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Abstract. Domain Generalizable Person Re-Identification (DG-ReID)
is a more practical ReID task that is trained from multiple source do-
mains and tested on the unseen target domains. Most existing methods
are challenged for dealing with the shared and specific characteristics
among different domains, which is called the domain conflict problem.
To address this problem, we present an Adaptive Cross-domain Learn-
ing (ACL) framework equipped with a CrOss-Domain Embedding Block
(CODE-Block) to maintain a common feature space for capturing both
the domain-invariant and the domain-specific features, while dynami-
cally mining the relations across different domains. Moreover, our model
adaptively adjusts the architecture to focus on learning the correspond-
ing features of a single domain at a time without interference from the
biased features of other domains. Specifically, the CODE-Block is com-
posed of two complementary branches, a dynamic branch for extracting
domain-adaptive features and a static branch for extracting the domain-
invariant features. Extensive experiments demonstrate that the proposed
approach achieves state-of-the-art performances on the popular bench-
marks. Under Protocol-2, our method outperforms previous SOTA by
7.8% and 7.6% in terms of mAP and rank-1 accuracy.

Keywords: Adaptive cross-domain learning, Common feature space,
Dynamic Network, Domain conflict, Domain generalizable person re-
identification

1 Introduction

Recently, Domain Generalizable Person Re-Identification (DG-ReID), a more
practical ReID task that aims at identifying samples from unseen domains with-
out domain adaptation, has attracted increasing attention due to the conven-
tional ReID approaches suffering from significant performance degradation on
the unseen domains. To address this task, some efforts [25, 24, 41, 40, 51, 43, 5, 61]

⋆ Co-corresponding authors.
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Fig. 1. Examples of multiple person re-identification domains. Different domains are
biased on their specific characteristics (e.g., hue, illumination, resolution, clothing style,
and carrying objects apart from the common characteristics).

propose to jointly train a static ReID model with multiple seen domains and then
directly apply it to the unseen domains. However, as shown in Fig. 1, there is a
huge gap between different domains (e.g., illumination, hue, resolution, clothing
style, and carrying objects), where each domain has its specific characteristics
apart from the common characteristics. During joint training, the specific char-
acteristics of one domain may be useless or even interfere with the learning of
other domains, which is called the domain conflict problem [45, 28, 27].

To mitigate the domain conflict problem, the early approaches [60, 21, 57, 38]
focus on modeling the invariant features between different domains with disen-
tanglement learning or meta-learning. However, these methods do not consider
the diverse and complementary information of domain-specific features enough,
which may limit the generalization capability on the unseen target domain [63].
Recently, in addition to modeling invariant features, some approaches [59, 2, 42]
also focus on capturing the domain-specific features via designing specific expert
networks for the individual domains. Such ways of maintaining a specific space
for each domain help reduce the cross-domain interference during training but
hardly transfer the specific knowledge from different spaces and capture the spe-
cific features from unseen domains. Besides, these methods are challenged by the
problem of linear increasing costs, since the number of individual feature spaces
must be consistent with the number of domains.

To overcome the above limitations, in this paper, we propose to improve
the existing methods from two perspectives: maintaining a common space for
both domain-invariant and domain-specific features, and adaptively capturing
features through the dynamically adjusted architecture. First, maintaining a
common space could capture the relations between different domains, thus ben-
efiting in the knowledge transfer across different domains and avoiding the re-
dundant modeling among domains. Second, capturing the domain-adaptive fea-
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tures through adaptive dynamic architectures enables the model to learn specific
features for each novel domain and alleviate the conflicts among domains.

For this purpose, we propose a novel framework called Adaptive Cross-
domain Learning (ACL) to dynamically capture the adaptive features with both
invariant and specific features for each domain. Specifically, we design a CrOss-
Domain Embedding Block (CODE-Block), which is composed of three com-
ponents, i.e., a dynamic branch, a static branch, and a fusion module. The
dynamic branch is designed with a series of parallel feature embedding net-
works to reduce the cross-domain interference, each of which captures either the
fine-grained domain-invariant or domain-specific features, and a domain-aware
adapter to produce meta-weights for adaptively capturing domain-adaptive in-
formation. The static branch serves as a complement to the dynamic branch to
additionally extract the domain-invariant features among domains and makes
the whole training process more stable. Following [53], the static branch adopts
a style normalization layer for filtering out domain-specific contrast information.
By doing this, our framework could focus on learning the corresponding features
of a single domain at a time without interference from other domain-specific
features. As a result, the domain conflict issue would be alleviated.

In a nutshell, our highlights include:

– To the best of our knowledge, we are the first to adopt the dynamic network
to adaptively learn features from different domains for tackling the domain
conflict problem in DG-ReID.

– We develop a novel framework equipped with a CODE-Block to adaptively
capture both the domain-invariant and the domain-specific features in a
common feature space, and aggregate them through a domain-aware adapter
to adaptively learn different domains.

– Extensive experiments demonstrate the effectiveness of our framework under
multiple testing protocols. The proposed approach obtains 7.8% and 7.6%
improvements in terms of mAP and rank-1 accuracy over the SOTA method
on the average results of four large-scale benchmarks under Protocol-2.

2 Related Work

2.1 Domain Generalization

Domain Generalization [20, 15, 55, 36, 1, 64, 29, 34, 44, 31, 7] is a solution to the
potential domain shift problem in practice, which can be categorized into two
types of solutions. 1) Representation learning. These methods reduce the dis-
crepancy between different domains by disentanglement learning or probability
distribution alignment. For instance, [54] learns a feature transformation to min-
imize the variances of the class-conditional distributions among multiple source
domains for all classes. 2) Domain augmentation. These methods generate more
cross-domain samples to regularize the model for avoiding overfitting and im-
proving generalization ability. For example, [39] trains a domain classifier and
use its adversarial gradients to generate the cross-domain samples.
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Although previous DG methods obtain remarkable performance on closed-set
tasks (e.g., classification), they are based on the premise that all the training
and testing domains share the same label space. However, there is no overlap
of identities under the retrieval tasks like ReID. As a result, it is difficult to
perform well when directly applying these methods to ReID.

2.2 Domain Generalizable Person Re-Identification

With the application of ReID technology in practice, several DG methods tai-
lored for ReID [25, 24, 41, 40, 51, 43, 5, 61] have been proposed recently. There are
two main categories of DG-ReID methods. 1) Domain-invariant feature model-
ing [60, 37, 50, 21, 18, 57, 19, 38, 4]. These methods aim to learn the shared fea-
tures among multiple source domains, which could reduce the biases in the
single domain and obtain a more robust generalization capability. Specifically,
these methods could be achieved by domain-adversarial learning [38], feature
disentanglement learning [57], joint training with meta-learning [60], or some
normalization-based strategies [37]. 2) Domain-specific feature modeling [59, 56,
2, 42, 6]. These methods aim to leverage the diversity of each source domain for
complementary learning through modeling the relevance between seen source
domains and unseen target domains. Typically, these methods are implemented
through Mixture-of-Expert (MoE), where each expert extracts domain-specific
features from the corresponding domain. As for the relevance between different
domains, it can be calculated using the similarity between features of different do-
mains [56] or the similarity between the IN/BN statistics of different domains [2],
as well as directly predicted through a specific network [59].

Compared with the previous methods, our approach can model both the
invariant/specific features in a common feature space. Besides, our dynamic
network with the cross-domain embedding can better model the cross-domain
relevance and reduce the redundant modeling for each domain than previous
MoE-based methods.

2.3 Dynamic Neural Networks

Dynamic neural networks [58], including dynamic architecture [13, 16, 65, 22] and
dynamic parameters [33, 52, 8, 35, 11, 9], are wildly used in many fields for their
satisfactory representation capability, adaptiveness, and generality. These meth-
ods usually adjust the model architectures to allocate appropriate computation
based on each sample, which is more adaptive to the specific sample. Motivated
by this, we build a dynamic network to solve the domain conflicts in DG-ReID
through domain-adaptive architecture adjusting, then learn the meta-knowledge
among different domains implicitly for better generalization performance.

3 Adaptive Cross-Domain Learning Framework

In this work, we present a novel Adaptive Cross-domain Learning (ACL) frame-
work to mitigate the domain conflict issue for DG-ReID via adaptively modeling
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Fig. 2. Illustration of our method. Each conv block means a stage of convolution blocks
without the last one. We replace the last convolutional block in each stage with our
CODE-Block. In the CODE-Block, we extract a dynamic domain-adaptive feature FD

and a static domain-invariant feature FS , then we fuse these two features through
a dynamic-static fusion module (DSF). Notably, to reduce the domain conflicts, we
calculate the cross-entropy loss for each domain by individual classifiers, respectively.

both the common features and specific features from different input domains in a
common feature space with a dynamic architecture. In this section, we first give
an overview of ACL and then introduce the core component, a novel CrOss-
Domain Embedding Block (CODE-Block), followed by the detailed objective
functions and the optimization process of our ACL framework.

3.1 Overview

As illustrated in Fig. 2, our ACL framework is designed by plugging the CODE-
Block into the different layers of the feature extractor architecture, respectively
for extracting different levels of semantics (e.g., hue, and contrast in the low-
level, and carrying objects, viewpoint, and clothing style in the high-level). To
reduce the computation cost, the CODE-Block is plugged into the architecture
by replacing the final convolutional blocks at each stage.

3.2 Cross-Domain Embedding Block

As shown in Fig. 2, the CODE-Block is designed for modeling both the domain-
invariant/specific features from different domains, which consists of a dynamic
branch, a static branch, and a fusion module. Let F ∈ RH×W×C be the input
feature map of CODE-Block, where H, W , and C indicate the height, width, and
the number of channels, respectively. The CODE-Block is processed as follows:

1) Dynamic branch extracts fine-grained features {FD
i }Ni=1 for capturing

domain-invariant or domain-specific features through several parallel embedding
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networks, where N is the number of embedding networks. Then discriminative
domain-adaptive features FD ∈ RH×W×C are aggregated with the guidance
of the meta-weights W ∈ RN generated by domain-aware adapter; 2) Static
branch extracts the robust domain-invariant features FS ∈ RH×W×C from the
input feature F ; 3) Fusion module integrates the FS from static branch and the
FD from dynamic branch into the final output feature F̃ ∈ RH×W×C .

Dynamic Branch. Dynamic Branch is the core design of the CODE-Block,
which consists of several parallel embedding networks to model a common feature
space for all domains and a domain-aware adapter to guide the combination of
the discriminative domain-adaptive features for each domain.

1) Embedding Networks. Due to the fact that different domains significantly
differ in hue, carrying objects, resolution, and many other principles, it is hard
to capture good features for the target domains with a single network, thus
we design a series of parallel networks to capture both domain-invariant and
domain-specific features in an implicit way, each of which aims at capturing
domain-invariant features or domain-specific features for each domain.

Specifically, we build N parallel embedding networks (i.e., bottleneck block
in ResNet-IBN but with different initialization). For a light computation cost, we
reduce the number of channels for intermediate features to 1/N . The fine-grained
features {FD

i }Ni=1 from i-th embedding network are obtained with:

FD
i = Embedi(F ), s.t. i ∈ [1 · · ·N ], (1)

where Embedi indicates the i-th embedding network. Note that all the fine-
grained features from different embedding networks are embedded into the same
space, which is the so-called common feature space.

Parallel embedding networks could capture the fine-grained domain-invariant
and domain-specific features as the bases for the following combination. In con-
trast to previous methods [2, 56, 59] that model the features for each domain us-
ing domain-level individual experts, our strategy simultaneously learns domain-
invariant and domain-specific features in multiple parallel embedding networks,
thus reducing the risk of cross-domain interference and redundant modeling.

2) Domain-Aware Adapter. To adaptively capture the features for each domain,
as shown in Fig. 3, the Domain-Aware Adapter produces meta-weights with
a weight generator for aggregating the fine-grained features extracted from all
embedding networks. The weight generator takes the original features as input
and produces the meta-weights. To further enhance the sample-adaptive capa-
bility, we propose to generate the parameters of Domain-Aware Adapter with a
meta-parameter generator, which is formulated with:

Wg = δ(W2δ(W1pool(F ))), (2)

which consists of a global average pooling layer followed by two FC layers that
are parameterized by W1 ∈ RC

r ×C and W2 ∈ RNC×C
r with a reduction ratio r

that is set to 16, and the δ(·) indicates the ReLU activation function.
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To this end, the meta-weights are obtained with W = σ(Wgpool(F )), where
W has the dimension of RN and σ(·) denotes the Softmax function. Through the
domain-aware combination of the cross-domain features, we integrate the final
domain-adaptive feature with FD =

∑N
i=1 WiF

D
i .

Static Branch. Apart from the dynamic branch that dynamically extracts dis-
criminative domain-adaptive features for each domain, we additionally maintain
a static branch to extract the domain-invariant features for robust lower-bound
performance. Specifically, the Static Branch has the same architecture as a con-
ventional bottleneck block in ResNet, but we replace the batch normalization
(BN) layers in the bottleneck block with the instance normalization (IN) lay-
ers. IN can be regarded as a style normalization [53], which filters the specific
features in different domains to reduce the discrepancy of samples, has been
widely used in many previous methods [50, 37]. Therefore, we could statically
extract the robust domain-invariant features for stabilizing and complementing
the adaptive features extracted from the dynamic branch.

Fusion Module. Once the dynamic domain-adaptive feature FD and static
domain-invariant feature FS are extracted, we further develop a fusion module
called Dynamic-Static Fusion (DSF) to integrate these two features for comple-
mentation. As shown in Fig. 4, DSF first respectively normalizes the two input
features, then sums up them with an optimized weight vector α ∈ RC , finally
refines the fused feature using channel attention [17], which is formulated as:

F̃ = α ∗NormS(F
S) + (1− α) ∗NormD(FD),

F̃ = F̃ ∗ Sigmoid(W r
2 δ(W

r
1 pool(F̃ ))),

(3)

where ∗ notes the elementwise multiplication, δ(·) denotes the ReLU function,

W r
1 and W r

2 are FC layers parameterized with RC
r ×C and RC×C

r , respectively.

3.3 Objective Function

To train the ACL framework, four loss functions are applied: 1) Domain-Aware
Cluster Loss Lcluster. To make the generated meta-weights being aware of differ-
ent domains, we adopt a domain-level cluster regularization to increase the inter-
domain variances, while narrowing down the intra-domain variances. Given the
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predicted meta-weights of all these modules W ∈ RM∗N , where M is the number
of CODE-Block and N is the number of embedding networks in a CODE-Block,
the intra-domain loss Lintra and the inter-domain loss Linter are calculated as
follows,

Lintra =
1

K × L

K∑
i=1

L∑
j=1

[||Wi,j −Wi,:||2 −m1]
2
+,

Linter =
1

K(K − 1)

K∑
i=1

K∑
j ̸=i

[m2 − ||Wi,: −Wj,:||2]2+,

(4)

where K is the number of domains, m1 and m2 are the margins, L is the number
of instances for the corresponding domain, Wi,j means the j-th instance of the
domain i, and Wi,: means the cluster center of the domain i. As a result, the
final cluster loss Lcluster can be aggregated as follows,

Lcluster = Lintra + Linter. (5)

2) Cross-Entropy Loss Lce, Triplet Loss Ltri, and Center Loss Lcntr. These
three losses follow the standard formulation in previous works [30]. Notably, to
further reduce the conflicts between different domains, we calculate the cross-
entropy loss for each domain, respectively.

3.4 Optimization Process

To improve the generalization capability on the unseen target domains, we adopt
a meta-learning algorithm to simulate the unseen domain scenarios following [37].
As shown in Algorithm 1, the training process of our ACL framework is divided
into two stages, a basic training process to train the whole network, and a meta-
learning process for optimizing the domain-aware adapter module.

For the first basic training stage, the objective function Lbasic consists of
cross-entropy loss, triplet loss, center loss, and our cluster loss,

Lbasic(X ; θ;ϕ) = Lce + Ltri + Lcntr + Lcluster, (6)

where all the parameters in the whole network (i.e., θ for the domain-aware
adapter and ϕ for others) will be updated by optimizing these loss functions.
For the second meta-learning stage, we follow the process and objective func-
tions of [37], which adds two cluster losses Lscat and Lshuf for a more discrimina-
tive feature representation. Specifically, Lscat is to make the feature distribution
more compact in each domain and Lshuf is to avoid the model collapse for each
domain. We split the K seen domains into K − 1 meta-train domains and a
meta-test domain, respectively. Then we calculate the objective function Lmtr

for the meta-training stage to calculate the temporary optimized parameters θ′

for domain-aware adapter as follows,

Lmtr(X ; θ;ϕ) = Ltri + Lcluster + Lscat + Lshuf . (7)
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Algorithm 1: Training for ACL framework

Input: Source domains D = {D1,D2, · · · ,DK}; Learning rate γ; MaxIters;
Meta-learning Frequency F .

Output: Trained network F (θ;ϕ) with domain-aware adapter θ and other
parameters ϕ.

1 for iter in MaxIters do
2 Basic Training Stage:
3 Sample a mini-batch XB from D.
4 Lbasic(XB ; θ;ϕ) = Lce + Ltri + Lcntr + Lcluster

5 (θ, ϕ)← (θ − γ∇θLbasic(XB ; θ;ϕ), ϕ− γ∇ϕLbasic(XB ; θ;ϕ))
6 Meta-Learning Stage:
7 if iter % F == 0:
8 Split D as (Dmtr ∩ Dmte = ∅, Dmtr ∪ Dmte = D)
9 Meta-Training:

10 Sample a mini-batch XS from Dmtr.
11 Lmtr(XS ; θ;ϕ) = Ltri + Lcluster + Lscat + Lshuf

12 θ′ = θ − γ∇θLmtr(XS ; θ;ϕ)
13 Meta-Testing:
14 Sample a mini-batch XT from Dmte.
15 Lmte(XT ; θ

′;ϕ) = Ltri + Lcntr + Lcluster

16 θ = θ − γ∇θLmte(XT ; θ
′;ϕ)

With the temporary parameters θ′, we can obtain the final optimized parameters
θ by optimizing the loss for the meta-testing stage, which is formulated by

Lmte(X ; θ′;ϕ) = Ltri + Lcntr + Lcluster. (8)

4 Experiments

4.1 Implementation Details

We use ResNet50 with IBN [51] pretrained on ImageNet as our backbone. Similar
to previous methods [14, 12], we set the stride of the last layer as 1. Images are
resized to 256×128 and the training batch size is set to 64, including 32 identities
and two instances for each identity. For data augmentation, we use random
horizontal flipping, random cropping, color jittering, and auto augmentation [26].
We optimize the model using the SGD optimizer with a momentum of 0.9 and
weight decay of 5e-4 for 60 epochs, and the warmup strategy is used in the first
10 epochs. The margin for intra-domain loss m1 and inter-domain loss m2 are
set to 0.1 and 0.3, respectively. The meta-learning frequency F is set to 3. The
initial learning rate is set to 4e-2, which is cosine decayed to 4e-5 at the final
iteration. We conduct all the experiments with PyTorch on four 1080Ti GPUs.

4.2 Datasets and Evaluation Settings

Datasets. We conduct experiments on several person re-identification bench-
marks: Market1501 [23], MSMT17 [27], CUHK02 [48], CUHK03 [47], CUHK-
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Table 1. Comparison with state-of-the-art methods under Protocol-1. We achieve
better generalization performance even with fewer data for training (i.e., without
DukeMTMC dataset). ‘∗’ denotes the re-implementation for the work under the new
protocol, based on the author’s code on Github. Best results are highlighted in bold.

Method Reference Source
Target

Average
PRID GRID VIPeR iLIDs

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

DIMN [18] CVPR19
M+D+C2
+C3+CS

52.0 39.2 41.1 29.3 60.1 51.2 78.4 70.2 57.9 47.5
SNR [50] CVPR20 66.5 52.1 47.7 40.2 61.3 52.9 89.9 84.1 66.4 57.3

RaMoE [59] CVPR21 67.3 57.7 54.2 46.8 64.6 56.6 90.285.0 69.1 61.5
DMG-Net [56] CVPR21 68.4 60.6 56.6 51.0 60.4 53.9 83.9 79.3 67.3 61.2

QAConv50
∗ [24] ECCV20

M+C2
+C3+CS

62.2 52.3 57.4 48.6 66.3 57.0 81.9 75.0 67.0 58.2
M3L∗ [60] CVPR21 64.3 53.1 55.0 44.4 66.2 57.5 81.5 74.0 66.8 57.3

MetaBIN∗ [37] CVPR21 70.8 61.2 57.9 50.2 64.3 55.9 82.7 74.7 68.9 60.5

Ours
M+C2

+C3+CS
73.463.065.755.275.166.4 86.5 81.8 75.266.6

SYSU [46], PRID [32], GRID [3], VIPeR [10], and iLIDs [49]. For CUHK03, we
use the ‘labeled’ data following [66, 59]. We do not use the DukeMTMC [62]
dataset since its privacy issues. The statistics of these datasets can be seen in
supplementary material.

For simplicity, we denote Market1501, MSMT17, CUHK02, CUHK03, CUHK-
SYSU as M, MS, C2, C3, and CS in the following.

Evaluation Settings. The mean Average Precision (mAP) and Cumulative
Matching Characteristics (CMC) are used for evaluation. There are three eval-
uation protocols following [59, 2, 21].

For Protocol-1, the model is trained by both the training and testing data
in M+C2+C3+CS datasets and then tested on four small datasets (i.e., PRID,
GRID, VIPeR, and iLIDs), respectively. Since some of these datasets have no
official split for probe and gallery sets, we randomly split the probe/gallery
sets for ten times and report the averaged evaluation performance as the final
result. For Protocol-2 and Protocol-3, we orderly use one of the datasets’ data
for testing (i.e., only the testing data) and the remaining datasets (Protocol-2
only uses training data, whereas Protocol-3 uses both training and testing data
of source domains) for training the model. Notably, all ablation studies below are
conducted under Protocol-2. More details can be seen in supplementary material.

4.3 Comparison with the State-of-the-Arts

Comparison with DG-ReID Methods under Protocol-1. We compare our
method with previous DG-ReID methods under Protocol-1, which are tested on
four datasets (i.e., PRID, GRID, VIPeR, and iLIDs). As shown in Table 1, our
method could outperform previous methods by a large margin.
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Table 2. Comparison with state-of-the-art methods under Protocol-2 and Protocol-3.
Four large-scale datasets are involved in the leave-one-out setting.

Setting Method Reference
M+MS

+CS→C3
M+CS

+C3→MS
MS+CS
+C3→M

Average

mAP R1 mAP R1 mAP R1 mAP R1

Protocol-2

SNR∗ [50] CVPR20 8.9 8.9 6.8 19.9 34.6 62.7 16.8 30.5
QAConv∗

50 [24] ECCV20 25.4 24.8 16.4 45.3 63.1 83.7 35.0 51.3
M3L∗ [60] CVPR21 34.2 34.4 16.7 37.5 61.5 82.3 37.5 51.4

MetaBIN∗ [37] CVPR21 28.8 28.1 17.8 40.2 57.9 80.1 34.8 49.5
Ours 41.2 41.8 20.4 45.9 74.3 89.3 45.3 59.0

Protocol-3

SNR∗ [50] CVPR20 17.5 17.1 7.7 22.0 52.4 77.8 25.9 39.0
QAConv∗

50 [24] ECCV20 32.9 33.3 17.6 46.6 66.5 85.0 39.0 55.0
M3L∗ [60] CVPR21 35.7 36.5 17.4 38.6 62.4 82.7 38.5 52.6

MetaBIN∗ [37] CVPR21 43.0 43.1 18.8 41.2 67.2 84.5 43.0 56.3
Ours 49.4 50.1 21.7 47.3 76.8 90.6 49.3 62.7

Comparison with DG-ReID Methods under Protocol-2 and Protocol-
3. We also conduct the experiments under the leave-one-out setting with dif-
ferent amounts of data. As shown in Table 2, under these two protocols with
large-scale datasets, our method still maintains the superiority in learning a more
generalizable feature representation from multiple domains.

4.4 Ablation Study

Effectiveness of the Static/Dynamic Branches. As we have stated above,
our CODE-Block consists of two branches, a static branch to extract the domain-
invariant features and a dynamic branch to extract the domain-adaptive features.
As shown in Table 3, we explore the effects of these two branches to demonstrate
the effectiveness of our framework. ‘Baseline’ indicates a vanilla model without
our CODE-Block module, which follows the same training setting as our basic
training stage. Our training pipeline shows a great improvement, which could
achieve a considerable performance even with just the dynamic branch adopted,
showing the effectiveness of the adaptive feature modeling. And the performance
can be further improved with the complement of the static branch.

Effectiveness of the Domain-Aware Adapter. Our domain-aware adapter
adopts the meta-parameter generator to predict the parameter weights of the
weight generator for adaptively generate domain-aware meta-weights of each
sample. The effectiveness of these components is explored in Table 4, respectively.

We first compare our pipeline with a standard MLP-style weight generator,
which also consists of two FC layers (i.e., W1 ∈ RC

r ×C and W2 ∈ RN×C
r ) but

directly predicts the combination weights. Compared to this counterpart, our
pipeline can be more adaptive to each sample, which better reduces the conflicts
among domains. Moreover, the meta-parameter generator can be regarded as a
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Table 3. Ablation study on the effectiveness of the static and dynamic branches.

Method
M+MS

+CS→C3
M+CS

+C3→MS
MS+CS
+C3→M

Average

mAP R1 mAP R1 mAP R1 mAP R1

Baseline 34.1 34.4 17.3 42.7 69.2 87.0 40.2 54.7
Static branch 35.4 35.1 17.2 41.7 69.4 87.8 40.7 54.9
Dynamic branch 37.5 37.7 18.7 43.4 72.2 88.2 42.8 56.4
Static+Dynamic (ACL) 41.2 41.8 20.4 45.9 74.3 89.3 45.3 59.0

Table 4. Ablation study on the effectiveness of the meta-parameter generator and the
generated domain-aware meta-weights of domain-aware adapter (DAA).

Method
M+MS

+CS→C3
M+CS

+C3→MS
MS+CS
+C3→M

Average

mAP R1 mAP R1 mAP R1 mAP R1

Standard MLP 38.9 37.8 19.3 44.6 72.6 88.7 43.6 57.0
Meta-Parameter (ACL) 41.2 41.8 20.4 45.9 74.3 89.3 45.3 59.0

Identity weight 37.9 38.2 19.4 45.3 72.9 88.7 43.4 57.4
Softmax w/o DAA 40.0 39.4 19.6 45.2 73.0 89.0 44.2 57.9
Softmax w/ DAA (ACL) 41.2 41.8 20.4 45.9 74.3 89.3 45.3 59.0

meta-learning process [9], which further enhances the generalization capability of
our model. Therefore, our pipeline surpasses the standard MLP by a considerable
margin (i.e., 1.7% mAP and 2.0% rank-1 accuracy).

As shown in Table 4, we demonstrate the effectiveness of our domain-aware
meta-weights by comparing it with the naive ensemble model (i.e., the sub map-
ping features are average summed). Compared with this variant, our domain-
aware meta-weights could fully utilize the fine-grained modeling of cross-domain
embedding without conflicts among domains. Besides, we also demonstrate the
effectiveness of our domain-aware cluster loss for the meta-weights. As shown in
Table 4, with the domain-level cluster loss, we could explicitly model the relation-
ship between weights and the domain, and improve the averaged performance
by 1.1% mAP and 1.1% rank-1 accuracy.

Effectiveness of the Fusion Module. As shown in Table 5, we demonstrate
the effectiveness of the three components in the DSF module, respectively. With-
out the fusion module, fusing the two branches features using direct summation
helps but improves marginally. With the proposed normalization layer, weighted
summation layer, and the final refinery channel attention layer, these two fea-
tures can be fused better and achieve a better generalization performance. As a
result, with the fusion module, the averaged performance is improved by 1.8%
mAP and 2.3% rank-1 accuracy, respectively.
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Table 5. Ablation study on the effectiveness of the fusion module.

Method
M+MS

+CS→C3
M+CS

+C3→MS
MS+CS
+C3→M

Average

mAP R1 mAP R1 mAP R1 mAP R1

W/O DSF 38.4 37.7 19.4 44.2 72.6 88.2 43.5 56.7
+Norm 39.3 38.6 20.0 45.3 72.8 89.0 44.0 57.6
+Weighted sum 40.0 40.4 20.1 45.6 74.1 89.1 44.7 58.4
+Refinery (ACL) 41.2 41.8 20.4 45.9 74.3 89.3 45.3 59.0

Table 6. Ablation study on the effects of different embedding stages for the CODE-
Block. ‘Stage-1’ notes that only embed it in the first stage of the backbone network.

Method
M+MS

+CS→C3
M+CS

+C3→MS
MS+CS
+C3→M

Average

mAP R1 mAP R1 mAP R1 mAP R1

Stage-1 37.1 35.9 18.2 42.4 72.7 88.2 42.7 55.5
Stage-2 37.4 37.1 19.0 43.6 72.8 87.9 43.1 56.2
Stage-3 37.8 36.8 19.0 43.8 73.0 88.1 43.3 56.2
Stage-4 38.1 38.2 19.2 44.2 73.5 88.3 43.6 56.9
Stages-all (ACL) 41.2 41.8 20.4 45.9 74.3 89.3 45.3 59.0

Effects of Different Stages for Embedding CODE-Block. As an embed-
ding module, CODE-Block can be plugged into multiple stages of the backbone
network. In this part, we explore the effects of different embedding stages. Specif-
ically, we compare our framework with four variants embedding CODE-Block in
different stages. As shown in Table 6, embedding in higher semantic level turns to
have a better performance. Moreover, the combination of multiple CODE-Blocks
from different semantic levels could better model the features across domains and
obtain a better generalization performance.

The Number of Embedding Networks for CODE-Block. As shown in
Fig. 5, we analyze the effects of the number N of parallel embedding networks
in a CODE-Block. In general, the more embedding networks embedded, the
more diverse and fine-grained features can be modeled, but there will be more
optimization challenges at the same time. As a result, we choose to use four
embedding networks in each CODE-Block for better generalization performance.

4.5 Visualization

To further demonstrate the effectiveness of our domain-aware adapter, we vi-
sualize the distribution of generated meta-weights from different domains. As
shown in Fig. 6, the meta-weights can be well clustered into their corresponding
domains while also having good diversity in each domain cluster.
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Fig. 5. The averaged performance under
Protocol-2 with the different number of par-
allel embedding networks for the CODE-
Block. Best viewed in color.
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Fig. 6. The t-SNE visualization of meta-
weights generated by the domain-aware
adapter for target data from different do-
mains. Best viewed in color.

5 Discussion

Since the ReID system may be abused and violate people’s privacy, governments
and officials must create regulations and legislation for governing the use of the
ReID system. However, person ReID is an established computer vision problem
with known benchmarks. The research for ReID technology under authorized
datasets should not be forbidden for the ethical implications.

6 Conclusion

In this paper, we have proposed a generalizable framework, called Adaptive
Cross-Domain Learning (ACL) for tackling the problem of domain generalizable
person re-identification (DG-ReID). Our framework is equipped with a novel
embedding CrOss-Domain Embedding Block (CODE-Block) that enables the
model to adaptively adjust the architecture and capture the adaptive features
with both the domain-invariant and domain-specific features in a common fea-
ture space, which could further integrate the cross-domain relevance. Specifically,
two branches have been designed to extract the domain-adaptive and domain-
invariant features, then we introduced a fusion module to integrate these two fea-
tures for complementation. Extensive experiments have shown the effectiveness
of our framework, which achieves state-of-the-art generalization performance.
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