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In this supplementary material, we provide more detailed quantitative anal-
ysis and qualitative results of our method as follows: i) Apart from the PCK
results by category reported in the main paper, we additionally provide the
PCK results by variation factors in Sec. A; ii) We further analyse model com-
plexity by computing FLOPS in Sec. B; iii) Finally, we provide more qualitative
results on PF-PASCAL [2], PF-WILLOW [3], and SPair-71k [1] in Sec. C.

A. More Quantitative Results on SPair-71k

To have a better understanding of our method in different challenging scenarios,
we report quantitative performance with respect to different levels of four vari-
ation factors (viewpoint, scale, truncation, and occlusion) on SPair-71k bench-
mark [1], as summarized in Table S1. Large PCK gains for all levels of image
pairs indicate the robustness and effectiveness of our method.

Table S1. PCK analysis by variation factors on SPair-71k [1] (appor = 0.1).
The variation factors include view-point, scale, truncation, and occlusion with various
difficulty levels. Numbers in bold indicate the best performance and underlined ones
are the second best.

Methods View Point Scale Truncation Occlusion All
easy medi hard|easy medi hard|none src tgt both|none src tgt both
CNNGeoResNet-101 [4] |28.8 12.0 6.4 |24.8 18.7 10.6|23.7 15.5 17.9 15.3|22.9 16.1 16.4 14.4|20.6
A2NetResNet-101 [7] 30.9 133 7.4 (26.1 21.1 12.4]25.0 17.4 20.5 17.6|24.6 18.6 17.2 16.4|22.3
WeakAlignResNet-101 [6]/29.3 11.9 7.0 |25.1 19.1 11.0|24.0 15.8 18.4 15.6|23.3 16.1 16.4 15.7|20.9
NC-NetResNet-101[7] 26.1 13.5 10.1{24.7 17.5 9.9 |22.2 17.1 17.5 16.8|22.0 16.3 16.3 15.2]20.1
HPFResNet-101[5] 35.6 20.3 15.5|33.0 26.1 15.8|31.0 24.6 24.0 23.7|30.8 23.5 22.8 21.8|28.2
SCOTResNet-101[9] 42.7 28.0 23.9|41.1 33.7 21.4|39.0 32.4 30.0 30.0/39.0 30.3 28.1 26.0|35.6
DHPFResNet-101[10] 43.1 31.0 27.3|42.0 35.6 25.0(40.3 34.7 32.5 30.9|40.4 32.5 30.3 28.1|37.3
CATSsResNet-101[11] 54.0 45.5 43.1|54.7 49.3 35.3|48.1 53.7 42.3 42.4|44.0 53.2 42.9 41.7]49.9
PMNCResNet-101[12] 53.3 47.4 45.9|53.7 49.6 41.5|54.3 46.8 45.0 41.9|54.2 43.9 43.0 38.4|50.4

Ours(ST)ResNet-101 57.1 47.1 44.8|56.3 52.2 39.648.7 56.5 45.9 43.5(46.4 55.6 45.9 43.1|52.4
Ours(MT)ResNet-101  |59.6 50.7 48.3|59.0 55.3 43.4|52.5 59.3 48.8 46.0|50.3 58.3 49.0 46.1|55.3
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B. FLOPS Comparison

We compare the model complexity of our proposed network with existing work |
by computing FLOPS with facebookresearch/fvcore library. We summarize the
results in Table S2. Our proposed network has 1.54M and 310.27M lower total
FLOPS compared with CATs [11] and NCNet [7], respectively, as we do not use
any conv4d or self-attention layers for correlation refinement.

Table S2. FLOPS Comparison between baselines and ours.

Total Conv Op. Linear Op.
Model Corr Refine gy hpg (M) FLOPS (M) FLOPS (M)
CATs [11]  Self-Attention 3.52 1.83 1.54
NCNet [7]  Convdd 312.25 312.07 0.00
Ours None 1.98 1.83 0.11

C. More Qualitative Results

More qualitative results from our method (MT) on SPair-71k [1], PF-PASCAL [2]
and PF-WILLOW [3], are shown in Figure S1, S2 and S3, respectively.
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Fig. S1. Qualitative results on SPair-71k benchmark [1]. From left to right are
source image, target image and results from our method, respectively.
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Fig. S2. Qualitative results on PF-
PASCAL benchmark [2]. From left to
right are source image, target image and
result from our method, respectively.
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Fig. S3. Qualitative results on PF-
WILLOW benchmark [3]. From left to
right are source image, target image and
result from our method, respectively.
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