
Supplementary Material

Totems: Physical Objects for Verifying Visual Integrity

In this document, we first discuss additional implementation details regarding
ray refraction operations and training of the radiance field (Section A). We
conduct additional experiments investigating the number and configuration of
totems, and show results on more scenes in Section B. We address different
modes of image manipulation and provide a brief FAQ in Section C.

A Additional method details

A.1 Pixel-to-ray mapping

Overview. Recall that the first step of our method is to infer the underlying 3D
scene using the refracted rays corresponding to the distorted totem pixels. For
a given image I and a set of spherical totems J indexed j = {1 . . . |J |}, with
center positions Pj relative to the camera, radii Rj , and IoR nj , we compute the
mapping from a totem pixel in the image Iu,v to the scene light ray corresponding
to refraction through the totem rout = oout+dout∗t. We decompose this mapping
procedure into two steps:

1. Begin with a ray rin = oin + din ∗ t corresponding to pixel Iu,v. Compute
the first intersection D with totem j and the direction dref1 of the refracted
ray entering the totem.

2. Take the intermediate ray rmid = omid + dmid ∗ t, where omid = D and
dmid = dref1 . Compute the second intersection E with totem j and the
direction dref2 of the refracted ray exiting the totem.

In Sec. 4.1 in the main text, we use a general intersect function to compute
the ray-totem intersections D and E and a general refract function to compute
the refracted ray directions dref1 and dref2 . Below we provide the formula and
implementation details for these two functions.

Define intersect. Given a ray r = o+d∗ t and a sphere with radius R and center
position P , the intersect function first confirms the validity of the ray-sphere
intersection, then computes the two intersection positions and returns the one
closest to the ray origin o and in the ray direction d. Since an intersection X
must satisfy both the sphere equation ∥X − P∥22 = R2 and the ray equation
X = o+d∗ t, we formulate the intersect function as the optimization below:

intersect(P,R,d,o) := o+ d ∗
(
argmin

t

∣∣R2 − ∥o+ d ∗ t− P∥22
∣∣) (1)

To solve for t, we set the inner optimization term to 0 and use a quadratic
solver quad (a, b, c) with input arguments a = ∥d∥22, b = 2⟨o−P,d⟩, c = ∥o−P∥22.



2 J. Ma et al.

Before this step, we confirm that the input ray has valid intersections with the
sphere by checking if the discriminant term in the quadratic solution is positive.

Define refract. The function refract computes the refracted direction dref of an
incident ray din. Given the unit surface normal N at the ray-medium intersec-
tion, IoR of the incident medium n1 and the refractive medium n2, we derive an
analytical solution using the Snell’s law:

refract(n1, n2,N,din) :=
n1

n2
(N× (−N× din))−N

√
1− n1

2

n2
2
∥N× din∥22 (2)

A.2 Totem pose
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Fig. 1: 2D visualization of the intersection between the spherical totem j and
tangent rays rk = O + dk ∗ t corresponding to the boundary pixels of totem
mask Mj . This intersection forms a circle in 3D space with radius Tj and center
C. We use this circle to obtain an initial estimate of the totem center Pj and also
use its 2D projection on the image plane to regularize the totem position during
joint optimization by enforcing consistency with the provided totem mask Mj .

Totem pose initialization. To obtain an initial estimate of the totem positions,
we use an optimization procedure to fit the boundary of the mask pixels Mj to
a circle that corresponds to the intersection between the spherical totem j and
the tangent cone formed by the boundary rays (Figure 1).

First, assuming the camera center O is at the origin, we express the rays
corresponding to the boundary pixels of a totem mask Mj as rk = dk ∗ t and
normalize dk to have unit length. When projected into 3D space, these K rays
form a tangent cone with the totem, and we estimate the cone axis by averaging
the unit-length boundary vectors:

dc =
1

K

∑
k

dk. (3)

We then normalize dc to unit length and solve for the angle between dk and dc:

θk = arccos(dk · dc). (4)
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With known totem radius Rj and given that the tangent ray rk is perpen-

dicular to
−−−→
PjAk, where Ak is the point of tangency, we solve for the comple-

mentary angle ϕk = π
2 − θk and estimate the radius of the circular intersection

Tj = 1
K

∑
k Rj sin(ϕk). Next, we solve for the slant height test of the tangent

cone by minimizing the objective function:

test = argmin
t

∣∣∣∣ 1K ∑
k

||dk ∗ t− C|| − Tj

∣∣∣∣, (5)

where C is the cone base center expressed as C = 1
K

∑
k dk ∗ t. Intuitively, the

boundary rays of a totem mask Mj defines a cone with a fixed opening angle and
we optimize the slant height test for this cone such that the cone radius matches
the previously solved radius Tj . Using the estimated test, we then compute the
estimated totem center Pj step by step:

C =
1

K

∑
k

dk ∗ test (6)

|
−−→
OC| = ||C|| (7)

|
−−→
PjC| =

T 2
j

|
−−→
OC|

(similar triangles) (8)

|
−−→
PjO| = |

−−→
PjC|+ |

−−→
OC| (9)

Pj = dc ∗ |
−−→
PjO|. (10)

Due to inaccuracies in the totem masks, particularly for real images in which
the totems are manually segmented, we note that the above procedures involve
a number of approximations. Thus, we find that using this as an initialization
and further refining the totem positions yields better reconstruction results.

Totem IoU Loss. To regularize the totem positions during optimization, we use
an IoU loss between the bounding box extracted from the totem mask and the
bounding box estimated from the totem position during training. To obtain the
latter bounding box, we reverse some of the calculations above and start with

the current totem position Pj and camera origin O to obtain segment |
−−→
PjO|;

together with known radius Rj , we solve for the circle radius Tj and cone center
C using similar triangles. We obtain the normal vector of the circular intersection
as:

n =
Pj − C

||Pj − C||
. (11)

With the normal vector n, center C, and radius Tj , we have a defined 3D
circle. Next, we evenly sample N = 1000 points along the circle and project
them onto the image plane using perspective projection. Taking the minimum
and maximum x and y coordinates of these projected points yields the bounding
box used for the IoU loss.
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A.3 Radiance field training

Pre-processing. We describe two pre-processing steps for improving recon-
struction quality. First, for each scene light ray rout = oout + dout ∗ t computed
from a totem pixel Iu,v (Sec. 4.1 main text), we shift oout to the ray’s intersec-
tion with the plane z = 0 and scale dout to have unit length in the z direction.
Next, we map the normalized rays from camera space to a cube space [−1, 1]3

and filter out rays if the mapped ray origins fall outside of the cube space by a
threshold. This automatically removes rays with large refraction angles. These
rays can make training unstable, as small updates to the totem positions result
in large changes in refracted ray directions.

Training details. We first train the neural radiance model alone for 100 epochs
and then jointly optimize with the totem positions for another 49.9k epochs.
Training takes approximately 5 hours on one NVIDIA GeForce RTX 2080 Ti. For
the neural radiance model, we follow the same training and rendering procedures
in Mildenhall et al. [1]. During joint optimization, instead of estimating the
absolute totem positions, we learn the relative translation from initial totem
positions obtained in Sec. A.2. For training the totem parameters, we use the
Adam optimizer with a learning rate of 0.00001 and scales the learning rate with
γ = 0.99 every 100 epochs.

B Additional experiments

B.1 Number of totems

We experiment with placing different numbers of totems in a simulated scene
in Fig. 2. While using two totem views results in a poor reconstruction of the
scene, the result improves when using four or six totems. Quantitatively, we find
that using two totems yields the worst reconstruction error (0.16 L1 error), and
using four and six totems attains better reconstruction error with four totems
being slightly better (0.08 and 0.09 respectively). We note that while the re-
constructions from four and six totems are also qualitatively similar, placing
more totems results in more occlusion of the actual scene. Therefore, we chose
to proceed with a four-totem scene setup in further experiments.

B.2 Patch-level detection

In addition to detecting image-level manipulation, here we detect whether each
patch of an image is manipulated and provide new quantitative measures and
visualizations to demonstrate the performance of our detection method.

To remain consistent with Tab. 2 in the main paper, we use the same 37
images, including 7 unmaniplated images, 7 CAF images, 8 spliced images, and
15 images with added color patches. For each image, we extract 900 patches of
64× 64 resolution, over a 30× 30 grid evenly spaced horizontally and vertically
above the totem area. After extraction, only patches that overlap with corre-
sponding protect regions are kept. This results in a total of 17064 patches, of
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Fig. 2: Number of totems. Reconstructions obtained by varying the number of
totems in the scene. We find that four totems is sufficient to obtain a reasonable
reconstruction, while also balancing the visibility of the background scene.

which 1621 are manipulated (that is, having > 10% manipulated pixels). The
exact number of patches for each manipulation can be found in Figure 3. For
each patch, we compute L1 or LPIPS against the corresponding patch from the
reconstructed view.

In Figure 3, we visualize the distribution of our two metrics (L1 and LPIPS)
for each type of patches. For both metrics, the distributions exhibits a quali-
tative difference between real patches and manipulated ones, giving an overall
lower score to real patches. Indeed, our metrics help detecting manipulations.
In Table 1, they lead to nontrivial gains in terms of average precision. Note the
imbalance between the numbers of real and manipulated patches.

CAF+Real
(7.26% manip.)

Splice+Real
(8.20% manip.)

Color+Real
(5.78% manip.)

All Patches
(9.50% manip.)

Ours with totem opt.
+L1 0.4412 0.5026 0.8554 0.6455
+LPIPS 0.4954 0.6315 0.8169 0.7086

Näıve Detector (Random Decision) 0.0726 0.0820 0.0578 0.0950

Table 1: Patch-level detection comparisons: Average precision of our
method on patches created with different types of images. For example,
CAF+Real contains all patches from CAF images and unmanipulated images,
while the last column (All Patches) shows results on all patches from all images.
To show class imbalance, we also report the precision of a näıve detector that
randomly detects its output, which equals the ratio of manipulated patches.

B.3 Totem configuration

Totems can be placed anywhere between the camera and the scene region to
be protected (e.g . the subject). We show reconstruction and detection results
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Fig. 3: Distributions of L1 and LPIPS metrics on patches (unmanipulated real
patches and patches manipulated in different ways). For both metrics, our
method overall gives real patches lower scores than manipulated ones.

(Fig. 4) for the same scene and manipulation type (CAF) while varying the
totem configuration.

Note that configurations that contain totems farther from the camera (row 1
and 4) have smaller protected regions. This is not due to reduced reconstruction
quality (column 3), but because we use the same density threshold (Sec 4.2 main
text) for images with less number of totem pixels (i.e. overall lower projection
density). Future work can explore a less rigorous threshold strategy that takes
the total amount of totem pixels into account.

B.4 Additional results

In Fig. 5, we show additional detection results for the following manipulations:
1) inserting randomly colored patches, 2) adding people by image splicing, 3)
removing people with Photoshop CAF, or 4) shifting people in both camera and
totem views to the same reference position. Our method measures the patch-wise
L1 distance between the protected region of the reconstruction and the manip-
ulated image and shows a heatmap that highlights potential manipulations.
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Original image Manipulated image Reconstructed image Inconsistency heatmap

Fig. 4: Comparison of different totem configurations. Additional recon-
struction and detection results for the same scene while varying the subject and
totem configurations. We manipulate all above scenes by removing people with
Photoshop Content Aware Fill. Our method has consistent reconstruction qual-
ity and detection results under various totem configurations.

C Scope of the totem framework

The goal of the totem framework is to propose a novel geometric and physical
approach to image forensics, demonstrate its potential, and inspire further cross-
domain research. While our current method and choice of totems cannot yet
defend all types of manipulations, we discuss specific manipulation settings and
use cases below.

C.1 Discussion of possible attacks

Image manipulation. Totem identities are unknown to the adversary a priori.
Spherical totems are more visible due to their interpretable distortion patterns.
This prompts the adversary to manipulate the totem views to avoid being de-
tected under human inspection. In an ideal scenario, a totem with more complex
and compact geometry would be less noticeable and ultimately less likely to be
manipulated by the adversary. For such a case, we have demonstrated through
many examples that when only the image is manipulated and totem views re-
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Fig. 5: Additional results. Additional detection results for different scenes and
different types of manipulations. Our method compares the totem protected re-
gion of the scene reconstruction with the manipulated image and shows potential
manipulations via the inconsistency heatmap. Note that the scene reconstruc-
tion is learned only using the pixels within the totems.
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main intact, our method can reliably detect a variety of manipulations (i.e. color
patches, image splice, CAF).

Joint image and totem manipulations. If the adversary notices and at-
tempts to manipulate the totem views, there are a few different possibilities:

– Cropping out totems. In this case, the image is no longer verifiable; only
verifiable images are protected.

– Scrambling totem pixels. Our method can still reliably reconstruct the
scene when small portions of the totem views are manipulated (e.g . the
reference shift examples). If the resulted reconstruction seems drastically
different from the camera view, it implies that large portions of the totem
views have been manipulated.

– Geometric manipulation. We demonstrate that geometric manipulation
of the totem views is detectable through the reference shift example in Fig.5
and Fig.7 in the main paper. The adversary shifts the subject in both cam-
era and totem views to the same reference position in the scene. The re-
sultant manipulation seems reasonable under human inspection but creates
geometric inconsistency and makes the reconstructed subject distorted. The
reconstruction disagrees with the manipulated camera view, making this
manipulation detectable.

– Color manipulation. If the adversary changes the color of an object (i.e.
jacket) in both camera and totem views without tampering with the geom-
etry, the reconstruction will contain the manipulated color and agree with
the manipulated camera view. This is a case where our method can fail.

Limitations. Currently, our method reliably detects manipulations of big ob-
jects (i.e. the entire subject). As research in sparse-view scene reconstruction
continues to develop [2], we expect improved reconstruction results with less
noise and more semantic details, allowing more detailed manipulations such as
smaller objects or facial expressions to be detected. Another limitation is that
our detection method is designed to highlight discrepancy between the recon-
struction and the camera view, which means it currently does not highlight
manipulations in the totem views. This is important to address in future work.

C.2 Frequently asked questions

Who owns/uses totems? The subject owns and sets up their unique totems as
a manipulation defense for the digital content captured by anyone or any device.
A common confusion is that the photographer carries totems around and is
responsible for setting up totems. While there are many active defense methods
available to other stakeholders (e.g . digital signatures, encryption cameras, etc.),
method designed for the subject is under-explored and we hope to inspire more
research in this area.

Why not treat totems as cameras and use Structure from Motion
(SfM)? SfM and other methods that rely on correspondences will not generalize
to totems with complex geometry and distortions.
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