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Fig. 1: The synthesized fingerprints varying by the level of upsampling
process. Using the real images from FFHQ [32] as shown at the upper-left cor-
ner, the autoencoders can reconstruct images with various levels of upsampling
processes, as shown in the columns of two to eight from the left. Their average
2D spectra in the second row show diverse synthesized fingerprints varying by
the level of upsampling.

Abstract. While recent advances in generative models benefit the so-
ciety, the generated images can be abused for malicious purposes, like
fraud, defamation, and false news. To prevent such cases, vigorous re-
search is conducted on distinguishing the generated images from the
real ones, but challenges still remain with detecting the unseen gener-
ated images outside of the training settings. To overcome this problem,
we analyze the distinctive characteristic of the generated images called
‘fingerprints,’ and propose a new framework to reproduce diverse types
of fingerprints generated by various generative models. By training the
model with the real images only, our framework can avoid data depen-
dency on particular generative models and enhance generalization. With
the mathematical derivation that the fingerprint is emphasized at the
frequency domain, we design a generated image detector for effective
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training of the fingerprints. Our framework outperforms the prior state-
of-the-art detectors, even though only real images are used for training.
We also provide new benchmark datasets to demonstrate the model’s
robustness using the images of the latest anti-artifact generative models
for reducing the spectral discrepancies.

1 Introduction

Based on the recent enhancement of the generative models, such as Generative
Adversarial Networks (GAN) [19], it has become easy to obtain high-quality
synthesized images [32, 33]. Many recent generative models can even transform
the target images to include the specific properties of the users’ choices [9,10,46,
59,60]. However, with technological improvement, the risk of maliciously abusing
such images also rises, such as fraud, defamation, and fake news [36, 38, 44]. To
prevent such cases, it is important to distinguish between the real images and
the generated images [48].

Many recently generated image detectors have advanced to find the distin-
guishable features resulting during the image generation process [48]. For exam-
ple, the checkerboard traces discovered in the frequency-level generated images
are called the ‘fingerprints,’ which are created during the upsampling estimation
of the generator [6, 14, 15, 18]. Unfortunately, the appearance of the frequency-
level fingerprints varies by the generative models and also by the object cate-
gories. Thus, when tested with the generated images of the unseen GAN models
or object categories, the generated image detectors inevitably suffer from a per-
formance decline [20]. In addition, recent studies have advanced to reduce the
aliasing effect that occurs during the upsampling process of CNN in order to
generate more realistic images. Such effort makes it challenging for the detectors
to distinguish the fingerprints in generated images.

To overcome the issues, we suggest FingerprintNet composed of a fingerprint
generator and a generated image detector. The overall framework utilizes the
real images only and ignores the generated images by specific GAN models for
training. Instead, the fingerprint generator reconstructs the real images to insert
the general fingerprints to cover various GAN models. To synthesize the general
fingerprints, we employ three mechanisms for the fingerprint generator, which
include a random layer selection, a multi-kernel deconvolution layer, and a fea-
ture blender. Since the number of upsampling operations affects the appearance
of the fingerprints as shown in Fig. 1, we control the number of upsampling op-
erations of the fingerprint generator by applying the random layer selection. The
multi-kernel deconvolution layer and the feature blender are employed to handle
the diverse fingerprints due to various kernel sizes and the diverse amplitude of
the fingerprints, respectively.

By using the real images and the images reconstructed from the fingerprint
generator, we train the generated image detector to distinguish the generated
images from the real ones. We mathematically derive the reasons why the fin-
gerprint can be easily detected in the frequency-level domain, and accordingly,



FingerprintNet: Synthesized Fingerprints for Generated Image Detection 3

the input of our GAN detector is the magnitude spectrum to increase the de-
tection performance. Our method is tested with various real-world scenarios to
validate state-of-the-art generalization ability of our model in detecting even the
unseen GAN models and object categories. Especially, our self-supervised detec-
tor shows a similar performance as the supervised detector when detecting the
images generated from the recent generative model, such as Fréchet Inception
Distance (FID) [21] and the anti-aliasing GAN models [7, 29].

We can summarize our contributions as follows:

– Unlike the previous GAN detectors dependent on the specific GAN models,
our model utilizes the self-supervised training method to obtain generalized
detection ability and avoid data dependency.

– We propose a network that can generate various fingerprints, and a new way
to train the detector by adjusting the amplitude of various fingerprints or
perturbations.

– We provide a comprehensive analysis including visualizations and derivations
on the artificial fingerprints observed in the frequency domain.

– We offer an extended benchmark dataset including the images generated
by the latest anti-aliasing GAN models, which validate the state-of-the-art
performance of our framework even for the unseen GAN models.

2 Related Work

We explore the previous literature on GAN image detection and the recent meth-
ods on GAN image creation, which have evolved to be more challenging to detect.

2.1 Generated Image Detection

The pixel-level characteristics in the GAN-based generated images can be used to
identify the generated images. The identifiers can be referred to as the ‘artifacts,’
which are created due to upsampling process of the generator in GANs [6, 14,
20]. Some studies analyze the inconsistencies in blocking artifacts from JPEG
compression [50,53], or demosaicing artifacts created by a color filter array [13,
17]. Other image-based detection methods include an adaptable autoencoder-
based neural network architecture for new target domains [12] and cross-model
manipulation detection, such as JPEG and blur [52]. Recently, [49] proposed
LRNet for detecting deepfakes based on temporal modeling.

Many generated image detectors focus on the unique patterns in the fre-
quency spectra. [35] analyzed the artifacts in the spatial, frequency domain with
the variance of the prediction residue, while [23] suggested Fast Fourier Trans-
form [11] to distinguish image manipulations, such as JPEG compression. Also,
a study by [43] employed frequency-based, GAN-specific detection using the
artificial fingerprints, while [3] proposed a manipulation localization using the
frequency domain correlation to find the forged areas. [18] analyzed the GAN-
based artifacts using Discrete Cosine Transform [1], and [56] suggested study-
ing the artifacts induced by the up-sampler of GANs. Also, [14, 15] suggested
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exploiting the spectral distortions via Azimuthal integration. Recently, [27] sug-
gested using bilateral high-pass filters for generalized detection, and [28] utilized
the frequency-level perturbations for robust deepfake detection. Also, [58] pro-
posed a new multi-attentional deepfake detection network, while [41] presented
a spatial-phase shallow learning method for detecting artifacts of face forgeries.

Similar to our study, [26, 57] utilized the autoencoder to reconstruct the
generated images. However, they ignored the difference of fingerprints among
the various GAN models, while our study employs the additional mechanism to
obtain the generality for the unseen GAN models.

2.2 Advancement in Generative Models

Recently, generative models have become capable of creating images without the
synthesized traces thanks to anti-aliasing, which refers to reducing the effect of
artifacts in the generated images. Since it has now become more challenging to
distinguish the generated images, it is important to analyze the latest genera-
tive models to upgrade the current detecting technologies. One of the popular
anti-aliasing methods is to apply blur after deconvolution [30, 32, 33] and em-
ploy interpolation instead of the deconvolution layer [4, 10]. Recently, applying
kaiser filter to the activation function is newly proposed for anti-aliasing by Kar-
ras et al. [31]. Generative models besides GANs have also advanced to generate
high-quality images. An example is DDPM [22], which uses diffusion proba-
bilistic models based on denoising score matching. Recently, ILVR [8] proposed
a method to guide and condition the generative process of DDPM. Another
example of high-quality generative models is NVAE [51], a deep hierarchical
VAE using depth-wise separable convolutions and batch normalization. Some
studies [5, 29] focused on reducing the spectral discrepancies in the spatial and
spectral domains to obtain the anti-artifact characteristics. For example, SSD-
GAN [7] enhanced GAN models to alleviate the loss of spectral information to
generate the exact details of real images.

Since new manipulation methods quickly emerge, it is impractical to con-
stantly update the detector’s training in a supervised way [2]. Instead, it is
much more practical to improve the generalization ability of generated image
detectors. To improve the issue, some studies [2, 12, 24] adopted transfer learn-
ing, which utilizes a pre-trained model for another task using less amount of
data. Recently, [34] proposed a method to perform domain adaptation on deep-
fake detection using transfer learning. However, transfer learning requires the
pre-obtained knowledge on which GAN model is used for image synthesis, which
makes it difficult to utilize for generalization of generated image detectors.

3 Fingerprint Generator

The purpose of the fingerprint generator is to mimic various kinds of fingerprints
based on the reconstruction of the real images. The previous literature [14, 52]
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Fig. 2: The overall architecture of FingerprintNet. (a) depicts an example
in which l is selected to 4 by the random layer selection requiring three times of
upsampling. (b) shows details of the multi-kernel deconvolution layer.

mentioned that the fingerprints are created in generated images due to the up-
sampling process of the generative models. Based on the findings, we have de-
veloped the fingerprint generator using the autoencoder, which is designed to
contain a number of upsampling process. The number of upsampling processes
and the kernel size only affect the frequency of the fingerprints. Thus, to gener-
ate diverse kinds of fingerprints, we design the fingerprint generator to include
the additional modules, such as blending of features, random selection of layers,
as well as the multi-kernel deconvolution layers.

3.1 Overall Architecture

Fig. 2 shows the overall architecture of the fingerprint generator, which is com-
posed of 7 blocks each containing the upsampling and downsampling convolution
layers. First, the input image is turned into a small resolution by the convolution
layers consecutively applied for image compression. The first layer with stride 1
is exempt, but all the other layers are required to compress the images with the
stride of 2. Then, the resolution of the feature map becomes 1/64 of the original
input size at the last layer. The compressed feature maps from k-th convolution
layer can be defined as zkdown(x) for a given input image x. Also, every convolu-
tion layer is paired with a ReLU activation function, which is applied after the
convolution.

Then, in order to restore the feature map’s resolution, we consecutively apply
the deconvolution layers to the compressed features. Except for stride 1’s last
deconvolution layer to reconstruct the original image, every deconvolution layer
enlarges the feature map’s resolution twice as big as stride 2. The deconvolu-
tion layers consist of a variety of layers as follows: in the order of a transposed
convolution, a batch normalization, a blur kernel for anti-aliasing, and a ReLU
activation function layers. The k-th deconvolution layer’s feature map is defined
as zk−1

up (x). For easy understanding, we designate the same index of k to the

same size of feature maps of zkdown(x) and zkup(x). The fingerprint generator’s
output image is defined as G(x) for the input of x.
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3.2 Training Loss

The fingerprint generator’s training set is composed of only the real images.
Also, additional to the conventional reconstruction loss of the autoencoder, the
fingerprint generator’s training loss takes the similarity losses to decrease the
disparities between the feature maps of the corresponding deconvolution and
convolution layers. Therefore, the fingerprint generator’s training loss can be
represented as:

L(Xr, G) = Ex∼Xr

[
||x−G(x)||2 +

6∑
k=1

||zkdown(x)− zkup(x)||2
]
, (1)

where Xr indicates the training set composed of the real images. Based on the
additional loss term using the latent feature maps, we can take zkdown(x) as the
artifact-free version of the feature map of zkup(x). These characteristics of the
feature maps in the fingerprint generator are utilized for the feature blender,
which is explained in Sec. 3.5.

3.3 Random Layer Selection

To handle the different numbers of upsampling operations in various GAN mod-
els, we employ the random layer selection in the fingerprint generator. At every
training iteration, the module of the random layer selection randomly selects
one value l from {1, 2, 3, 4, 5, 6} according to the uniform distribution. Then, in-
stead of using the entire layers, zldown(x) is fed into l-th deconvolution layer to
estimate zlup(x). We set the feature maps from the remaining convolution and
deconvolution layers with the indices larger than l as zero. Since l-th convolution
and deconvolution layers have the equivalent resolutions and channel sizes, we
can use the same weight parameters of the layers even after the random layer
selection. As a result, while the original architecture of the fingerprint gener-
ator remains, the number of upsampling operations can vary to generalize the
appearance of fingerprints in the reconstructed image.

3.4 Multi-kernel Deconvolution Layer

To consider the difference of fingerprints generated by various kernel sizes, we
employ multiple kernels in the respective deconvolution layer. Among the vari-
ous kernel sizes, we focus on the difference between the even and odd sizes of the
kernels. Due to the constant stride size of 2 for each deconvolution layer, when
estimating zkup, kernels of even sizes overlap by an even number of pixels, whereas
kernels of odd sizes overlap by an odd number of pixels. Thus, instead of employ-
ing numerous kernel sizes, we use only two kernels where the sizes are set to 3
and 4, respectively. Especially, the two kernel sizes of 3 and 4 are conventionally
used in most of the GAN models [9,10,30,32,60]. Then, one deconvolution layer
contains two kernels, which are respectively applied to the input feature maps
in parallel. Finally, zkup is obtained by estimating the average of the two feature
maps resulting from the two kernels.
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3.5 Feature Blender

The feature blender is employed to consider the various amplitude of fingerprints
from the GAN models. Since the amplitude of fingerprints can be dependent on
the input images, the feature blender augments the training samples by blending
zkdown(x) and zkup(x). According to our training loss (Eq. 1), the feature maps

of the corresponding indices (i.e. zkdown(x) and zkup(x)) are trained to be similar
to each other. Then, due to the absence of upsampling operations to estimate
zkdown(x), z

k
down(x) can be seen as the artifact-free feature map that is similar

to zkup(x). Thus, by blending the two feature maps, we can reduce the effect of

fingerprints of zkup(x) even while preserving its semantic information.
By using the feature blender, k-th deconvolution layer is fed by the blended

feature map of ẑkup(x) instead of zkup(x) that is the original feature map from the
leading deconvolution layer. The blended feature map is obtained as follows:

ẑkup(x) = µkz
k
down(x) + (1− µk)z

k
up(x), (2)

where µk is a value randomly sampled from a Beta distribution of α = 1 and
β = 1. The value of µk is sampled repeatedly at every deconvolution layer and
every training iteration. Thus, the fingerprint generator can generate the various
amplitudes of fingerprints only by the unified model.

3.6 Fingerprint Generation

After the training of the fingerprint generator, we build the synthetic dataset con-
taining the generated images from the fingerprint generator. During the dataset
generation, we fix the indices l of the random layer selection by 1, 2, and 6.
Thus, the generated images of our synthetic dataset contain various types of
fingerprints. When l = 2 or l = 6, the fingerprints appear at G(x) due to the
upsampling operations, which can be used as an important characteristic to dis-
tinguish the generated images. Meanwhile, the generated images with l = 1 have
had no upsampling operation and thus support robustness on the anti-aliasing
GAN models. To improve robustness to various GAN models, the multi-kernel
deconvolution layer and the feature blender remain in the dataset generation.
Even though multiple images can be generated through the randomness of the
feature blender, when one real image is given, we generate only three images
respectively for one index l of the random layer selection. Thus, in the synthetic
dataset, the quantity of generated images is three times that of real images.

4 Generated Image Detector

To classify the generated images from the real images, we utilize the additional
CNN model, which is called the generated image detector. Before explaining the
details of the generated image detector, we first derive mathematically the reason
why the fingerprint of the generated images becomes distinctive in the frequency-
level domain as referred by many studies [14, 18]. Based on the derivation, we
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also utilize the frequency spectrum as the input of the generated image detector.
To further improve the robustness of the generated image detector, we employ
the mechanism of mixed batch during its training.

4.1 Effect of Frequency-level Input

In this paper, we derive mathematically the reason why the fingerprints become
distinctive in the frequency spectrum. A number of studies have confirmed that
the images generated by GAN models contain the fingerprints appearing as
the unique patterns in the frequency domain and utilizing those fingerprints
can be the key to robust detection of the generated images [14, 18]. As shown
in Fig. 1, the artificial fingerprints generated by the deconvolution layer are
easily discovered in the 2D spectra. To ease the derivation, we consider the 1-D
sequence in the following derivations.

As shown in Fig. 1, the fingerprints appear quite impulse train in the fre-
quency spectrum. Thus, when am and T represent a scale factor for m-th im-
pulse sequence and the period between the impulse sequences, respectively, we
can represent the frequency-level fingerprints by the weighted impulse train as:

F{g}[k] =
m=M∑
m=−M

amδ[k −mT ], (3)

where m ∈ {−M, ...,M}, g represents the pixel-level fingerprints, and F and
δ[k] are the Fourier transformation function and an unit impulse sequence of the
frequency component k, respectively.

Then, to acquire the pixel-level artifacts, we estimate the inverse Fourier
transformation of the frequency-level fingerprints as follows:

g[n] =
2

N

M∑
m=0

|am| cos
(
2πmT

N
n+ α

)
, (4)

where N is the length of entire sequence and α = arctan
(
Im{am}/Re{am}

)
. The

detailed derivation is given in Appendix A.
From the derivation, we can obtain two interesting characteristics of the

pixel-domain artifacts. First, the fingerprints in the frequency domain are eas-
ier to discover because of their composition in the impulse train format, unlike
the pixel-level artifacts based on the smooth trigonometric functions. Second,
since M is smaller than N/2, we can find that the magnitude of the fingerprint
in pixel-level domain cannot be larger than that in frequency-level domain ac-
cording to the inequality of g[n] < 2M |am|/N derived from Eq. 4. Thus, when
we transform the input images into the frequency-level domain, the fingerprints
can be emphasized to be detected easily. Therefore, we also employ the Fourier
transform for the input of the detector.

4.2 Architecture of Detector

The next step after training the artificial fingerprint generator is the training of
the generated image detector to discern between the generated images and the
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real images. As illustrated in Fig. 1 and the derivation in Sec. 4.1, it is effective
to utilize the frequency-level analysis to investigate the artificial fingerprints.
Therefore, we employ Fast Fourier Transform (FFT) [11] to transform the gen-
erated image x̂ ∈ X̂ = {G(x)|∀x ∈ X} of the artificial fingerprint generator into
a 2D spectrum.

Our detector is based on ResNet-50 [39] for a fair comparison with the previ-
ous research [14,18,52]. In order to train the detector, we procure the generated
images by reconstructing the real images from the training dataset. The training
of the generated image detector can be challenging due to the unbalancing issue
arising from the three generated images from one real image. To solve the issue,
we have changed the sampling probability to extract the real images three times
as much of the reconstructed images in a mini-batch.

4.3 Training Method with Mixed Batch

The generated image detector’s training dataset can be divided into two cate-
gories: the generated images and real images. We sample an equal number of
generated and real images to make one mini-batch. Then, we mix the sampled
images instead of utilizing them directly to lessen data reliance on the category
of real images, which is defined as mixed images. Also, the mixed images may
minimize the noisy information in the generated images, improving the detector’s
tolerance against high-quality images from contemporary GAN models.

Every sample from the mini-batch is replaced with mixed samples, as stated
by S̃. Ỹ stands for the labels that belong to the samples of S̃. We assign 1 for
real, and 0 for generated images. First, two images are randomly chosen from a
mini-batch S = {Xr, Xg}, which are indicated by si and sj , when we denote the
sets of real images by Xr and generated images by Xg. The mixed sample s̃(i,j)
and its label ỹi,j are retrieved by as follows:

s̃(i,j) = λsi + (1− λ)sj , ỹ(i,j) = yiyj , (5)

where λ is a mixing scale factor randomly selected from a Beta distribution with
a = 1 and b = 1, and yi and yj are labels for si and sj , respectively. Only
when the two real images are blended, we regard the mixed image to be the
real image. Then, for each s̃(i,j) and ỹ(i,j), S̃ and Ỹ are established. The mixing
mechanism may seem similar to Mixup method [55], but the notable difference of
our work is the designing method of the augmented labels. While Mixup utilizes
the augmented labels by integrating the original labels with the scales of the
mixed samples, our feature blender considers the samples mixed with any fake
images as the perfect fake images.

Then, we train the generated image detector (C) with a softmax cross-entropy
loss, which can be represented as follows:

LC(S̃) = E(s̃,ỹ)∼(S̃,Ỹ)[CE(C̃(s), ỹ)], (6)

where the softmax cross-entropy loss between the predictions of ŷ and its as-
sociated ground-truth y is denoted by CE(ŷ, y). Also, the training datasets are
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additionally supplemented with augmentation using JPEG compression and blur
as provided in [52].

5 Experimental Results

5.1 Dataset

Through experiments, we compare the performance of each network based on
the same data. Since the training settings have a strong impact on the anal-
ysis of the generated image detector, we adopt the same training settings as
ProGAN [30] and utilize the real horse images of LSUN [54]. In contrast, the
comparing models are trained with the 20 categories of ProGAN and the 20
categories of LSUN, which were used to train ProGAN. Also, for evaluation,
we utilize the benchmark dataset [52] used for assessment of the generated im-
age detector. The benchmark dataset includes several well-known unconditional
GAN models including ProGAN [30], StyleGAN [32], and StyleGAN2 [33], and
also a conditional GAN model, such as BigGAN [4]. We also employ the image-
to-image translation models for testing, including CycleGAN [60], StarGAN [9],
and GauGAN [45]. We utilize various GANs with human faces and various ob-
jects, and the real images used to train the GANs, including CelebA-HQ [37],
CelebA [42], COCO [40], LSUN [54], and ImageNet [47].

Additionally, for evaluations, we utilize the recent GAN models that can
generate images with spectral distributions similar to the real images, as well
as state-of-the-art score-based generative models and variational autoencoders
(VAE). For training, LSUN [54] and FFHQ [32] are used. For evaluations, we
utilize the generative models in spatial and spectral domains including SSD-
GAN [7], and SpectralGAN [29]. Also, we include the most recent score-based un-
conditional GAN, DDPM [22] and its conditional model, ILVR [8], as well as the
most advanced unconditional VAE, NVAE [51], and state-of-the-art faceswap-
based model, FICGAN [25].

5.2 Evaluation Metrics

For performance comparison, we employ the accuracy and average precision [16],
which are the metrics commonly used in this field of study. To compare the gen-
eralization performance, we follow the suggestion of Wang [52] to use JPEG
compression, which is known as the most effective method to test the gener-
alization performance. Also, for the frequency-level analysis, we compare with
Frank [18], Durall [14], and Jeong [27]. To evaluate cross-category performance,
we compare with a self-supervised model [57].

5.3 Generalization Performance of Our Detector

To show the generalization ability of our detector, we perform two types of
evaluations, which include the cross-category performance and the cross-model
performance.
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Table 1: Cross-model performance with ablation study.
Model

# of class
(real/fake)

StyleGAN [32] StyleGAN2 [33] BigGAN [4] CycleGAN [60] StarGAN [9] GauGAN [45] Mean Min
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

Wang [52]

(1,1)

51.6 73.9 52.2 77.8 52.1 69.5 71.4 90.1 58.0 83.7 60.0 92.8 57.6 81.3 51.6 69.5
Durall [14] 64.1 58.6 69.3 62.9 55.4 52.9 69.6 62.8 95.4 91.5 57.5 54.0 68.6 63.8 55.4 52.9
Frank [18] 68.5 80.7 60.8 77.3 72.1 63.0 57.6 56.6 80.1 76.3 74.0 95.5 68.9 74.9 57.6 56.6
Jeong [27] 66.9 72.1 64.7 73.8 80.2 83.9 66.4 82.6 90.4 99.4 82.8 96.2 75.2 84.7 64.7 72.1

Wang [52]

(2,2)

52.8 82.8 75.7 96.6 51.6 70.5 58.6 81.5 51.2 74.3 53.6 86.6 57.3 82.1 51.2 70.5
Durall [14] 63.5 58.1 68.7 62.4 56.4 53.5 63.5 58.2 89.8 83.1 56.5 53.5 66.4 61.5 56.4 53.5
Frank [18] 70.8 83.8 61.2 75.6 74.9 76.2 74.8 76.8 91.7 97.5 89.2 98.4 77.1 84.7 61.2 75.6
Jeong [27] 71.6 74.1 77.0 81.1 82.6 80.6 86.0 86.6 93.8 80.8 69.6 90.8 80.1 82.3 69.6 74.1

Wang [52]

(4,4)

63.8 91.4 76.4 97.5 52.9 73.3 72.7 88.6 63.8 90.8 63.9 92.2 65.6 89.0 52.9 73.3
Durall [14] 63.9 58.4 69.0 62.7 58.5 54.7 69.6 63.1 99.0 98.1 57.0 53.8 69.5 65.1 57.0 53.8
Frank [18] 72.2 82.1 64.2 80.1 68.9 82.4 53.7 66.2 89.1 99.2 65.3 90.3 68.9 83.4 53.7 66.2
Jeong [27] 76.9 75.1 76.2 74.7 84.9 81.7 81.9 78.9 94.4 94.4 65.5 94.0 80.0 83.1 65.5 74.7

Wang [52]

(20,20)

71.4 96.3 67.5 93.4 60.9 83.3 83.8 94.3 84.6 93.6 79.3 98.1 74.6 93.2 60.9 83.3
Durall [14] 64.7 59.0 69.2 62.9 59.4 55.3 66.9 60.9 98.5 97.1 57.2 53.9 69.3 64.9 57.2 53.9
Frank [18] 81.8 91.7 71.4 93.0 76.0 87.8 62.8 77.3 96.9 99.4 73.9 93.1 77.1 90.4 62.8 77.3
Jeong [27] 73.0 83.9 62.7 75.9 78.1 94.8 60.5 85.6 100.0 100.0 68.7 97.4 73.8 89.6 60.5 75. 9

w Mix up

(1,0)

69.0 81.4 68.2 80.6 79.2 94.1 62.7 84.2 98.8 100.0 69.5 89.1 74.6 88.2 62.7 80.6
w/o Similar loss 71.3 81.3 76.6 87.6 76.9 89.6 59.4 95.8 99.1 99.3 65.7 96.8 74.8 91.7 59.4 81.3
w/o Rand. select. 56.4 53.2 57.9 77.3 54.2 69.6 51.9 41.5 86.4 89.6 53.1 75.9 60.0 67.9 51.9 41.5
w/o Multi. kernel 68.5 82.0 71.5 88.8 67.2 91.8 62.6 82.1 98.3 99.7 59.9 78.2 71.3 87.1 59.9 78.2
w/o Mixed batch 69.0 81.4 68.2 80.6 79.2 94.1 62.7 84.2 98.8 100.0 69.5 89.1 74.6 88.2 62.7 80.6
w/o Feat. Blender 78.6 89.7 73.5 88.7 73.9 86.3 63.0 88.8 98.9 99.8 61.7 91.4 74.9 90.8 61.7 86.3
w/o FFT 92.1 97.4 89.1 95.9 66.8 65.7 64.0 74.7 99.3 100.0 58.1 63.8 78.2 82.9 58.1 63.8
Ours 74.1 85.3 89.5 96.1 85.0 94.8 71.2 96.9 99.9 100.0 75.9 90.9 82.6 94.0 71.2 85.3

Table 2: Comparison result with self-supervised manner.

Model
Train category

Mean
Apple Horse Orange Summer Winter Zebra

AutoGAN [57] 76.1 97.4 67.7 97.2 68.1 78.6 80.9
SelfDetector [26] 78.7 95.3 78.3 90.8 80.8 97.7 86.9
Ours 96.1 95.8 88.4 95.0 91.1 96.3 93.8

Cross-model Performance.

Table 1 shows the results of the first experiment to test the cross-model per-
formance of the generated image detectors. We compare with the previous stud-
ies used for the comparison of cross-model performance: Wang [52], Frank [18],
Durall [14], and Jeong [27]. Each of them is trained using 1 to 20 categories
generated by ProGAN [30], and tested with the generated images of seven other
generative models. In contrast, our self-supervised generated image detector is
trained with real horse images only. Even with the seriously limited setting
where no generated images of GAN models are used, our generated image de-
tector achieves the highest accuracy and average precision.

To show the component-wise effectiveness of our framework, we perform the
ablation studies in the cross-model experiments. As shown in the bottom section
of Table 1, the averaged performance dramatically drops when only one of the
components is missing, which verifies the importance of the respective compo-
nent to cover the various types of generative models. For the first row of our
ablation tests (w Mixup), we use the Mixup method [55] to replace our training
loss, which supports the effectiveness of our novel training loss to recognize the
subtle artifacts and improve detection accuracy. Especially, when the random
selection module is removed, the amount of performance decline is substantial,
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Table 3: Robustness to anti-artifact GANs and SOTA models.

Model
# of class
(real/fake)

Test Models
Anti-artifact GANs State-of-the-art generative models

SSD-GAN [7] SpectralGAN [29] Mean DDPM [22] ILVR [8] NVAE [51] FICGAN [25] Mean
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

Wang [52]

(1,1)

50.3 95.3 50.0 95.6 50.2 95.5 49.3 31.8 49.3 32.0 49.7 33.3 49.3 32.6 49.4 32.4
Durall [14] 53.1 51.7 73.2 68.0 63.2 59.9 49.9 49.9 55.6 53.0 56.1 53.2 54.7 52.4 54.1 52.1
Frank [18] 96.2 99.6 96.2 99.7 96.2 99.7 68.7 82.6 70.8 84.3 78.0 89.2 76.9 88.9 73.6 86.3
Jeong [27] 89.5 95.0 89.0 89.4 89.3 92.2 78.7 86.5 79.8 87.8 81.2 86.4 89.4 96.2 82.3 89.2

Wang [52]

(20,20)

75.8 84.6 87.9 89.5 81.9 87.1 68.4 79.2 75.8 84.6 71.0 80.9 76.6 86.5 73.0 82.8
Durall [14] 68.7 62.4 44.5 48.3 56.6 55.4 57.5 54.1 57.6 54.1 57.7 54.2 57.0 53.7 57.5 54.0
Frank [18] 96.2 100.0 96.4 100.0 96.3 100.0 88.4 93.2 86.5 93.6 92.4 96.2 82.7 92.2 87.5 93.8
Jeong [27] 84.2 99.9 84.2 99.5 84.2 99.7 83.5 93.4 83.0 92.4 82.0 91.5 83.6 94.1 83.0 92.9

Ours (1,0) 96.4 99.2 98.5 99.9 97.5 99.6 78.7 92.3 84.0 95.4 91.4 97.1 92.6 98.5 86.7 95.8

which indicates the importance of considering the various numbers of upsam-
pling operations to obtain diverse fingerprints. Based on the discovery, we can
conclude that it is necessary to diversify the number of upsampling operations
for diversity in generated fingerprints.

Cross-category Performance. We conduct a cross-category experiment to
compare accuracy in the same test settings as [57]. Using the generated im-
ages of the same GAN model, we train the generated image detectors with only
one object category and test with the entire object categories to evaluate the
generalization performance. Table 2 shows the test results using the 6 classes
(apple, horse, orange, summer, winter, and zebra) of the generated image de-
tectors trained with each category of CycleGAN [60]. Compared to the existing
model trained in a self-supervised manner [26, 57], our model shows superior
performance in generalized detection.

5.4 Generalization for Recent Generative Models

According to [7,29], the spectral distributions of images are known to vary by the
last de-convolution layer, and it can decline the performance of generated image
detectors. Based on that, we assess the model’s robustness on the synthesized
images of anti-artifact generative methods to reduce the spectral discrepancies.
For training of each generative model, the real horse images of LSUN [54] are
utilized, as in Sec. 5.3. The left section of Table 3 shows the performance of each
detector when evaluated with the generated images of the anti-artifact models.
Our model and Frank [18] show the most superior performance compared to
others. Jeong [27] shows declined performance due to its high-pass filter, since
the high-frequency components are modified in the generated images of the anti-
artifact models. Also, Durall [14] also suffers from declined performance due to
the reduced spectral discrepancies in frequency distributions of images.

Technological advancement in generative models has not only affected GANs
but also the score-based diffusion probabilistic models and variational autoen-
coders. Thus, we additionally evaluate the performance of state-of-the-art gener-
ative methods, including DDPM [22], ILVR [8], NVAE [51], and FICGAN [25].



FingerprintNet: Synthesized Fingerprints for Generated Image Detection 13

Table 4: Color manipulation performance.

Model
Original Hue Brightness Saturation Gamma Contrast Mean
Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P. Acc. A.P.

Wang [52] 99.9 100.0 73.9 81.3 61.8 74.7 74.3 84.4 70.2 83.2 66.6 79.7 74.5 83.9
Frank [18] 95.2 96.5 85.5 97.2 84.2 97.2 91.2 98.0 85.4 97.4 84.3 96.7 87.6 97.2
Durall [14] 86.2 93.4 86.2 81.9 85.9 81.9 86.2 81.9 85.1 80.8 85.2 81.2 85.8 83.5
Jeong [27] 97.0 98.1 92.0 97.8 92.0 97.9 91.9 96.7 91.7 96.8 92.4 98.1 92.8 97.6
Ours 97.4 99.8 97.1 99.8 89.4 96.6 94.1 99.2 96.9 99.9 89.6 97.7 94.1 98.8

DDPM is the most well-known diffusion probabilistic model, and ILVR is a
conditioning method for DDPM. Also, NVAE is the most recent unconditional
variational autoencoder for high fidelity synthesized images, while FICGAN is a
face-swapping method for high-quality deepfake images. The right section of the
Table 3 shows the performance of each model evaluated with the images gen-
erated by state-of-the-art generative models. Our detector achieves stable per-
formance even with the face-swap model, FICGAN. Since other models trained
in a supervised manner focus on the distributions of GAN training, they suffer
from a decline in performance when tested with non-GAN generative models
with different distributions, such as DDPM and VAE.

5.5 Color manipulation performance

We conduct an experiment to evaluate the detector’s robustness on color manip-
ulated images, using the same settings of the color manipulation experiments of
Jeong [27]. First, we resize the images from 1024×1024 to 256×256, then modify
colors for assessment. Manipulations in hue, brightness, saturation, gamma, and
contrast modify the overall distribution of images to make challenging conditions
for detectors to work [27]. The hue factor is the amount of shift in the hue chan-
nel by 0.2, while brightness, saturation, gamma, and contrast are adjusted by
1.3, respectively. Table 4 indicates the variance in detecting performance when
images are manipulated and the characteristics of the artifacts have changed. For
a fair comparison, we apply the supervised learning to train the detector based
on ProGAN [30] face and FFHQ [32] as in [27], and do not apply the center crop.
The experimental results validate that the frequency-based methods [14, 18, 27]
including ours are more robust to color manipulations compared to image-based
method [52].

5.6 Visualization

Fig. 3 shows the resemblance between the reconstructed average 2D spectra by
adjusting the level of the upsampling process and those generated by the actual
GAN models. By adjusting the level of downsampling in autoencoders, we can
observe the close resemblance among the reconstructed patterns generated by
each GAN model in FFT. Also, we can confirm that the transposed convolution-
based GANs, including StyleGAN, StyleGAN2, CycleGAN, and StarGAN, gen-
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Fingerprints

ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake

Fingerprints

Real image

for

GAN training

Original

Synthesized

Fig. 3: The averaged spectra of the real images, images from GAN
models, and images from fingerprint generator. The first row shows the
averaged spectra of the real images used for training the GAN models, while the
middle row shows those of the generated images from the GAN models. The last
row shows the averaged spectra where we can obtain the highest resemblance
between the spectra of the generated images and the synthesized fingerprints.

erate more distinct fingerprints, which are close to the spectrum of the recon-
structed data with a high level of upsampling. From the visualization, we can
confirm that the fingerprints from our fingerprint generator can be effective for
the training of the generated image detector. We provide every visualization
result in Appendix B.

6 Conclusion

We propose a novel framework composed of a fingerprint generator and a gen-
erated image detector for robust generalization. First, we analyze the diverse
types of fingerprints in generated images and develop a fingerprint generator,
which can synthesize and insert the fingerprints on real images for high-quality
training data. Based on the analysis, we newly introduce a training method us-
ing real images only for generalized detection and validate its efficacy through
robust performance of our model. Surpassing others trained in a supervised man-
ner, our model achieves impressive performance in zero-shot learning, even when
tested with unseen categories and GAN models. Also, we include the most recent
anti-artifact generative models for evaluation and verify our model’s consistent
performance. We hope that the suggested framework can be enhanced in the fu-
ture to manage the unexpected developments of new generative models by using
the extra modules to address the additional properties of their fingerprints.
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