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Abstract. Existing person re-identification methods often suffer signifi-
cant performance degradation on unseen domains, which fuels interest in
domain generalizable person re-identification (DG-PReID). As an effec-
tive technology to alleviate domain variance, the Instance Normalization
(IN) has been widely employed in many existing works. However, IN also
suffers from the limitation of eliminating discriminative patterns that
might be useful for a particular domain or instance. In this work, we
propose a new normalization scheme called Dynamically Transformed
Instance Normalization (DTIN) to alleviate the drawback of IN. Our
idea is to employ dynamic convolution to allow the unnormalized fea-
ture to control the transformation of the normalized features into new
representations. In this way, we can ensure the network has sufficient flex-
ibility to strike the right balance between eliminating irrelevant domain-
specific features and adapting to individual domains or instances. We
further utilize a multi-task learning strategy to train the model, ensur-
ing it can adaptively produce discriminative feature representations for
an arbitrary domain. Our results show a great domain generalization ca-
pability and achieve state-of-the-art performance on three mainstream
DG-PReID settings.

Keywords: Person Re-identification, Domain Generalization, Instance
Normalization, Dynamic Convolution.

1 Introduction

Person re-identification (PReID) aims at matching identical persons across dif-
ferent cameras. Many supervised PReID methods have recently achieved promis-
ing success when training and evaluating images under the same environment.
However, the performance of these methods tends to significantly degrade when
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Fig. 1. The sketches of the traditional Instance Normalization (IN) and our proposed
Dynamically Transformed Instance Normalization (DTIN). Stand, Trans, and DyConv
represent feature standardization, affine transformation, and dynamic convolution op-
eration, respectively. Generally, IN can alleviate domain variances between inputs by
removing their statistical contrast but inevitably eliminates discriminative information
of inputs. It thus leads to a relatively large distance between features of the same pedes-
trian (in the upper case). Therefore, in our DTIN, we employ unnormalized features
to guide the transformation of normalized features into new representations to adapt
individual domains and instances. In this way, features extracted by our DTIN can
both generalize well and be distinguishable.

testing images from an unseen environment. It is a common belief that the
change of capturing environment, e.g., change of illumination, view-angles, and
seasons causes the domain shift, and existing approaches are not robust un-
der those changes. For this reason, domain generalizable person re-identification
(DG-PReID), which aims to build a ReID model that could be more robust to
the domain shift and work in an unseen environment, has received increasing
attention.

Recently a series of DG-PReID methods [5, 10, 4, 12, 16] have been proposed.
Among these prior works, Instance Normalization (IN) [23] is widely used to
produce domain-invariant features by removing the statistical contrast across
feature channels. However, the removed statistics not only encode irrelevant
domain-specific patterns but also contain discriminative patterns that may be
useful for performing ReID for a particular domain or instance. To address this
issue, Pan et al. [19] propose an IBN-Net which concatenates features extracted
by IN and Batch Normalization (BN) together. A more sophisticated method
SNR [12] tries to identify the useful information discarded by IN and then com-
pensate it back. In this work, we aim to address the same issue as the aforemen-
tioned works but address the problem with a different principle. Rather than
focusing on compensation, we shift our attention to building a module that is
sufficiently flexible for learning a mapping function to combine both normalized
features and unnormalized features. Our insight is that when the network is
sufficiently flexible, we could use end-to-end training to discover a model that
can strike a balance between eliminating irrelevant domain-specific features and
adapting to individual domains or instances.
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To this end, in this work, we propose a new normalization scheme named
Dynamically Transformed Instance Normalization (DTIN). The main idea of
our DTIN is to employ unnormalized features to guide the transformation of
normalized features into a new representation that is adapted to the current
domain and instance. To do so, as shown in Figure 1, we integrate IN with a
dynamic instance-aware convolution operation (DyConv). More specifically, in
our DTIN, the adaptive parameters of DyConv are generated under the guid-
ance of unnormalized features and then used to re-calibrate and transform the
normalized ones. The intuition is that the unnormalized features can transform
the normalized ones to dynamically capture information useful to distinguish
instances in specific domains. In this way, we could achieve good generalization
by adaptively creating feature representation for each individual domain or in-
stance. In addition to utilizing unnormalized features as the control signal for the
transformation, we further design a dynamic control path that makes it conve-
nient for the network to utilize patterns from multiple layers. This design further
adds the flexibility of learning a generalizable mapping function. To train the
network, we adopt a multi-task learning formulation to encourage the network
to generate representations that work well for an arbitrary training domain.

2 Related works

Domain Adaptation for Person Re-Identification Unsupervised domain
adaptation (UDA) requires that the deep models trained on the source domain
can adapt to the target domain and work well on it. Generally, in the UDA
setting, numbers of unlabeled target domain data are allowed to be accessed
during the training phase. Recently, generation-based methods [17, 22] and fine-
tuning methods [26, 29] become two major solutions for UDA. The former type
of method mainly employs style transfer algorithms like CycleGAN [34] to trans-
fer the style of labeled source domain data to the style of the target domain.
By training with these transferred data, ReID models can be adapted to target
domains. In addition, fine-tuning methods try to allocate pseudo labels for un-
labelled target domain data by clustering. In this way, they can fine-tune ReID
models on the target domain with obtained pseudo labels. Although the UDA
methods have the potential to adapt ReID models to a target domain, they
highly rely on the unlabeled target domain data, which are not always available
in real-world applications.

Generalizable Person Re-Identification. Domain Generalizable (DG)
Person Re-Identification (PReID) aims to train a robust and generalizable per-
son re-identification model which can perform well on unseen target domains
without a further update. Recently, many relevant works [5, 4, 12, 16, 10] have
been proposed to achieve this goal. Among these methods, Instance Normaliza-
tion (IN) [23] has been widely employed to alleviate domain variances between
input features by removing their statistical contrast. For instance, Jia et al. [10]
simply inserts IN into the early layers of the backbone model to eliminate domain
disparity. However, IN also inevitably causes discriminative information loss for
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input features, which limits its application. Therefore, many revisions have been
given based on IN. For instance, an SNR module [12] has been proposed to dis-
entangle identity-relevant information from features discarded by IN and rein-
troduce it back. In addition, Choi et al. [4] propose a Meta Batch-Instance Nor-
malization (MetaBIN) model which integrates IN with Batch Normalization and
balances their effort with a set of learnable trade-off parameters. However, these
methods are often based on the principle of disentangling the domain-relevant
information and domain-invariant information to design the model structure,
which is perhaps a more challenging problem than domain generalization. Un-
like the prior works, we explore dynamically transforming normalized features
into appropriate representations to make them adaptive to individual domains
and instances.

3 Proposed Methods

This section elaborates on our proposed Dynamically Transformed Instance Nor-
malization (DTIN) module and multi-task training strategy. We first provide the
preliminaries of Instance Normalization and Dynamic Convolution, which under-
pins our proposed method.

3.1 Preliminaries

Let F ∈ RC×H×W be the convolutional feature of a given input image I, where
C is the channel dimension and H,W represent the height and width of the
feature map, respectively.

Instance Normalization (IN) is firstly proposed for the style transforma-
tion task [23] to remove style information from input features. Recently, it has
been widely used for the DG-PReID task to extract domain-invariant represen-
tations by removing their statistical contrast across feature channels. Generally,
IN consists of a standardization component and an affine transformation com-
ponent, which can be respectively written as,

Standardization: F̂ =
F − µ(F )

σ(F )

Affine transformation: F̃ = γF̂ + β, (1)

where F̃ represents the normalized features, µ and σ denote channel-wise mean
and standard deviation of F ; γ and β are trainable affine parameters learned from
end-to-end training on the entire training dataset. By removing domain-specific
factors encoded in the mean and standard deviation of the feature channels,
IN can effectively enhance the robustness of ReID models by making them less
sensitive to domain change.

The effectiveness of IN in extracting domain-invariant representations has
been verified in many existing domain generalization studies [10, 19, 4]. How-
ever, the classical IN approach also faces a significant drawback. As also dis-
cussed in [19], the channel-wise variance contrast removed by IN also encodes
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Fig. 2. The sketch of our Dynamically Transformed Instance Normalization (DTIN).
The scaling modules in (a) are a set of 3×3 convolutional layers, which are responsible
for matching the spatial and channel scales between multi-level features. The parameter
predictors are used to generate adaptive parameters, i.e., weight and bias, for the
dynamic convolution operation.

discriminative patterns that might be useful for performing ReID in a particular
domain or instance. Blindly removing them will have a negative impact on the
DG-PReID task.

Dynamic Convolution (DyConv) can adaptively adjust the feature ex-
traction paradigm according to the input instances. Compared to static modules,
DyConv is more easily adapted to out-of-distribution inputs due to its flexiblil-
ity [31, 1]. The idea of DyConv is firstly proposed in [11]. In a dynamic convolu-
tional layer, the weight and bias of each filter are generated from the input and
applied to the input. Formally, it can be written as:

FDC = conv (F ;w(F )) , (2)

where FDC represents the output of DyConv; conv(·) indicates the convolution
operation, w(F ) represents the filter parameters, i.e., weight and bias, which are
generated from input features F . So, w(F ) is a function of F . DyConv is an
ideal structure for model adaptation since it can adjust the model parameters
from the input. Motivated by that, this paper employs DyConv to modulate the
normalized feature after IN.

3.2 Dynamically Transformed Instance Normalization

In this work, we propose to integrate DyConv into IN to overcome the drawback
of IN. The intuition of doing so is to adaptively re-calibrate normalized features
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via DyConv into new representations that can adapt to individual domains and
instances. To this end, in this work, we propose a Dynamically Transformed
Instance Normalization (DTIN) module, as illustrated in Figure 2 (c). In our
DTIN, we employ a 1 × 1 dynamic convolution [11] to transform normalized
features extracted from IN.

Intuitively, we can regard the filters generated in a DyConv as pattern de-
tectors [3] that can adaptively adjust their sensitivity towards different visual
patterns based on input image content. Also, in our design, we modify DyConv
by using the unnormalized features to generate filters to process normalized (IN)
features. In this way, we could make most of both normalized and unnormal-
ized features for identifying the useful features for ReID. Please see Figure 4 for
some concrete examples that show the advantage of the proposed design. More
formally, the DTIN operation can be written as:

FDTIN = conv(
F c − µ(F c)

σ(F c)
;w(F ′)),

F c = conv(F ; θ0), w(F
′) = fc(relu(fc(pool((F ′)), θ1)), θ2),

(3)

where the F and the FDTIN are input and output features of our DTIN;
conv(F ; θ0) indicates a 1× 1 convolutional layer which is employed in our DTIN
to reduce the channel dimension of features before IN from C to K (K=64);
pool(·) denotes spatially average pooling operation; θ1 and θ2 represent param-
eters of fully connected layers fc(·). w(F ′) denotes the produced adaptive pa-
rameters (including weight and bias); F ′ is the features employed for parameter
prediction, which involves the unnormalized features and will be explained in
the following with more details;

Note that there is no need to apply an additional static affine transformation

to standardized features F c−µ(F c)
σ(F c) as in IN since DyConv has already performed

a dynamic transformation to them.
Details of the control signal F ′. As mentioned above, we modify DyConv

by generating the filters from F ′ rather than F . In our design, F ′ contains
features before the IN layer, i.e., unnormalized features. This is motivated by
our concern that IN will eliminate some domain-specific patterns that might be
useful for performing ReID for an individual domain or instance. For this reason,
our design is different from an architecture of using DyConv layer after IN. In
the latter case, the filters are not generated from unnormalized features but from
normalized features. We compare this alternative in Figure 3 and find that it
leads to much worse performance.

In addition to using unnormalized features for producing F ′, we also use
skip-connections to bring signals from low-level features to enrich F ′. We call
this design the dynamic control path, and the visualization of this scheme can
be found in Figure 2 (a). As seen, the dynamic control path aggregates features
from multiple levels, and a set of 3× 3 convolutional layers are employed along
the dynamic control path to ensure the consistency of feature map dimensions.
After integrating these multi-level features to produce F ′, we fed it into DyConv
to generate w as in Equation. 3.
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Advantages of our DTIN. Our DTIN integrates the IN and DyConv mod-
ules. IN plays a role in eliminating irrelevant domain-specific patterns but is with
the limitation of removing discriminative domain-specific or instance-specific in-
formation. DyConv module controlled by the unnormalized features can not only
re-calibrate those features to avoid over-normalization but also transform the
normalized features (through convolution operation) into an appropriate repre-
sentation. In this sense, our DTIN allows a flexible mapping function that could
achieve a trade-off between eliminating ineffective domain-specific factors and
adapting to individual domains or instances.

The Deployment of DTIN. To fairly evaluate the effectiveness of our
designed DTIN, in this work, we insert it into the widely employed ResNet-50
model [8]. The empowered model is named as DTIN-Net, as shown in Fig-
ure 2 (a). The ResNet-50 consists of four major stages, and each stage contains
different numbers of residual blocks. To avoid introducing excess computational
consumption, we only use our DTIN to replace the 3×3 convolution layer in the
last residual block of the 2nd - 4th stages, to refine features extracted in these
stages. Besides, we experimentally insert vanilla IN after the first residual stage
to facilitate convergence [16].

3.3 Multi-task Training Strategy

Generally, we can access data from multiple source domains at the DG-PReID
training stage. Here we denote all the available source domains as D = {Ds}Ss=1,
where we use the S to indicate the number of available domains. In addition,
Ds = (xsi , y

s
i )

Ns

i=1 represents the s-th domain, the xsi and y
s
i respectively represent

the input image and the label of i-th sample, and the Ns denotes the number of
instances in the s-th domain.

Our aim is to learn a feature extractor to adaptively generate feature repre-
sentations that can achieve good ReID performance for arbitrary domain. Thus,
we treat each domain as an independent task and supply those tasks with a
shared feature extractor. This is equivalent to a multi-task-style training pro-
cess.

Formally, for each domain, we create an ID classifier φs to perform ID clas-
sification. The s is the domain index. The label space of s-th classifier φs is the
identities in the s-th domain. We also apply triplet loss to the samples randomly
sampled from the s-th domain. The overall objective function of our multi-task
training strategy is to minimize the average of loss in each domain:

LM.T. =
1

S

S∑
s=1

1

Ns

( Ns∑
i=1

Lce (φs (ψ(x
s
i )) , y

s
i ) + Ltri.(ψ(x

s
i ), ψ(x

s
pi), ψ(xsni))

)
,

(4)
where the i and s are indexes of image and domain; Ns represents the number
of instances in the s-th domain; xspi and xsni are sampled positive instance and

negative instance for xsi ; ψ(·) denotes the feature extraction model, i.e., our
DTIN-Net; the Lce and Ltri. represent cross-entropy loss and triplet loss.
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Note that in contrast to the aforementioned multi-task training, one could
also stack the training samples from all domains together. Then it is possible to
apply ID classification loss with a classifier with the label space corresponding
to all identities and also apply the triplet loss to triplets sampled from all sam-
ples. However, we empirically find this scheme leads to worse performance. The
reason is that by doing so, we have the risk of encouraging the network to use
features that distinguish domains but not instances. For example, if the negative
image pairs in the triplet loss are from two different domains, the network could
partially rely on such features to pull those negative image pairs apart.

4 Experiments

4.1 Implementation Details and Evaluation Setting

Dataset. In this paper, we employ the mainstream person ReID datasets to
evaluate the generalization capability of our method, including 6 larger datasets
Market1501 (M) [27], DukeMTMC-ReID (D) [30], Cuhk02 (C2) [13], Cuhk03
(C3) [14], CuhkSYSU (CS) [25], MSMT17 (MS) [24], and 4 smaller ones termed
VIPeR (V) [7], PRID (P) [9], GRID (G) [18], and QMUL i-LIDS (Q) [28].

Settings. In this paper, we first adopt two widely used multiple source do-
main generalization protocols as in [5] to evaluate the generalization capability
of our model. In Protocol-1, we employ the M, D, C2, C3, and CS to construct
the training set and evaluate our model on the V, P, G, and Q, respectively. In
Protocol-2, the training set comprises M, D, C3, and MS, and the test set is the
same as Protocol-1. Besides, we also follow a cross-domain setting [4], in which
we train our model on M (D) and test it on D (M).

Implementation Details. Before the domain generalization training, we
firstly pre-train our DTIN-Net on the ImageNet [6] dataset. Under all proto-
cols mentioned above, we train our model for 120 epochs. Particularly, for the
cross-domain setting, we do not use the multi-task training strategy since it only
contains one source domain. Besides, in our DTIN-Net, the dynamic control path
receives and aggregates features before the first residual stage, features after the
first residual stage, and features before our DTIN modules. The learning rate is
initialized as 3.5 × 10−4 and divided by 10 at the 40-th and 70-th epochs, re-
spectively. In all experiments, each image is resized to 256×128 for training and
test. During the training phase, each image is flipped horizontally with a prob-
ability of 0.5. All results reported in this section are the mean of two repetitive
experiments. In addition, random erasing is employed for data augmentation.
The widely used metrics CMC and mAP are employed to evaluate our model.

4.2 Comparison with State-of-the-art Methods

To clarify, in the remainder of this paper, the “Baseline” model indicates a
ResNet-50 model trained with ID classification loss and triplet loss.

Multiple Source Domain Generalization. We compare our DTIN-Net
with other state-of-the-art methods under the aforementioned Protocol-1 and
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Table 1. The re-identification performance comparison between our DTIN-Net and
other DG-PeReID algorithms under the Protocol-1 (P-1) and Protocol-2 (P-2) settings.
It can be found that our DTIN-Net outperforms the compared algorithms under both
settings.

Setting Method
GRID VIPeR PRID i-LIDS Average

mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1 mAP CMC-1

P-1

DIMN [21] 41.1 29.3 60.1 51.2 52.0 39.2 78.4 70.2 57.9 47.5
DMG-Net [2] 56.6 51 .0 60.4 53.9 68.4 60.6 83.9 79.3 67.3 61.2
RaMoE [5] 54.2 46.8 64.6 56.6 67.3 57.7 90.2 85.0 69.1 61.5
MetaBIN [4] 57 .9 48.4 68 .6 59 .9 81.0 74.2 87.0 81.3 73 .6 66 .0
DTIN-Net 60.6 51.8 70.7 62.9 79 .7 71 .0 87 .2 81 .8 74.6 66.9

P-2

SNR [12] 41.3 30.4 65.0 55.1 60.0 49.0 91 .9 87 .0 64.6 55.4
DMG-Net [2] 47.2 37.3 70.9 62.3 69 .7 59 .7 88.2 83.0 69.0 60.6
RaMoE [5] 53 .9 43 .4 72.2 63 .4 66.8 56.9 92.3 88.4 71 .3 63 .0
DTIN-Net 58.4 49.4 71 .9 64.0 77.4 67.8 89.2 85.3 74.2 66.6

Table 2. The performance of single domain generalization for person re-identification.
Compared with other state-of-the-art algorithms, our DTIN-Net achieves a promising
performance, which indicates our algorithm is also effective when training with limited
data.

Method
M → D D→ M

mAP CMC-1 mAP CMC-1

IBN-Net [19] 24.3 43.7 23.5 50.7
OSNet [33] 25.9 44.7 24.0 52.2

CrossGrad [20] 27.1 48.5 26.3 56.7
QAConv [15] 28.7 48.8 27.2 58.6
L2A-OT [33] 29.2 50.1 30.2 63.8

OSNet-AIN [32] 30.5 52.4 30.6 61.0
SNR [12] 33.6 55.1 33.9 66.7

MetaBIN [4] 33.1 55.2 35.9 69.2

DTIN-Net 36.1 57.0 37.4 69.8

Protocol-2 settings, and the results are shown in Table 1. As we can find, on
almost all datasets, our DTIN-Net model achieves comparable or better per-
formance than compared methods. Only on the i-LIDs dataset our DTIN-Net
is worse than RaMoE [5]. Nevertheless, our DTIN-Net model outperforms all
other compared algorithms in the average performance, which demonstrates the
superiority of our proposed method.

Cross-Domain Generalization. To further evaluate the generalization ca-
pability of our DTIN-Net, we additionally compare it with other state-of-the-art
algorithms under the cross-domain generalization setting. The experiential re-
sults are shown in Table 2. Here, we do not compare our DTIN-Net with other
multi-source DG-PReID methods [5, 2] since these methods design their struc-
ture and training strategy based on the premise that more than one source do-
main can be accessed. Compared to the best competitors, i.e., SNR [12] and
MetaBIN [4], our DTIN-Net achieves significantly better performance, 2.8%
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Table 3. The effectiveness of our designed components, namely dynamically trans-
formed instance normalization module (DTIN) and multi-task training strategy (M.T.).
It can be found that our design is effective in enhancing the generalization capability
of ReID models.

DTIN M.T.
GRID VIPeR

mAP CMC-1 mAP CMC-1

Baseline × × 46.5 37.2 65.3 56.4
Base+IN × × 52.7 42.9 67.5 58.7

DTIN-Net ✓ × 56.4↑3.7 46.2↑3.3 69.1↑1.6 60.4↑1.7

DTIN-Net ✓ ✓ 60.6↑7.9 51.8↑8.9 70.7↑3.2 62.9↑4.2

mAP on average (M → D). The superiority of our DTIN-Net could come from
two aspects. Firstly, inheriting the advantages of dynamic convolution opera-
tion [11] and instance normalization [23], our DTIN module naturally adapts to
out-of-distribution inputs and is robust to domain variance. Secondly, our DTIN
integrates these two effective modules in a judicious manner. By enhancing the
flexibility of ReID model, our DTIN-Net can adaptively balance normalizing do-
main interference and adapting to individual domains or instances. In this way,
our DTIN can extract features that generalize well on unseen domains.

4.3 Ablation Studies

All experiments in this subsection are based on the protocol-1 setting. To clarify,
in this subsection, “Base+IN” indicates the model (based on ResNet-50) inserted
with classical IN layers before the convolutional layers we replace our DTIN with.
“Base+IN+DyConv” is the two-module setup that simply concatenates IN with
a 1× 1 dynamic convolution module [11].

Table 4. The comparison between versions of DTIN-Net with or without our designed
dynamic control path (DyCtrl). M.T. represents the multi-task training strategy. As we
can find, the DyCtrl consistently enhances the generalization capability of our model.

M.T. DyCtrl
GRID VIPeR

mAP CMC-1 mAP CMC-1

DTIN-Net × × 54.7 44.1 68.6 59.6

DTIN-Net × ✓ 56.4↑1.7 46.2↑2.1 69.1↑0.5 60.4↑0.8

DTIN-Net ✓ × 58.8 49.3 70.0 62.3

DTIN-Net ✓ ✓ 60.6↑1.8 51.8↑2.5 70.7↑0.7 62.9↑0.6

Effectiveness of Designed Components. To evaluate the effectiveness of
our designed DTIN and multi-task training strategy (M.T.), we gradually add
them to the “Baseline” model and compare the performance. For a fair com-
parison, in Table 3, we also give the performance of the “Base+IN” model. It
can be found that the robustness of the “Baseline” model to domain variance
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Fig. 3. The CMC-1 to CMC-10 accuracy comparison of variations on the DTIN-Net
architecture. The ( “Base+DyConv”, “Base+SNR”, and “Base+IBN”) are the versions
replacing our DTIN module with a 1×1 Dynamic Filter module [11], SNR module [12],
and IBN module [19]. The “Base+IN+DyConv” is the two-module setup which simply
concatenates IN with a 1× 1 dynamic convolution module [11]. For a fair comparison,
all these models above are trained without our multi-task training strategy.

can be relatively improved by simply applying IN to it. However, the inherent
drawback of IN, i.e., the loss of discriminative information, limits the capability
of the “Base+IN” model. For our DTIN-Net, it achieves a significantly better
recognition accuracy than the “Base+IN” model on unseen domains, about 3.7%
mAP and 1.6% mAP on GRID and VIPeR datasets, respectively. The interpre-
tation could be that the delicate parameter prediction strategy employed by our
DTIN provides sufficient semantic information, based on which our DTIN can
adaptively calibrate normalized features to adapt to individual domains and in-
stances. Besides, the generalization capability of our DTIN-Net can be further
improved (4.2% mAP on the GRID dataset) if we additionally utilize M.T. to
train our DTIN-Net. The interpretation of the improvement could be that our
training strategy can guide our DTIN to learn appropriate transformations to
adapt normalized features to arbitrary domains.

Effectiveness of Dynamic Control Path. To ensure that the features
to predict adaptive parameters contain sufficient semantic information, in our
DTIN-Net, a dynamic control path (DyCtrl) is given to integrating low-level
features as the semantic supplement to high-level features. As shown in Table 4,
this straightforward operation brings 2.5% and 0.6% CMC-1 improvement to
our DTIN-Net on GRID and VIPeR dataset (trained with M.T.), respectively. It
indicates that additional semantic information provided by our designed DyCtrl
indeed benefits to construct instance-adaptive calibration for each input and
improves its distinguishability on unseen domains.

Comparison between Our DTIN and Other Relevant Modules. In
Figure 3, we give the performance of models inserting traditional IN (“Base+IN”),
or dynamic convolution module [11] (“Base+DyConv”) at the positions we
set our DTIN to. As we can find, all these single-module setups improve the
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Original Baseline Base+IN Base + IN + 
DyConv

DTIN-Net
(Ours)

Original Baseline Base+IN Base + IN + 
DyConv

DTIN-Net
(Ours)

M

D

C3

Dataset

Fig. 4. The activation maps of features extracted by “Baseline” model, “Base+IN”
model, two-module setup “Base+IN+DyConv” and our DTIN-Net. The M, D, C3 in-
dicate cases in those rows are sampled from Market1501, DukeMTMC-ReID, Cuhk03
datasets. It can be found that the IN modifies the original activation map. While cor-
rectly reducing the response values for irrelevant regions, such as the “car windows”
region, it also lowers the contrast between discriminative regions and background re-
gions. Directly combining IN with DyConv, i.e., “Base+IN+DyConv”, fails to overcome
the limitation of IN and seems to highlight the background incorrectly. In contrast, our
DTIN can correctly locate the identity-relevant patterns and remove the activations
from the irrelevant regions.

“Baseline” model. However, simply concatenating these two effective modules
(“Base+IN+DyConv”) together does not bring an additional improvement. The
interpretation could be that the information loss caused by IN may seriously
limit the flexible nature of the dynamic module. As shown in Figure 4, the
“Base+IN+DyConv” even seems to highlight the background incorrectly due
to the insufficient semantic perception capability of its generated parameters.
On the contrary, thanks to the delicate dynamic control path, our DTIN en-
sures features to parameter prediction contain sufficient semantic information.
In this way, our DTIN can effectively calibrate normalized features to adapt to
individual domains and instances. As shown in Figure 4, our DTIN can effec-
tively capture discriminative clues of each instance (like the cartoon pattern in
the first case in Market1501 dataset) and thus is able to re-calibrate normal-
ized features to be distinguishable. In addition, in Figure 3 we also give the
performance of models replacing our DTIN with SNR [12] (“Base+SNR”) and
IBN [19] (“Base+IBN”) module. Thanks to the flexible nature of our DTIN, it
can adaptively strike the right balance between normalizing irrelevant domain
features and adapting to individual domains or instances and thus achieves a
better performance than these compensation-based methods.
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Table 5. The comparison of model capacity and computation consumption between
our DTIN-Net and other state-of-the-art methods. Our DTIN-Net achieves a signif-
icantly better generalization performance than compared methods with comparable
parameters (Params) and floating-point operations (FLOPs).

Method
GRID VIPeR Params FLOPs

mAP CMC-1 mAP CMC-1 (M) (GMac)

Base+IN 52.3 42.5 67.3 58.4 23.5 4.1
RaMoE [5] 54.2 46.8 64.6 56.6 39.3 4.1
MetaBIN [4] 57.9 48.4 68.6 59.9 23.6 4.1

DTIN-Net 60.6 51.8 70.7 62.9 25.5 3.7

Analysis about Model Capacity. In this work, we employ a dynamic con-
volution module to instance-adaptively transform normalized features to make
them adapt to individual domains and instances. However, it also raises the
suspicion, namely, whether the superiority of our DTIN-Net is caused by in-
creasing the capacity of the backbone model with the computation-expensive
dynamic convolution modules? To explore this suspicion, we compare the gen-
eralization capability and model capacity of our DTIN-Net with other state-of-
the-art models. In addition, the capacity of the “Base+IN” model is also given
for comparison. The results are given in Table 5, from which we can summa-
rize two important findings. Firstly, thanks to the light-weight design of our
DTIN-Net, our DTIN-Net achieves a significantly better performance than the
“Base+IN” model, about 8.3 % mAP on GRID dataset, by increasing only a
few additional parameters (2 M) and even saving 9.8 % calculation (0.4 GMac).
Secondly, compared with other state-of-the-art methods, i.e., RaMoE and Meta-
BIN, our DTIN-Net achieves a better generalization performance (averagely,
4.6% mAP on GRID dataset) with comparable parameters and computations.
It indicates that the superiority of our DTIN-Net on DG-PReID task is not
caused by improving model capacity.

T-SNE Visualization Results. To intuitively show how our DTIN en-
hances the generalization capability of ReID models, in Figure 5 we exhibit the t-
SNE visualization of features extracted by the “Baseline” model, the “Base+IN”
model, and our DTIN-Net. Here, we randomly sample 60 pairs of query and
gallery images from each of the 4 unseen domains (GRID, PRID, VIPeR, and
i-LIDS). In this experiment, the perplexity and iteration of t-SNE is set to 6 and
50. respectively. The features used for visualization are extracted after the last
DTIN module for our model and the corresponding position for comparing mod-
els. As shown in Figure 5 (a), we can find that the “Baseline” model is seriously
influenced by domain factors, which causes clear domain boundaries. Particu-
larly, in the selected gray section, since samples from query set and gallery set are
captured under different cameras, there even exists a significant gap between the
features of query samples and gallery samples. For the “Base+IN” in Figure 5
(b), it effectively erases the domain interference of each input and thus breaks
the domain boundaries. However, due to the loss of discriminative information,
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(c) DTIN-Net(b) Base + IN

GRID

PRID

VIPeR

I-LIDs

(a) Baseline

Fig. 5. The t-SNE results of features on four unseen target datasets (VIPeR, PRID,
GRID, and i-LIDS). For comparison, we simultaneously give the visualization of fea-
tures processed by the “Baseline” model, the “Base+IN” model, and our DTIN-Net.
Dots with identical colors are from the same domain. Besides, the triangular and cir-
cular dots represent query and gallery, respectively.

large intra-class distances exist between query instances and gallery instances (as
shown in the selected section) which may limit the recognition accuracy of ReID
models. For our DTIN module, by applying instance-level adaptive calibration
for each normalized feature, it significantly improves the distinguishability of
normalized features by IN. Specifically, we can find that our DTIN-Net forms
a relatively independent sub-cluster for each person instance with clear bound-
aries, while the cluster boundaries in “Base-IN” are blurred.

5 Conclusion

In this work, we propose a new normalization scheme named Dynamically Trans-
formed Instance Normalization (DTIN), which effectively alleviates the inherent
drawback of Instance Normalization that inevitably impacts discriminative infor-
mation of input features. By transforming normalized features into appropriate
representation in a learnable and adaptive manner, our DTIN empowers ReID
models to strike the right balance between normalizing irrelevant domain features
and adapting to individual domains or instances. In addition, we further pro-
pose a multi-task formulation on multiple training domains to train our model.
Extensive experiments demonstrate the superiority of our proposed method.
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