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Abstract. The widespread of generative models have called into ques-
tion the authenticity of many things on the web. In this situation, the
task of image forensics is urgent. The existing methods examine gener-
ated images and claim a forgery by detecting visual artifacts or invisible
patterns, resulting in generalization issues. We observed that the noise
pattern of real images exhibits similar characteristics in the frequency
domain, while the generated images are far different. Therefore, we can
perform image authentication by checking whether an image follows the
patterns of authentic images. The experiments show that a simple clas-
sifier using noise patterns can easily detect a wide range of generative
models, including GAN and flow-based models. Our method achieves
state-of-the-art performance on both low- and high-resolution images
from a wide range of generative models and shows superior generalization
ability to unseen models. The code is available at https://github.com/
Tangsenghenshou/Detecting-Generated-Images-by-Real-Images.

Keywords: Image forensics, forgery detection, image noise, frequency
domain analysis, GAN, generated images

1 Introduction

Can you find out the fake images in Fig. 1? The answer is that all the images are
fake. The popularity of deep neural networks has driven the rapid development of
synthesis technology. Various mind-boggling technologies have entered our lives,
from image editing to composite scenes, from face attribute tampering to face-
swapping. For example, in the GPU technology conference hosted by Jen-Hsun
Huang at NVIDIA in 2021, the video and Jen-Hsun Huang himself were syn-
thesized, successfully fooling most people and bringing the image forgery to the
limelight. Meanwhile, the concerns about image synthesis technology are grow-
ing as making global tampering becomes very easy. In particular, impressive
progress has been made on generative models such as Generative Adversarial
Networks(GAN) [1] and its variants. Examples include conditional GANs such
as CycleGAN [2] based on unpaired data, StarGAN [3] that uses a generator and
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Fig. 1. Which pictures are real and which are fake?

a discriminator to learn mappings between multiple domains, and GauGAN [4]
that uses spatially adaptive normalization; unconditional GANs such as Big-
GAN [5] based on orthogonal regularization, ProGAN [6] using feature vector
normalization of pixels, and StyleGAN [7] using nonlinear mapping networks
and an improved version of StyleGAN2 [8]. The other generative models, such
as HiSD [9] based on hierarchical style decoupling, and the flow model Glow [10]
based on reversible 1 × 1 convolution, can also produce high-quality generated
images. Currently, many generated images can deceive the human eyes. There-
fore it is urgent to pay more attention to image forensics. This paper proposed
a detection method to expose globally tampered images yielded by generative
models.

Generated image detection methods can be divided into two main categories:
artifacts detection and data-driven approaches. The former detects artifacts in
the spatial domain in generated images left by the upsampling components of
networks or the periodical signals in the frequency domain. They are effective
for most of the generated images in low quality by checking the traces generated
by conditional GANs during upsampling. However, they become ineffective to
unconditional GANs with high image quality. The data-driven approaches learn
a large number of real and fake images, making the classifier learn the common
features in GAN-generated images. However, the classifier is susceptible to un-
seen models and therefore does not generalize well as it is impossible to learn the
common features shared by all generative models. A generic data-driven-based
approach is introduced by Wang et al. [11]. However, such methods pay atten-
tion to the characteristics of generated images, resulting in generalization issues.
We perform forgery detection from the perspective of real images. Specifically,
we learn the shared properties of real images so that the detection network can
work across various generative models, even with unseen models.

In this paper, we rethink the relationship between real and generated images.
Analysis shows that real images possess spatial and frequency domain features
not presented in generated images. This discrepancy can be observed in the
representations of the image noise under the high-dimensional spatial mapping
of the neural network, which we call the Learned Noise Patterns (LNP). We used
a network to classify real and generated images with the help of LNP. Using LNP
can effectively suppress the high-frequency information of images and reduce the
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influence of image semantics on classification. In order to make full use of the
information in the LNP, we utilized the amplitude and phase spectrum of images
along with the LNP so that the network uses the spatial and frequency domain
features.

To sum up, this paper proposes a method to detect generated images. The
main contributions of this paper can be summarised as follows:

• Our frequency domain analysis of the noise patterns of real images reveals
its consistency in real images, while the generated images are far different.

• We discriminate the generated images by their inconsistent noise patterns
to real images rather than detecting the artifacts or patterns of generated images.

• The proposed detection method achieves the SOTA performance in publicly
available datasets and shows superior generalization ability to unseen models.

2 Related Work

Existing methods for detecting generated images can be classified into image
artifacts detection and data-driven approaches. For those focus image artifacts,
Dang et al. [12] found that the spatial information of the tampered region is im-
portant, and the tampered region is located by estimating the attention map of a
particular image. Liu et al. [13] proposed GramNet, proving that CNNs consider
texture as an important factor while finding that the texture statistics of real and
false images differ significantly. Zhao et al. [14] used the attention mechanism to
improve detection performance by extracting texture information at shallow and
locating forgery at deep levels. Zhang et al. [15] introduce a generator that sim-
ulates sampling artifacts on several common GANs and demonstrates superior
performance in the frequency domain by learning to classify sampling artifacts
on GANs in both the spatial and frequency domains. It is argued in [16] that
local information is easier to extract helpful information than global informa-
tion. Frank et al. [17] demonstrate that upsampling operations in the pipeline
cause artifacts in GAN-generated images, and the detection is performed using
the DCT transform. Durall et al. [18] show that commonly used up-sampling
operations (deconvolution or transposed convolution) make such models fail to
reproduce the spectral distribution of the training data correctly.

For data-driven methods, Wang et al. [11] directly trained ResNet50 as the
classifier with a large number of real images and ProGAN-generated images,
which can be well generalized to the detection of different generative models
using global information. On this basis, Gragnaniello et al. [19] used the modified
ResNet50 network with two fewer down-sampling layers to improve the detection
performance but significantly increase the training time.

Image noise is widely utilized in local tampering and source device iden-
tification. Each device will have its specific fingerprints left on the shooting
process, which is also caused by imperfections in the manufacturing process of
the device, and this pattern is called the PRNU noise pattern. Therefore, the
equipment identification can be performed based on these fingerprints, e.g. [20].
Based on the specific properties of PRNU, Davide et al. [21] introduce a method
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Fig. 2. (a) row represents the real and generated images, and (b) row represents their
LNP. The first, third and fifth columns are real images. The second, fourth and sixth
columns are images generated by StarGAN, StyleGAN and StyleGAN2, respectively.
The red box indicates that the generated images show the grid effect.

that learns the camera noise by denoising the network for local forgery detection.
Ghosh et al. [22] extract noise fingerprints to identify real patches and forged
patches for local tampering detection.

However, the previous approaches, whether detecting artifacts or by data-
driven, look for fingerprints left by generative models, resulting in lower versatil-
ity. Instead, we focus on learning the common properties of real images to avoid
generalization issues.

3 Method

3.1 Learned Noise Patterns (LNP)

Although the generated images from early GAN models are easy to detect, with
the development of unconditional GAN such as StyleGAN and stylegan2, the
current GAN-generated images have become more and more realistic. As shown
in Fig. 2(a), we can hardly distinguish between StyleGAN (column 4), Style-
GAN2 (column 6), and the real images (columns 3 and 5) with naked eyes. It
is necessary to extract the discriminative features of the images to amplify their
differences.

In the imaging process, a camera converts photons into electrons, and then
the signal goes through components such as digital-to-analog converters. As
the photons enter a camera, the incident light intensity at various places in a
real image will show no regularity. Therefore, the pixel values do not change
periodically for most real images.

In the pipeline of GANs for generating images, papers such as [15] have in-
troduced the artifacts in the generated images due to up-sampling operations.
However, in unconditional GANs with high generation quality, the artifacts are
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Fig. 3. The structure of the image verification network. ©indicates concatenation.

not apparent in the spatial domain. Moreover, a large amount of semantic infor-
mation in the spatial domain interferes with the classifier’s performance. Exist-
ing methods directly use images for classification. Although good results can be
achieved after extensive training, their generalization performance has room to
improve. For example, for the popular generative models, detection results are
not satisfied (Table 3). It is because the classifier focuses too much on artifacts in
fake images, but different generative models produce different artifacts. In order
to discriminate generated images from real images, we should find a feature or
a pattern shared only by real images.

The exclusive pattern of real images can be extracted in image noise space,
and neural networks can learn this pattern. For real images, the smooth regions
show different patterns depending on the light intensity, as in column 1, column
3, and column 5 in Fig. 2(b). However, in the images generated by the GANs,
the smooth regions exhibit checkerboard patterns, exhibiting periodicity, as in
columns 2, 4, and 6 in Fig. 2(b).

Our goal is to find common properties in real images, so we do not need
semantic information of images. A denoising network takes a set of noisy images
and outputs a set of clean images after denoising. Therefore, the denoising net-
work can maintain detailed information such as the edge texture of the original
image. Then we can use the original image minus the denoised image to obtain
the noise pattern without semantic interference, and we name it Learned Noise
Patterns (LNP). The denoising network can be described as

Dst = F (Src(x, y)), (1)
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Fig. 4. The structure of the RRG module.

where Src(x, y) denotes the input noisy image, and F (·) denotes the denoising
network, and Dst denotes the final clean image. We use the result of Src(x, y)−
Dst as LNP.

The early denoising networks, such as DNCNN, add Gaussian white noise
(AWGN) to images to form training data. It is superficial and very different
from the real world since there are not just AWGNs in real images. To simulate
the real-world scene, [23] uses an RGB image to construct its RAW image,
adding noise to the RAW image and then converting the RAW image to an
RGB image to simulate the process of a real camera shot. To extract more real
noise patterns, we used CycleISP [23] denoising network (LNP extraction block
in Fig. 3) which was trained on real image dataset and synthetic dataset. We
can then use this denoising network to extract LNP from images. For an image
Iin(x, y), 1 ≤ x ≤ M, 1 ≤ y ≤ N, where M and N are the size of that image, it
will be processed as

M0 = K3(Iin(x, y)), (2)

where K3 denotes a 3 × 3 convolution, and M0 contains multiple feature maps
with low-level features. Then, we used the Recursive Residual Group module
(RRG) (Fig. 4) to further process the features. The RRG module is composed
of two Dual Attention Blocks (DABs). Each DAB calibrates the features by two
types of channel attention and spatial attention. This process can be expressed
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Fig. 5. The amplitude spectrum is plotted by averaging all the original or generated
images for each GAN model from the dataset provided in [11]. The top indicates the
average amplitude spectrum of LNP of the real images in their dataset, and the bottom
shows the average amplitude spectrum of the LNP of the generated images from each
model. The red arrows indicate peaks.

as

M1 = RRG(RRG(RRG(RRG(M0)))). (3)

Finally, the three-channel feature mapM2 can be obtained byM2 = K3(M1).
The extracted LNP is ILNP = −M2.

3.2 LNP Amplitude Spectrum

The LNP characteristics of real images are not fully shown in the spatial domain.
For a better exploration of the LNP, we analyzed its amplitude spectrum. For
an image of M × N size, its two-dimensional discrete Fourier transform can be
described as

F(u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y)e−i2πux/Me−i2πvy/N . (4)

where F (u, v) denotes the frequency component at frequency domain (u, v) and
f(x, y) is the gray value at point (x, y) in the spatial domain of a channel of the
input image. The high frequency corresponds to the part of the image where the
pixel value changes drastically. And the low frequency corresponds to the flat
area of the image. The amplitude spectrum A in the frequency domain can be
expressed as

A(u, v) =
√
R2(u, v) + I2(u, v). (5)

where R(u, v) and I(u, v) denote the real and imaginary parts of F (x, y), respec-
tively.

Fig. 5 shows the averaged amplitude spectrum of LNP of all images from each
generative model, including the generated and real images provided by [11]. For
GauGAN [4], BigGAN [5], ProGAN [6], the networks use the nearest neighbor
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Fig. 6. Multiple classifications with SVM to discern original images, CycleGAN [2],
StarGAN [3], GauGAN [4], BigGAN [5], ProGAN [6], StyleGAN [7] and StyleGAN2 [8],
where the test sets include 500 images. The horizontal coordinate of plot (a) indicates
the number of training images, and the vertical coordinates indicate the test accuracy.
(b) represents the PR curves for 500 images in each training set.

Table 1. Accuracy in the CycleGAN and StarGAN datasets using OC-SVM in the
amplitude spectrum of the original images compared to the LNP amplitude spectrum.

Dataset CycleGAN [2] StarGAN [3]

Method Ori amp LNP amp Gain Ori amp LNP amp Gain

Accuracy 47.80% 73.80% +26.0% 49.90% 98.80% +48.90%

interpolation for upsampling with a period of 4. In contrast, StyleGAN [7] and
StyleGAN2 [8] use bilinear interpolation for up-sampling, and we can see that
the periodicity on the amplitude spectrum of their LNP is 8. For CycleGAN [2],
upsampling is performed using deconvolution, and the LNP amplitude spectrum
has strong vibrations with a period of 4. Glow [10] uses linear interpolation,
and its LNP amplitude spectral period is also 4. Since the generated image
has a prominent periodicity, the original image can easily be distinguished for
lacking grid artifacts. For real images, their LNP are very similar in the frequency
domain. Therefore, we can distinguish generated images by learning the special
properties of real images.

To demonstrate the discriminative ability of LNP, we used eight datasets of
real images, CycleGAN [2], StarGAN [3], GauGAN [4], BigGAN [5], ProGAN [6],
StyleGAN [7] and StyleGAN2 [8] for multi-classification. Fig. 6(a) shows that
LNP has better classification results than using the original images, and using
the amplitude spectrum of LNP has a great improvement compared to using the
original images. Fig. 6(b) shows better performance in PR curves.

To demonstrate the superiority of using LNP compared to the original im-
ages, we trained one-class SVM (OC-SVM) by the amplitude spectrum of the
real images only. Table 1 shows that our method achieves good performance on
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Fig. 7. The phase spectrum is plotted by averaging all the original and generated
images for each GAN model from the dataset provided in [11]. The top indicates the
average phase spectrum of LNP of the real images in their dataset, and the bottom
shows the average phase spectrum of the LNP of the generated images in the dataset
for the model. The red arrows indicate peaks.

the one-class classification task that only learns the amplitude spectrum features
from real images. More experimental details are in subsection 4.3.

3.3 LNP Phase Spectrum

The phase spectrum can be described as

ϕ(u, v) = arctan[
I(u, v)

R(u, v)
]. (6)

The frequency spectrum does not contain all the information in the frequency
domain. Take the basic sine wave for example, the different phases determine
the position of the wave. In addition to the frequency spectrum (amplitude spec-
trum), we also included the phase spectrum. Neural networks are more concerned
with pixel information and will learn more information about the amplitude
spectrum but lack the ability to learn structural information directly [24]. The
phase spectrum contains more structural information in the image. Thus, we
can fully use the image information by using the phase spectrum. As in Fig. 7,
we can find that the LNP of real images in the phase spectrum is similar to the
amplitude spectrum. Both have similar characteristics. The dataset used for the
real images of the Glow model is Celeba-HQ, which used post-processing such
as face alignment and cropping on the Celeba dataset. Therefore, the LNP of its
real image is slightly different from the rest of the images. In general, The phase
spectrum of the LNP exhibits a grid effect and is therefore also periodic as well.
We have verified in Fig. 6 that the LNP phase spectrum is easier to extract use-
ful information than the original image phase spectrum. The accuracy of using
the LNP phase spectrum and PR curve is better than using the original image
phase spectrum.
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Table 2. The specifications of test datasets.

Generative Model Type Generative Model Source Nums

Conditional Model

StarGAN [3] CelebA 4k

CycleGAN [2] Style/object transfer 2.6k

GauGAN [4] COCO 10k

HiSD [9] ClelebA 4k

Unconditional Model

BigGAN [5] ImageNet 8k

ProGAN [6] LSUN 8k

Glow [10] CelebA-HQ 2k

StyleGAN [7](LR) LSUN 12k

StyleGAN [7](HR) FFHQ 5k

StyleGAN2 [8](LR) LSUN 16k

StyleGAN2 [8](HR) FFHQ 2k

3.4 LNP Network

The above analysis shows that LNP has a good discriminative ability. Compared
to solely using real images for training, the amplitude spectrum information
can improve the classification performance of the network, and the phase spec-
trum provides more contour information in the frequency domain. Therefore, we
started from the perspective of real images and found the commonality that real
images have. We built the network architecture in Fig. 3 by making the LNP
blend with its amplitude spectrum and phase spectrum.

4 Experiments

4.1 Datasets

We used 20 classes of images provided in [11], which contain 362K real images
with 362K images generated by ProGAN [6] as the training set, 4k images gen-
erated by ProGAN [6] with 4k real images as the validation set. For a fair com-
parison, we evaluated the publicly available dataset in [11], the GAN-generated
image dataset, and the face dataset. These include conditional generative models
(StarGAN [3], CycleGAN [2], GauGAN [4]), and unconditional generative mod-
els (BigGAN [5], ProGAN [6], StyleGAN [7], StyleGAN2 [8]). In order to fully
validate the effectiveness of our method, we added non-GAN generative models
to our test set: HiSD [9] and Glow [10]. The details of each generative model
are shown in Table 2. The StyleGAN [7], StyleGAN2 [8] dataset contains low
resolution (LR) images (256×256 resolution) and high resolution (HR) images
(1024×1024 resolution), where the HR images are selected from the FFHQ face
dataset. The real images for the Glow [10] model were selected from the Celeba-
HQ dataset. For the HiSD [9] model we used the officially published pre-trained
model without any post-processing.

http://www.grip.unina.it/download/DoGANs/.
http://www.seeprettyface.com/information.html.
https://github.com/imlixinyang/HiSD.
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Table 3. The comparison of the accuracy with the state-of-the-art methods. We used
only ProGAN on both the training and validation sets.

Method

LR HR

AVGCycle Star Gau Big Pro
HiSD Glow

Style Style Style Style
GAN GAN GAN GAN GAN GAN GAN2 GAN GAN2

AutoGAN-Spec(19’) 75.3 81.2 73.4 74.9 76.9 69.3 49.5 59.7 53.3 84.9 84.2 71.2

DCT-CNN(20’) 67.8 49.7 51.7 42.6 57.4 56.0 47.6 60.1 55.9 53.2 52.1 54.0

Wang(20’) 83.9 90.9 77.0 75.7 99.9 80.2 27.0 91.6 90.9 89.8 88.5 81.4

Gragnaniello(21’) 71.9 100 56.5 68.9 100 98.4 40.9 88.7 98.9 95.6 96.6 83.3

Ours 91.6 100 79.7 88.1 99.1 95.9 80.0 96.0 92.3 99.1 98.8 92.8

Table 4. The comparison of AP with the state-of-the-art methods.

Method

LR HR

AVGCycle Star Gau Big Pro
HiSD Glow

Style Style Style Style
GAN GAN GAN GAN GAN GAN GAN2 GAN GAN2

AutoGAN-Spec(19’) 83.3 81.4 78.7 71.6 85.9 73.6 40.1 60.7 55.1 92.4 91.5 74.0

DCT-CNN(20’) 50.5 38.8 48.3 42.6 47.3 31.6 53.6 43.0 42.5 55.4 39.9 44.9

Wang(20’) 91.5 98.1 79.1 77.3 100 89.8 33.2 98.5 99.1 96.2 99.6 87.5

Gragnaniello(21’) 79.1 100 60.0 67.4 100 100 33.7 98.9 100 99.9 99.9 85.4

Ours 98.1 100 83.3 95.2 100 100 68.6 99.6 98.9 100 99.5 94.8

4.2 Setup

In our experiments, ResNet50 pre-trained in ImageNet was used. Training was
performed using the Adam training optimizer with β1 = 0.9 and β2 = 0.999 with
a batch size of 256 and an initial learning rate of 1e-4. It is worth noting that
if the validation set accuracy does not rise within five epochs, the learning rate
decays by a factor of ten, with a minimum learning rate of 1e-6. The validation
set was indirectly involved in the training, so only ProGAN [6] was used for the
validation set. Our model did not see images from other generative models during
the training period except for ProGAN. All training processes were implemented
on an NVIDIA Tesla V100 (32G) GPU.

4.3 Comparisons

We utilized OC-SVM to discriminate generated images using the amplitude spec-
trum of original images and the LNP amplitude spectrum (Table 1). We used
1000 real images from the StarGAN dataset as the training set, while 1000 fake
images and 1000 real images as the test set. In the CycleGAN dataset, 500 real
images were used as the training set, and 500 fake and 500 real images were used
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Table 5. The comparison of F1-Score with the state-of-the-art methods.

Method

LR HR

AVGCycle Star Gau Big Pro
HiSD Glow

Style Style Style Style
GAN GAN GAN GAN GAN GAN GAN2 GAN GAN2

AutoGAN-Spec(19’) 0.750 0.815 0.733 0.752 0.763 0.694 0.326 0.598 0.492 0.848 0.850 0.693

DCT-CNN(20’) 0.708 0.660 0.606 0.553 0.606 0.689 0.542 0.644 0.617 0.180 0.173 0.544

Wang(20’) 0.830 0.905 0.758 0.762 0.999 0.814 0.412 0.922 0.911 0.889 0.869 0.825

Gragnaniello(21’) 0.623 1.0 0.561 0.574 1.0 0.981 0.147 0.897 0.987 0.954 0.965 0.790

Ours 0.914 1.0 0.765 0.877 0.991 0.961 0.795 0.961 0.928 0.991 0.988 0.925

as the test set. The experimental results show that our method can extract more
useful information than the original images. Moreover, our method can effec-
tively distinguish real images from fake images based on the common attributes
of real images.

We compared our method with three state-of-the-art deep learning methods
for generated image detection: Zhang et al. [15], Frank et al. [17], Wang et al. [11],
and Gragnaniello et al. [19]. Table 3, Table 4 and Table 5 report the accuracy,
AP and F1 values with the threshold of 0. For the others methods, we chose
the best result in three experiments. [19] removed two down-sampling layers in
ResNet50, so the training and testing time is ten times larger than our method.
Our method achieves excellent performance on LR images and good generaliza-
tion performance. Our experiments show that we have good performance not
only on the GAN-generated images but also on other generative models, such
as the flow-based models (Glow [10]). Our average accuracy across all models is
over 90%. In the HR test set, we used real images different from the LR ones
to avoid reusing data. On HR images, an average accuracy of over 98% was
achieved, with an increase of around 10% compared to the rest of the methods.

4.4 Ablation Study

LNP Extraction Block In order to provide a more suitable LNP Extraction
Block, five different models were compared, including CycleISP [23], DNCNN [25],
CBDNet [26], DeamNet [27] and InvDN [28]. We compared the accuracy of the
five models on the test set, trained in line with section 4.3. The results are
shown in Table 6. We found that the information extracted by CycleISP is more
favorable and can significantly improve the experimental results.

Feature Fusion Block To evaluate the necessity of the individual components
of our model, we used accuracy and mAP on both LR images and HR images.
Detection results are presented in Table 7. We first evaluated the performance
of using the LNP alone, which performs well. We then used the amplitude spec-
trum for single and three channels and the phase spectrum for single and three
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Table 6. The performance of different denoising network in the LNP Extraction Block.

Method
LR HR

ACC mAP F1 ACC mAP F1

DNCNN [25] 78.2 90.3 82.7 75.9 87.2 0.808

CBDNet [26] 80.5 85.4 80.8 93.3 97.3 0.927

DeamNet [27] 81.2 88.7 84.8 91.5 98.3 0.926

InvDNInvDN [28] 76.6 83.7 81.2 54.6 74.8 0.682

CycleISP [23] 91.4 93.7 91.0 98.9 99.7 0.989

Table 7. The ablation study of the Feature Fusion Block.

LNP
Amp

(1 channel)

Amp

(3 channels)

Phase

(1 channel)

Phase

(3 channels)

LR HR

ACC mAP ACC mAP

✓ 87.2 92.9 97.6 99.7

✓ ✓ 84.3 91.8 89.8 99.4

✓ ✓ 88.1 93.3 97.8 99.7

✓ ✓ 85.3 91.8 97.3 99.7

✓ ✓ 89.3 92.2 95.9 99.2

✓ ✓ ✓ 84.6 90.1 76.4 94.7

✓ ✓ ✓ 92.8 94.8 98.9 99.7

channels for the input to the classification network. The experimental results
show an improvement in the results using LNP and three-channel amplitude
spectra and LNP and three-channel phase spectra. Using LNP, three-channel
amplitude spectrum, three-channel phase spectrum combining the results into
nine channels has a significant degradation. This is because the number of chan-
nels in the network does not change in ResNet50, but the proportion of LNP is
reduced. Using the LNP, single-channel amplitude spectrum, and single-channel
phase spectrum combined into a 5-channel feature ensures the dominance of the
LNP. It allows the network to learn useful information about the amplitude and
phase information.

Classification Backbone To verify the effectiveness of the different classifi-
cation networks, we conducted experiments using VGG16, VGG19, ResNet18,
ResNet34, and ResNet50. Fig. 8 shows our results. The VGG model has more
parameters than the ResNet model and therefore is more accurate on LR im-
ages than ResNet18 and ResNet34. Since the VGG model has a fully connected
layer, we cropped to 2242 on HR images. As the number of layers on the network
deepens, the results are optimal on ResNet50.

4.5 Robustness

In real-world scenes, images are subjected to various post-processing processes,
such as blurring and cropping. We test our method against post-processing, in-
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Fig. 8. The performance of different backbones in LR and HR.

Fig. 9. The robustness of our model compared to Wang(CVPR20’) [11].

cluding Gaussian blurring (sigma: 0.1∼1), JPEG quality factors (70∼100), image
cropping, and resizing (cropping/scaling factor: 0.25∼1). We randomly selected
1000 images in each generative model dataset for robustness experiments. Fig-
ure 9 shows the robustness results of our comparison with [11]. Our model is
better when blurring, cropping, and resizing. However, the results are lower in
the JEPG compression case. The JPEG scheme generates multiple peaks in the
frequency domain, similar to the periodicity in generated images. Therefore our
method does not work well in the JPEG case. In the following work, we will
solve this problem.

5 Conclusions

In this paper, we detect generated images using LNP of real images. We demon-
strated that the LNP of real images are very similar in amplitude and phase
spectrum, while the LNP of generated images is far different. Experimental re-
sults show that the method outperforms existing methods in image authentica-
tion. The superior generalization ability of the proposed method allows use in
realistic scenes, even with future unseen models.
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