, when M is sufficiently large, 1/M? goes to zero, so we can approximate
the derivation as:
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Since )
—1<cos(20) <1,0 < ~1 (2cos(20) —2) < 1. (k)

Thus,
|sin(ntMTn/N)/sin(rTn/N)| < M )

is satisfied, which follows
sin(nMTn/N)/sin(rTn/N) < M. (m)

Then, we empirically show the relationship between the grid size of the pixel-
level checkerboards and the number of lines in the frequency-level fingerprints.
As shown in Fig. B, the larger the grid size of the pixel-level checkerboards, the
more frequent the lines of frequency-level artifacts become. Thus, we can see
that the grid size of the pixel-level checkerboards and the number of lines in the
frequency-level fingerprints are positively correlated to each other.

A.2 TUpsampling Process Modules

We categorize the upsampling process modules into two types: interpolation-
based upsampling and deconvolution-based upsampling. Fig. C shows the differ-
ence between the two types of modules. The interpolation-based module contains
the essential operations of interpolation, convolution, and activation function. In
the case of a deconvolution-based module, the transposed convolution and acti-
vation function are the essential operations. In both the modules, the normaliza-
tion can be selectively used to stabilize the training of the generator. To reduce
the artifacts from the transposed convolution, the anti-aliasing and additional
convolution layer are selectively added to the upsampling module.

B Visualization of Frequency-level Fingerprints

To find the autoencoder generating the most similar fingerprints to each GAN
model, we build various autoencoders containing a different number of upsam-
pling processes. After training the autoencoders by the images generated by the
specific GAN model, we can obtain the various types of fingerprints from the
numerous autoencoders. Interestingly, as shown in Fig. D, the autoencoders can
generate one or more frequency-level fingerprints that are similar to those of
GAN models. From the results, we can find that the multiple autoencoders can
effectively reconstruct the fingerprints of various GAN models.

C Implementation Details

We resize the input images into 256 x256, and the reconstructed images with the
same size. Also, for detector, center crop is used for the input size of 250x250.
For training, we use a single NVIDIA RTX 8000 with a batch size of 16 and
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Fig.D: Raw Results for Fingerprints of Autoencoders. For the various
GAN models, the autoencoders of different scales generate the most similar
fingerprints (red boxes) to those of GAN models.

20 epochs for the generated image detector, 200 epochs for the artificial finger-
print generator. Both of the artificial fingerprint generator and generated image
detector networks are trained by Adam optimizer [13] with the learning rate of
0.0001, which are the conventional hyperparameters of the previous generated
image detectors.
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