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A Method

A.1 H-rank

We define the H-rank in the main paper as:

H-rank(k) = rel(k) +
∑
j∈Ω+

min(rel(k), rel(j)) ·H(sj − sk) . (1)

We detail in Fig. 1 how the H-rank in Eq. (1) is computed in the example
from Fig. 2b of the main paper. Given a “Lada #2” query, we set the relevances
as follows: if k ∈ Ω(3) (i.e. k is also a “Lada #2”), rel(k) = 1; if k ∈ Ω(2) (i.e.
k is another model of “Lada”), rel(k) = 2/3; and if k ∈ Ω(1) (k is a “Car”),
rel(k) = 1/3. Relevance of negatives (other vehicles) is set to 0.

Query Image:  
Lada #2

Fig. 1: H-rank for each retrieval results given a “Lada #2” query with relevances
of Sec. A.1 and the hierarchical tree of Fig. 2a of the main paper.

In this instance,H-rank(2) = 4/3 because rel(2) = 1 and min(rel(1), rel(2)) =
rel(1) = 1/3. Here, the closest common ancestor in the hierarchical tree shared
by the query and instances 1 and 2 is “Cars”. For binary labels, we would have
rank+(2) = 1; this would not take into account the semantic similarity between
the query and instance 1.

A.2 H-AP

We define H-AP in the main paper as:
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Query Image:  
Lada #2

Fig. 2: AP and H-AP for two different rankings when Given a “Lada #2” query
and relevances of Sec. A.1. The H-AP of the top row is greater (0.78) than
the bottom one’s (0.67) as the error in rank = 1 is less severe for the top row.
Whereas the AP is the same for both rankings (0.45).

H-AP =
1∑

k∈Ω+ rel(k)

∑
k∈Ω+

H-rank(k)

rank(k)
(2)

We illustrate in Fig. 2 how theH-AP is computed for both rankings of Fig. 2b
of the main paper. We use the same relevances as in Sec. A.1. The H-AP of the
first example is greater (0.78) than of the second one (0.67) because the error
is less severe. On the contrary, the AP only considers binary labels and is the
same for both rankings (0.45).

One property of AP is that it can be interpreted as the area under the
precision-recall curve. H-AP from Eq. (2) can also be interpreted as the area un-
der a hierarchical-precision-recall curve by defining a Hierarchical Recall (H-R@k)
and a Hierarchical Precision (H-P@k) as:

H-R@k =

∑k
j=1 rel(j)∑

j∈Ω+ rel(j)
(3)

H-P@k =

∑k
j=1 min(rel(j), rel(k))

k · rel(k)
(4)

So that H-AP can be re-written as:

H-AP =

|Ω|∑
k=1

(H-R@k−H-R@k-1)×H-P@k (5)
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Eq. (5) recovers Eq. (3) from the main paper, meaning that H-AP generalizes
this property of AP beyond binary labels. To further motivate H-AP we will
justify the normalization constant for H-AP, and show that H-AP, H-R@k and
H-P@k are consistent generalization of AP, R@k, P@k.

Normalization constant for H-AP When all instances are perfectly ranked,
all instances j that are ranked before instance k (sj ≥ sk) have a relevance that
is higher or equal than k’s, i.e. rel(j) ≥ rel(k) and
min(rel(j), rel(k)) = rel(k). So, for each instance k:

H-rank(k) = rel(k) +
∑
j∈Ω+

min(rel(k), rel(j)) ·H(sj − sk)

= rel(k) +
∑
j∈Ω+

rel(k) ·H(sj − sk)

= rel(k) ·

1 +
∑
j∈Ω+

H(sj − sk)

 = rel(k) · rank(k)

The total sum
∑

k∈Ω+
H-rank(k)
rank(k) =

∑
k∈Ω+ rel(k). This means that we need to

normalize by
∑

k∈Ω+ rel(k) in order to constrain H-AP between 0 and 1. This
results in the definition of H-AP from Eq. (2).

H-AP is a consistent generalization of AP In a binary setting, AP is
defined as follows:

AP =
1

|Ω+|
∑

k∈Ω+

rank+(k)

rank(k)
(6)

H-AP is equivalent to AP in a binary setting (L = 1). Indeed, the relevance
function is 1 for fine-grained instances and 0 otherwise in the binary case. There-
fore H-rank(k) = 1+

∑
j∈Ω+ H(sj−sk) which is the same definition as rank+ in

AP. Furthermore the normalization constant of H-AP,
∑

k∈Ω+ rel(k), is equal to
the number of fine-grained instances in the binary setting, i.e. |Ω+|. This means
that H-AP = AP in this case.

H-R@k is also a consistent generalization of R@k, indeed:

H-R@k =

∑k
j=1 rel(j)∑

j∈Ω+ rel(j)
=

∑k
j=1 1(k ∈ Ω+)∑

j∈Ω+ 1(k ∈ Ω+)
=

# number of positive before k

|Ω+|
= R@k

Finally, H-P@k is also a consistent generalization of P@k:

H-P@k =

∑k
j=1 min(rel(j), rel(k))

k · rel(k)
=

# number of positive before k

k
= P@k
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Link between H-AP and the weighted average of AP Let us define the
AP for the semantic level l ≥ 1 as the binary AP with the set of positives being
all instances that belong the same level, i.e. Ω+,l =

⋃L
q=l Ω

(q):

AP(l) =
1

|Ω+,l|
∑

k∈Ω+,l

rank+,l(k)

rank(k)
, rank+,l(k) = 1 +

∑
j∈Ω+,l

H(sj − sk) (7)

Property 1. For any relevance function rel(k) =
∑l

p=1
wp

|Ω+,q| , k ∈ Ω(l),

with positive weights {wl}l∈J1;LK such that
∑L

l=1 wl = 1:

H-AP =

L∑
l=1

wl ·AP (l)

i.e. H-AP is equal the weighted average of the AP at all semantic levels.

Proof of Property 1

Denoting ΣwAP :=
∑L

l=1 wl ·AP (l), we obtain from Eq. (7):

ΣwAP =

L∑
l=1

wl ·
1

|Ω+,l|
∑

k∈Ω+,l

rank+,l(k)

rank(k)
(8)

We define ŵl =
wl

|Ω+,l| to ease notations, so:

ΣwAP =

L∑
l=1

ŵl

∑
k∈Ω+,l

rank+,l(k)

rank(k)
(9)

We define 1(k, l) = 1
[
k ∈ Ω+,l

]
so that we can sum over Ω+ instead of Ω+,l

and inverse the summations. Note that rank does not depend on l, on contrary
to rank+,l.

ΣwAP =

L∑
l=1

∑
k∈Ω+

ŵl · 1(k, l) · rank+,l(k)

rank(k)
(10)

=
∑

k∈Ω+

L∑
l=1

ŵl · 1(k, l) · rank+,l(k)

rank(k)
(11)

=
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl · rank+,l(k)

rank(k)
(12)
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We replace rank+,l in Eq. (12) with its definition from Eq. (7):

ΣwAP =
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl ·

(
1 +

∑
j∈Ω+,l H(sj − sk)

)
rank(k)

(13)

=
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl +

∑L
l=1

∑
j∈Ω+,l 1(k, l) · ŵl ·H(sj − sk)

rank(k)
(14)

=
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl +

∑L
l=1

∑
j∈Ω+ 1(j, l) · 1(k, l) · ŵl ·H(sj − sk)

rank(k)

(15)

=
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl +

∑
j∈Ω+

∑L
l=1 1(j, l) · 1(k, l) · ŵl ·H(sj − sk)

rank(k)

(16)

We define the following relevance function:

rel(k) =

L∑
l=1

1(k, l) · ŵl (17)

By construction of 1(·, l):

L∑
l=1

1(j, l) · 1(k, l) · ŵl = min(rel(k), rel(j)) (18)

Using the definition of the relevance function from Eq. (17) and Eq. (18), we
can rewrite Eq. (16) with H-rank:

ΣwAP =
∑

k∈Ω+

rel(k) +
∑

j∈Ω+ min(rel(j), rel(k)) ·H(sj − sk)

rank(k)
(19)

=
∑

k∈Ω+

H-rank(k)

rank(k)
(20)
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Eq. (20) lacks the normalization constant
∑

k∈Ω+ rel(k) in order to have the
same shape as H-AP in Eq. (2). So we must prove that

∑
k∈Ω+ rel(k) = 1:

∑
k∈Ω+

rel(k) =
∑

k∈Ω+

L∑
l=1

1(k, l) · ŵl (21)

=

L∑
l=1

|Ω(l)|
l∑

p=1

ŵp (22)

=

L∑
l=1

|Ω(l)|
l∑

p=1

wp

|Ω+,p|
(23)

=
L∑

l=1

|Ω(l)|
l∑

p=1

wp

|
⋃L

q=p Ω
(q)|

(24)

=

L∑
l=1

|Ω(l)|
l∑

p=1

wp∑L
q=p |Ω(q)|

(25)

=

L∑
l=1

l∑
p=1

|Ω(l)| · wp∑L
q=p |Ω(q)|

(26)

=

L∑
p=1

L∑
l=p

|Ω(l)| · wp∑L
q=p |Ω(q)|

(27)

=

L∑
p=1

wp ·
∑L

l=p |Ω(l)|∑L
q=p |Ω(q)|

(28)

=

L∑
p=1

wp = 1 (29)

We have proved that ΣwAP = H-AP with the relevance function of Eq. (17):

ΣwAP =
1∑

k∈Ω+ rel(k)

∑
k∈Ω+

H-rank(k)

rank(k)
= H-AP (30)

Finally we show, for an instance k ∈ Ω(l), :

rel(k) =

L∑
p=1

1(k, p) · ŵp =

l∑
p=1

·ŵp =

l∑
p=1

wp

|Ω+,p|
(31)

i.e. the relevance of Eq. (17) is the same as the relevance of Property 1. This
concludes the proof of Property 1. □
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A.3 Direct optimisation of H-AP

Decomposing H-rank and rank We have Ω+ =
⋃L

q=1 Ω
(q), for an instance

k ∈ Ω(l) we can define the following subsets: Ω> =
⋃L

q=l+1 Ω
(q) and Ω≤ =⋃l

q=1 Ω
(q), so that Ω+ = Ω> ∪Ω≤. So we can rewrite H-rank:

H-rank(k) = rel(k) +
∑
j∈Ω+

min(rel(k), rel(j)) ·H(sj − sk)

=
∑

j∈Ω>

min(rel(k), rel(j)) ·H(sj − sk)︸ ︷︷ ︸
H-rank>

+ rel(k) +
∑

j∈Ω≤

min(rel(k), rel(j)) ·H(sj − sk)︸ ︷︷ ︸
H-rank≤

Similarly we can define Ω≥ =
⋃L

q=l Ω
(q) and Ω< =

⋃l−1
q=0 Ω

(q), with Ω+ =

Ω≥ ∪Ω<. So we can rewrite rank:

rank(k) = 1 +
∑
k∈Ω

H(sj − sk)

= 1 +
∑

k∈Ω≥

H(sj − sk)︸ ︷︷ ︸
rank≥

+
∑

k∈Ω<

H(sj − sk)︸ ︷︷ ︸
rank<

Gradients for LH-AP We further decompose LH-AP from Eq. 5 of the main
paper, using H-rank≤(k) = H-rank=(k) +H-rank<(k), rank≥(k) = rank>(k) +
rank=(k):

LH-AP = 1− 1∑
k∈Ω+ rel(k)

∑
k∈Ω+

H-rank>(k) +H-rank=(k) +H-rank<(k)

rank>(k) + rank=(k) + rank<(k) + rank−(k)

Table 1: Decomposition of H-AP for optimization.

H-rank> rank< rank− H-rank= H-rank< rank> rank=

Optimization ✓ ✓ ✓ ✗ ✗ ✗ ✗

We choose to only optimize with respect to the terms indicated with ✓
in Tab. 1.
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rank−(k): ∂LH-AP

∂ rank−(k)
∝ H-rank(k)

rank(k)2 > 0 which means that in order to decrease

LH-AP we must lower rank−, which is an expected behaviour, as it will force k
to have a better ranking if it ranked after negative instances (in Ω−).

rank<(k): if we suppose that H-rank< is a constant, then ∂LH-AP

∂ rank<(k) ∝
H-rank(k)
rank(k)2 > 0 which means that in order to decrease LH-AP we must lower rank<,

which is an expected behaviour, as it will force k to have a better ranking if it
ranked after negative instances (in Ω<).

H-rank>(k): if we suppose that rank> is a constant, ∂LH-AP

∂H-rank>(k) ∝
−1

rank(k) <

0 which means that in order to decrease LH-AP we must increase H-rank>, which
is an expected behaviour, as it will force k to be ranked after other instances of
higher relevance (in Ω>).

We choose to not optimize with respect to H-rank=, H-rank<, rank>, rank=.

rank= & H-rank=: Optimizing through rank= has no impact so we choose
not to optimize it, indeed ∂LH-AP

∂ rank= = 0. This is the case because inversions between
instances of same relevance has no impact on H-AP. This is also the case for
H-rank=.

H-rank<(k): H-rank<(k) depends on rank<(k) and the relevance of the

other instances that are before. We note that 0 < ∂H-rank<(k)
∂ rank(k) < rel(k) indeed

when the rank< increases H-rank< increases and the increase rate can not be
equal or greater than rel(k)

∂LH-AP

∂ rank<(k)
∝−

( a︷ ︸︸ ︷(
∂H-rank<(k)

∂ rank<(k)
− rel(k)

)
· rank>(k) (32)

+

b︷ ︸︸ ︷(
∂H-rank<(k)

∂ rank<(k)
− rel(k)

)
· rank=(k) (33)

+

c︷ ︸︸ ︷(
∂H-rank<(k)

∂ rank<(k)
· rank<(k)−H-rank<(k)

)
(34)

+

d︷ ︸︸ ︷
∂H-rank<(k)

∂ rank<(k)
· rank−(k)

)
/ rank(k)2 (35)

When optimizing through H-rank< we can no longer explicitly control the
sign of ∂LH-AP

∂ rank<(k) . For example if a and b are null (i.e. not instances of higher

or equal relevance are above k), d remains and is greater than 0 and c can be
greater than 0 resulting in an overall negative gradient, which is an unexpected
behaviour. This is why we choose to not optimize through H-rank<.
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rank>(k): We have H-rank>(k) = rel(k) · rank>(k) indeed all instances j
ranked before k have a strictly higher relevance, i.e. min(rel(j), rel(k)) = rel(k),
so we can write:

∂LH-AP

∂ rank>(k)
∝

<0︷ ︸︸ ︷
H-rank<(k)− rel(k) · rank<(k)− rel(k) · rank−(k)

rank(k)2
< 0 (36)

Optimizing trough rank> instead of only H-rank> diminishes the magnitude
of the resulting gradient, so we decide to not optimize through rank>.

Approximating H-rank> In order to have a lower bound on H-rank> we
approximate the Heaviside step function H with a smooth lower bound:

H>
s (t) =

{
γ · t, if t < 0

max(ν · t+ µ, 1), if t ≥ 0
(37)

H>
s is illustrated in Fig. 3a. UsingH>

s we can approximateH-rank>:H-rank>s (k) =
rel(k)+

∑
j∈Ω+ min(rel(j), rel(k))H>

s (sj−sk). BecauseH
>
s (t) ≤ H(t):H-rank>s (k) ≤

H-rank>. In our experiments we use: γ = 10, ν = 25, µ = 0.5.

Approximating rank< In order to have an upper bound on rank< we approx-
imate the Heaviside with a smooth upper bound as given in [21]:

H<
s (t) =


σ( t

τ ) if t ≤ 0, where σ is the sigmoid function

σ( t
τ ) + 0.5 if t ∈ [0; δ] with δ ≥ 0

ρ · (t− δ) + σ( δτ ) + 0.5 if t > δ

(38)

H<
s is illustrated in Fig. 3a. Using H<

s we can approximate rank<: rank<s (k) =
1 +

∑
j∈Ω H<

s (sj − sk). Because H<
s (t) ≥ H(t): rank<s (k) ≥ rank<. We use the

hyper-parameters: τ = 0.01, ρ = 100, δ = 0.05.

We illustrate in Fig. 3a H>
s and in Fig. 3a H<

s vs. sj − sk. The margins
denote the fact the even when the instance k is correctly ranked (lower cosine
similarity than j in Fig. 3a and higher in Fig. 3a) we still want to backbropagate
gradient which leads to more robust training.

A.4 Discussion

HAPPIER requires the definition of the relevance function. In our work, we
leverage the hierarchical tree between concepts to this end. Is this a strong
assumption? We argue that the access to a hierarchical tree is not a prohibitive
factor. Hierarchical trees are available for a surprising number of datasets (CUB-
200-2011 [25], Cars196 [12], InShop [13], SOP [17]), including large scale ones
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1.5 1.0 0.5 0.0 0.5 1.0 1.5
sj sk

0.00

0.25

0.50

0.75

1.00

1.25

1.50

H
> s

sj < < sk sj < < sk

correctly rankedwrongly ranked

margin

non-zero gradient

(a) Illustration of H>
s in Eq. (37).
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s in Eq. (37).

Fig. 3: Illustrations of the two approximations of the Heaviside step function
used to approximate H-rank> and rank<.

(iNaturalist [24], the three DyML datasets [22] and also Imagenet [6]). Even
when hierarchical relations are not directly available, they are not that difficult to
obtain since the tree complexity depends only on the number of classes and not of
examples. Hierarchical relations can be semi-automatically obtained by grouping
fine-grained labels in existing datasets, as was previously done by e.g. [4]. For
instance, while hierarchical labels are not directly available in scene or landmarks
datasets [20], this could be extended to them at a reasonable cost, e.g. in Paris6k
“Sacre Coeur” might be considered closer to “Notre Dame” than to the “Moulin
Rouge”. The large lexical database Wordnet [15] can also be used to define
hierarchies between labels and define semantic similarity, as in Imagenet [6] or
the SUN database [26]. Furthermore, our approach can be extended to leverage
general knowledge beyond hierarchical taxonomies, by defining more general
relevance functions built on e.g. continuous similarities or attributes [18].

B Experiments

B.1 Datasets

Stanford Online Product (SOP) [17] is a standard dataset for Image Re-
trieval it has two levels of semantic scales, the object Id (fine) and the object
category (coarse). It depicts Ebay online objects, with 120 053 images of 22 634
objects (Id) classified into 12 (coarse) categories (e.g. bikes, coffee makers etc.),
see Fig. 4. We use the reference train and test splits from [17]. The dataset can
be downloaded at: https://cvgl.stanford.edu/projects/lifted_struct/.

iNaturalist-2018 Base/Full iNaturalist-2018 is a dataset that has been used
for Image Retrieval in recent works [1,21]. It depicts animals, plants, mushroom

https://cvgl.stanford.edu/projects/lifted_struct/
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Fig. 4: Images from Stanford Online Products.

etc. in wildlife, see Fig. 5, it has in total 461 939 images and 8142 fine-grained
classes (“Species”). We use two different sets of annotations: a set of annotations
with 2 semantic levels the species (fine) and intermediate scale (coarse), we term
this dataset iNat-base, and the full biological taxonomy which consists of 7
semantic levels (“Species”, “Genus” . . . ) we term this dataset iNat-full. We use
the standard Image Retrieval splits from [1]. The dataset can be downloaded at:
github.com/visipedia/inat_comp, and the retrieval splits at: drive.google.
com.

Fig. 5: Images from iNaturalist-2018.

DyML-datasets The DyML benchmark [22] is composed of three datasets,
DyML-V that depicts vehicles, DyML-A that depicts animals, DyML-P that
depicts online products. The training set has three levels of semantic (L = 3),

https://github.com/visipedia/inat_comp/tree/master/2018
https://drive.google.com/file/d/1sXfkBTFDrRU3__-NUs1qBP3sf_0uMB98/view?usp=sharing
https://drive.google.com/file/d/1sXfkBTFDrRU3__-NUs1qBP3sf_0uMB98/view?usp=sharing
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and each image is annotated with the label corresponding to each level (like
SOP and iNat-base/full), however the test protocol is different. At test time for
each dataset there is three sub-datasets, each sub-dataset aims at evaluating the
model on a specific hierarchical level (e.g. “Fine”), so we can only compute binary
metrics on each sub-dataset. We describe in Tab. 2 the statistics of the train and
test datasets. The three datasets can be downloaded at: onedrive.live.com.

Table 2: Statistics of the three train and test DyML benchmarks [22].

Datasets
DyML-Vehicle DyML-Animal DyML-Product

train test train test train test

Coarse
Classes 5 6 5 5 36 6
Images 343.1 K 5.9 K 407.8 K 12.5 K 747.1 K 1.5 K

Middle
Classes 89 127 28 17 169 37
Images 343.1 K 34.3 K 407.8 K 23.1 K 747.1 K 1.5 K

Fine
Classes 36,301 8,183 495 162 1,609 315
Images 343.1 K 63.5 K 407.8 K 11.3 K 747.1 K 1.5 K

B.2 Implementation details

SOP & iNat-base/full Our model is a ResNet-50 [9] pretrained on Imagenet
to which we append a LayerNormalization layer with no affine parameters
after the (average) pooling and a Linear layer that reduces the embeddings
size from 2048 to 512. We use the Adam [11] optimizer with a base learning
rate of 1e−5 and weight decay of 1e−4 for SOP and a base learning rate of
1e−5 and weight decay of 4e−4 for iNat-base/full. The learning rate is decreased
using cosine annealing decay, for 75 epochs on SOP and 100 epochs on iNat-
base/full. We “warm up” our model for 5 epochs, i.e. the pretrained weights
are not optimized. We use standard data augmentation: RandomResizedCrop
and RandomHorizontalFlip, with a final crop size of 224, at test time we use
CenterCrop. We set the random seed to 0 in all our experiments. We use a fixed
batch size of 256 and use the hard sampling strategy from [2] on SOP and the
standard class balanced sampling [29] (4 instances per class) on iNat-base/full.

DyML We use a ResNet-34 [9] randomly initialized on DyML-V&A and pre-
trained on Imagenet for DyML-P, following [22]. We use an SGD optimizer with
Nesterov momentum (0.9), a base learning rate of 0.1 on DyML-V&A and 0.01
on DyML-P with a weight decay of 1e−4. We use cosine annealing decay to re-
duce the learning rate for 100 epochs on DyML-V&A and 20 on DyML-P. We
use the same data augmentation and random seed as for SOP and iNat-base. We
also use the class balanced sampling (4 instances per class) with a fixed batch
size of 256.

https://onedrive.live.com/?authkey=%21AMLHa5h%2D56ZZL94&id=F4EF5F480284E1C2%21106&cid=F4EF5F480284E1C2
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B.3 Metrics

The ASI [7] measures at each rank n ≤ N the set intersection proportion (SI)
between the ranked list a1, . . . , aN and the ground truth ranking b1, . . . , bN ,
with N the total number of positives. As it compares intersection the ASI can
naturally take into account the different levels of semantic:

SI(n) =
|{a1, . . . , an} ∩ {b1, . . . , bn}|

n

ASI =
1

N

N∑
n=1

SI(n)

The NDCG [5] is the reference metric in information retrieval, we define it
using the semantic level l of each instance:

DCG =
∑

k∈Ω+

2l − 1

log2(1 + rank(k))
, with k ∈ Ω(l).

NDCG =
DCG

maxranking DCG

To compute the AP for the semantic level l we consider that all instances
with semantic levels ≥ l are positives:

AP (l) =
∑

k∈
⋃L

q=l Ω
(q)

rankl(k)

rank(k)
, where rankl(k) = 1 +

∑
j∈

⋃L
q=l Ω

(q)

H(sj − sk)

B.4 Source Code

Our code is based on PyTorch [19]. We use utilities from Pytorch Metric

Learning [16] e.g. for samplers and losses, Hydra [28] to handle configuration files
(Yaml), tsnecuda [3] to compute t-SNE reductions using GPUs and standard
Python libraries such as NumPy [8] or Matplotlib [10].

We use the publicly available implementations of the NSM loss [29]1 which
is under an Apache-2.0 license, of NCA++[23]2 which is under an MIT license,
of ROADMAP [21]3 which is under an MIT license, we use the implementation
of Pytorch Metric Learning [16]4 for the TLSH [27] (MIT license), and finally
we have implemented the CSL [22] after discussion with the authors and we will
make it part of our repository.

1 https://github.com/azgo14/classification_metric_learning
2 https://github.com/euwern/proxynca_pp
3 https://github.com/elias-ramzi/ROADMAP
4 https://github.com/KevinMusgrave/pytorch-metric-learning

https://github.com/azgo14/classification_metric_learning
https://github.com/euwern/proxynca_pp
https://github.com/elias-ramzi/ROADMAP
https://github.com/KevinMusgrave/pytorch-metric-learning
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We had access to both Nvidia Quadro RTX 5000 and Tesla V-100 (16 GiB
GPUs). We use mixed precision training [14], which is native to PyTorch, to
accelerate training, making our models train for up to 7 hours on Stanford Online
Products, 25 hours on iNaturalist-2018, less than 20 hours on both DyML-A and
DyML-V and 6 hours on DyML-P.

B.5 On DyML results

Their is no public code available to reproduce the results of [22]. After personal
correspondence with the authors, we have been able to re-implement the CSL
method from [22]. We report the differences in performances between our results
and theirs in Tab. 3. Our implementation of CSL performs better on the three
datasets which is the results of our better training recipes detailed in Sec. B.2.
Our discussions with the authors of [22] confirmed that the performances ob-
tained with our re-implementation of CSL are valid and representative of the
method’s potential.

Table 3: Difference in performances for CSL between results reported in [22] and
our experiments on the DyML benchmarks.

Method
DyML-Vehicle DyML-Animal DyML-Product

mAP ASI R@1 mAP ASI R@1 mAP ASI R@1

CSL [22] 12.1 23.0 25.2 31.0 45.2 52.3 28.7 29.0 54.3
CSL (ours) 30.0 43.6 87.1 40.8 46.3 60.9 31.1 40.7 52.7

C Qualitative results

C.1 Robustness to λ

Fig. 4b of the main paper illustrates that HAPPIER is robust with respect to λ
with performances increasing for most values between 0.1 and 0.9. In addition, we
also show in Fig. 6 that for 0 < λ < 0.9 HAPPIER leads to a better organization
of the embedding space than a fine-grained baseline (see Fig. 4a in main paper).
This is expected since the lower λ is, the more emphasis is put on optimizing
H-AP, which organizes the embedding space in a hierarchical structure.

C.2 Comparison of HAPPIER vs. CSL

In Fig. 7, we compare HAPPIER against the hierarchical image retrieval method
CSL [22]. We observe qualitative improvements where HAPPIER results in a
better ranking. This highlights the benefit of optimizing directly a hierarchical
metric, i.e. H-AP, rather than optimizing a proxy based triplet loss as in CSL.
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(a) λ = 0.3 (b) λ = 0.5 (c) λ = 0.9

Fig. 6: t-SNE visualisation of the embedding space of models trained with HAP-
PIER on SOP with different values of λ. Each point is the average embedding of
each fine-grained label (object instance) and the colors represent coarse labels
(object category, e.g. bike, coffee maker).

C.3 Controlled errors: iNat-base

We showcase in Fig. 8 errors of HAPPIER vs. a fine-grained baseline on iNat-
base. On Fig. 8a, we illustrate how a model trained with HAPPIER makes
mistakes that are less severe than a baseline model trained only on the fine-
grained level. On Fig. 8b, we show an example where both models fail to retrieve
the correct fine-grained instances, however the model trained with HAPPIER
retrieves images of bikes that are semantically more similar to the query.

C.4 Controlled errors: iNat-full

We illustrate in Figs. 9 and 10 an example of a query image and the top 25
retrieved results on iNat-full (L = 7). Given the same query both models failed
to retrieve the correct fine-grained images (that would be in Ω(7)). The standard
model in Fig. 10 retrieves images that are semantically more distant than the
images retrieved with HAPPIER in Fig. 9. For example HAPPIER retrieves
images that are either in Ω(5) or Ω(4) (only one instance is in Ω(3)) whereas the
standard model retrieves instances that are in Ω(2) or Ω(1).
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Fig. 7: Qualitative comparison of HAPPIER vs. CSL [22] on SOP
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(a) HAPPIER can help make less severe mistakes. The inversion on the bottom row
are with negative instances (in red), where as with HAPPIER (top row) inversions are
with instances sharing the same coarse label (in orange).
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rank 1
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e

rank 2 rank 3 rank 4 rank 5 rank 6

(b) In this example, the models fail to retrieve the correct fine grained images. However
HAPPIER still retrieves images with the same coarse label (in orange) whereas the
baseline retrieves images that are dissimilar semantically to the query (in red).

Fig. 8: Qualitative examples of failure cases from a standard fine-grained model
corrected by training with HAPPIER.
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Fig. 9: Images retrieved for the query image by a model trained withHAPPIER
on iNat-full (L = 7).
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Fig. 10: Images retrieved for the query image by a model trained with standard
model on iNat-full (L = 7).
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