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Abstract. Text-Video retrieval is a task of great practical value and
has received increasing attention, among which learning spatial-temporal
video representation is one of the research hotspots. The video encoders
in the state-of-the-art video retrieval models usually directly adopt the
pre-trained vision backbones with the network structure fixed, they there-
fore can not be further improved to produce the fine-grained spatial-
temporal video representation. In this paper, we propose Token Shift
and Selection Network (TS2-Net), a novel token shift and selection trans-
former architecture, which dynamically adjusts the token sequence and
selects informative tokens in both temporal and spatial dimensions from
input video samples. The token shift module temporally shifts the whole
token features back-and-forth across adjacent frames, to preserve the
complete token representation and capture subtle movements. Then the
token selection module selects tokens that contribute most to local spa-
tial semantics. Based on thorough experiments, the proposed TS2-Net
achieves state-of-the-art performance on major text-video retrieval bench-
marks, including new records on MSRVTT, VATEX, LSMDC, Activi-
tyNet, and DiDeMo. Code is available at https://github.com/yuqi657/
ts2_net.
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1 Introduction

With advanced digital technologies, massive amount of videos are generated
and uploaded online everyday. Searching for target videos based on users’ text
queries is a task of great practical value and has attracted increasing research
attention. Over the past years, different text-video benchmarks have been estab-
lished [2,46,10,40,44,25] and various text-video retrieval approaches have been
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Fig. 1. The text-video retrieval examples that require fine-grained video representation.
Left: the small object ‘hat’ is important for correctly retrieving the target video. Right:
the subtle movement of ‘talking’ is crucial for the correct retrieval of the target video.
Green boxes depict the positive video result, while red boxes are negative candidates

proposed [11,17,21,31,30,33], which usually formulate the task as a learning and
matching task based on a similarity function between the text query and can-
didate videos in the corpus. With the success of deep neural networks [9,20,45],
deep learned features have replaced manually-designed features. A text-video
retrieval engine is generally composed of a text encoder and a video encoder,
which maps the text query and the video candidate to the same embedding
space, where the similarity can be easily computed using a distance metric.

Building a powerful video encoder to produce spatial-temporal feature encod-
ing for videos, that can simultaneously capture motion between video frames, as
well as entities in video frames, has been one of the research focuses for text-video
retrieval in recent years [29,3,32]. Lately, Transformer has become the dominant
visual encoder architecture, and it enables the training of video-language models
with raw video and text data [4,34,19,12]. Various video transformers [3,32,5,8],
considering both spatial and temporal representations, have achieved superior
performance on major benchmarks. However, these models still lack fine-grained
representation capacity in either spatial or temporal dimension. For example,
the video encoder in models [34,19,12] normally consists of a single-frame fea-
ture extraction module followed by a global feature aggregation module, which
lacks fine-grained interaction between adjacent frames and only aggregates the
frame-level semantic information. Although the video encoder in Frozen [4] em-
ploys divided space-time attention, it uses only one [CLS] token as the video
representation, failing to capture the find-grained spatial-temporal details. In
general, all these models can effectively represent obvious motions and categori-
cal spatial semantics in the video, but still lack the capacity for subtle movement
and small objects. They will fail in cases such as illustrated in Fig.1, where the
video encoder needs to capture the small object (‘hat’) and subtle movement
(‘talking’) in order to retrieve the correct target videos.

Based on the structure of video transformer, video sequence is spatially and
temporally divided into consecutive patches. To enhance modeling of small ob-
jects and subtle movements, patch enhancement is an intuitive and straight-
forward solution. This motivates us to find a feasible way to incorporate spatial-
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temporal patch contexts into encoded features. The shift operation is introduced
in TSM[29], which shifts parts of the channel along temporal dimension. Shift
Transformer[50] applies shift in visual transformer to enhance temporal model-
ing. However, the architecture of transformer is different from CNN, such partial
shift operation damages the completeness of each token representation.

Therefore, in this paper, we propose TS2-Net, a novel token shift and selec-
tion transformer network, to realize local patch feature enhancement. Specifi-
cally, we first adopt the token shift module in TS2-Net, which shifts the whole
spatial token features back-and-forth across adjacent frames, in order to capture
local movement between frames. We then design a token selection module to se-
lect top-K informative tokens to enhance the salient semantic feature modeling
capability. Our token shift module treats the features of each token as a whole,
and iteratively swaps token features at the same location with neighbor frames,
to preserve the complete local token representation and capture local temporal
semantics at the same time. The token selection module estimates the impor-
tance of each token feature of patches with a selection network, which relies on
the correlation between all spatial-temporal patch features and [CLS] tokens. It
then selects tokens which contributes most to local spatial semantics. Finally, we
align cross-modal representation in a fine-grained manner, where we calculate
the similarity between text and each frame-wise video embedding and aggregate
them together. TS2-Net is optimized with video-language contrastive learning.

We conduct extensive experiments on several text-video retrieval benchmarks
to evaluate our model, including MSRVTT, VATEX, LSMDC, ActivityNet, and
DiDeMo. Our proposed TS2-Net achieves the state-of-the-art performance on
most of the benchmarks. The ablation experiments demonstrate that the pro-
posed token shift and token selection modules both improve the fine-grained
text-video retrieval accuracy. The main contributions of this work are as follows:

– We propose a new perspective of video-language learning with local patch
enhancements to improve the text-video retrieval.

– We introduce two modules, token shift transformer and token selection trans-
former, to better model video representation temporally and spatially.

– We report new records of retrieval accuracy on several text-video retrieval
benchmarks. Thorough ablation studies demonstrate the merits of our patch
enhancement concept.

2 Related Work

2.1 Video Retrieval

Various approaches have been proposed to deal with text-video retrieval task,
which usually consist of off-line feature extractors and feature fusion module
[48,31,21,17,11,30,14,43]. MMT[21] uses a cross-modal encoder to aggregate fea-
ture extracted by different experts. MDMMT[17] further utilizes knowledge
learned from multi-domain datasets. Recent works [26,4,34,19,12] attempt to
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train text-video model in an end-to-end manner. ClipBERT[26] is the pioneer-
ing end-to-end text-video pretrain model. Its promising results show that jointly
train high-level semantic alignment network with low-level feature extractor
is beneficial. CLIP4Clip[34] and CLIP2Video[19] transfer knowledge from pre-
trained CLIP[37] to video retrieval task. However, these models still lack fine-
grained representation capacity in either spatial or temporal dimension. Different
from previous works, we aim to model fine-grained spatial and temporal infor-
mation to enhance text-video retrieval.

2.2 Visual-Language Pre-training

Viusal-language pre-training models has shown promising results in visual-and-
language tasks such as image retrieval, image caption and video retrieval. In
works such as Unicoder-VL[27], VL-BERT[41] and VLP[51], text and visual
sequence are input into a shared transformer encoder. In Hero[28], ClipBERT[26]
and Univl[33], text and visual sequence are encoded independently, then a cross-
encoder is used to fuse different modality. While in Frozen[4], CLIP[37], text
and visual sequence are encoded independently and a contrastive loss is used to
align text and visual embedding. Our work use the two-stream structure, where
text feature and video feature are encoded independently, then a cross-modal
contrastive loss is used to align them.

2.3 Video Representation Learning

Early works use 2D or 3D-CNN to encode video feature [9,20,20,29]. Recently,
Visual Transformer(ViT)[16] has shown great potential in image modeling. Many
works attempt to transfer ViT into video domain [3,5,8,32]. TimeSformer[5] and
ViViT[3] propose variants of spatial-temporal video transformer. There are sev-
eral works exploring shift operation to enable 2D network learn temporal infor-
mation, including TSM[29] and Shift Transformer[50]. They shift parts of the
channel along the temporal dimension. Different from previous work, we consider
token shift operation, which we shift all channels of selected visual tokens to the
temporal dimension rather than partial shift (i.e. shift some channels). Token
selection has been used to reduce redundancy problem in transformer based vi-
sual model. Dynamic ViT[39] and STTS[42] use token selection for efficiency.
Perturbed maximum is proposed in [6] to make top-K differentiable. Based on
differential top-K[13], our work designs a light-weight token selection module to
select informative tokens for effective temporal-spatial modeling.

3 Method

The goal of text-video retrieval is to find the best matching videos based on
the text query. Fig.2 illustrates the overall structure of the proposed TS2-Net
model for the text-video retrieval task, which consists of three key components:
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Fig. 2. Overview of the proposed TS2-Net model for text-video retrieval, which con-
sists of three key components: the text encoder, the video encoder, and the text-video
matching. The video encoder is composed of the Token Shift Transformer and Token
Selection Transformer. (‘Repre’ is short for ‘Representation’)

the text encoder, the video encoder, and the text-video matching. The text en-
coder encodes the sequence of query words into a query representation q. In this
paper, we use GPT [38] model as the text encoder. By adding a special token
[EOS] at the end of query word sequence, we employ the encoding of [EOS]
by the GPT encoder as the query representation q. The video encoder encodes
the sequence of video frames into a sequence of frame-wise video representation
v = {f1, f2, . . . , ft}. Based on the query and video representation, q and v, the
text-video matching computes the cross-modal similarity between the query and
video candidate. In following sections, we first elaborate the core ingredients
of our video encoder, namely the token shift transformer (Sec.3.1) and the to-
ken selection transformer (Sec.3.2), and finally present our text-video matching
strategy in details (Sec.3.3).

3.1 Token Shift Transformer

Token shift transformer is based on Vision Transformer (ViT) [16]. It inserts
a token shift module in the transformer block. Let’s review ViT model first,
and then describe our modification to ViT. Given an image I, ViT first splits
I into N patches {p0, p1, . . . , pn−1}. To eliminate ambiguity, we use token to
represent patch below. After adding a [CLS] token pcls, the token sequence
{pcls, p0, p1, . . . , pn−1} is fed into a stack of transformer blocks. Then the im-
age embedding is generated by either averaging all the visual tokens or using
the [CLS] token pcls. In this work, we use pcls as the image embedding. Token
shift transformer aims to effectively model subtle movements in a video. The
proposed token shift operation is a parameter-free operation, as illustrated in
Fig.3. Suppose we have a video V ∈ RT×N×C , where T represents the number
of frames, N refers to the number of tokens per frame, and C represents the fea-
ture dimension. We feed T frames into ViT to encode frame feature. In certain
ViT layer, we shift some tokens from adjacent frames to the current frame to
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Fig. 3. Illustration of different types of Shift operation and our proposed Token Tempo-
ral Shift. ‘T, P, C’ refer to video temporal dimension, video token, and feature channel
respectively. Each vertical cube group represents a spatial-temporal video token. Cubes
with dash line represent tensor truncated, and white cubes represent tensor padding.
In Shift-Transformer [50], tokens are shifted along the channel dimension, while our
proposed Token Shift Module does not compromise the integrity of a video token

exchange information of adjacent frames. Note that we use a bi-directional token
shift in our implementation. By token shift operation across adjacent frames, our
model is able to capture subtle movements in the local temporal interval.

Shift-Transformer [50] has also explored several shift variants on the visual
transformer architecture. Fig.3 visualizes the difference between these shift vari-
ants and our proposed token shift. A naive channel temporal shift swaps part of
channels of a frame tensor along temporal dimension, as shown in Fig. 3(a). Shift-
Transformer [50] also presents [VIS] channel temporal shift and [CLS] channel
temporal shift, as shown in Fig.3(b)(c). They fix tensor in token dimension and
shift parts of channels for chosen token along the temporal dimension. Different
from these works, our token shift transformer emphasizes the token dimension,
where we shift whole channels of a token back-and-forth across adjacent frames,
as shown in Fig.3(d). We believe our token shift is better for ViT architecture,
because different from the CNN architecture, each token in ViT is independent
and contains unique spatial information with respect to its location. Thus shift-
ing parts of channels destroys the integrity of the information contained in a
token. On the contrast, shifting a whole token with all channels can preserve
complete information contained in a token and enable cross-frame interaction.

However, if we shift most of the tokens in every ViT layer, it damages the spa-
tial modeling ability, and the information contained in these tokens is no longer
accessible in the current frame. We therefore use a residual connection between
original feature and token shift feature, as illustrated in Fig.2. In addition, we
assume that shallow layers are more important to model spatial features, so
shifting in shallow layers could harm spatial modeling. We thus choose to apply
token shift operation only in deeper layers in our implementation.
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Fig. 4. Illustration of Token Selection Module. Top-K informative tokens are selected
per frame from original spatial-temporal tokens for following feature aggregation

3.2 Token Selection Transformer

Aggregating information from each frame is a necessary step in building the
video representation. A naive solution to aggregate per-frame information is by
adding some temporal transformer layers, or by mean pooling as CLIP4Clip[34].
We argue that aggregation with only the [CLS] token leads to missing impor-
tant spatial information (i.e. some objects). An alternative way is using all tokens
from all frames to aggregate information, but this introduces redundancy prob-
lem, leading to the pitfall of some background tokens with irrelevant information
dominating the final video representation.

In this work, we propose the token selection transformer by inserting a token
selection module, which aims to select informative tokens per frame, especially
those tokens containing salient semantics of objects, for video feature aggrega-
tion. As shown in Fig.4, top-K informative tokens are selected via the trainable
token selection module every frame.

The input of the token selection module is a sequence of tokens of each frame
I = {pcls, p0, p1, . . . , pn−1} ∈ R(N+1)×C . We first apply an MLP over I for chan-

nel dimension reduction and output I ′ = {p′cls, p′0, p′1, . . . , p′n−1} ∈ R(N+1)×C
2 .

We then use p
′

cls as a global frame feature and concatenate it with each local
token p′i, p̂i = [p′cls, p

′
i] , 0 ≤ i < N . We finally feed all the concatenated token

features to another MLP followed by a Softmax layer to predict the importance
scores, which can be formulated as:

S = Softmax(MLP(p̂)) ∈ R(N+1). (1)

We select indices of K most informative tokens based on S, denoting as M ∈
{0, 1}(N+1)×K , where each column in M is a one-hot (N + 1) dimensional indi-
cator. We extract top-K most informative tokens by:

Î = MT I, (2)

After top-K token select on every frame, we input the selected tokens from all
frames to a joint spatial-temporal transformer, to learn global spatial-temporal
video representation. We also pick the most informative token from each frame
as the frame-wise video encoding.
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Differentiable TopK. Until now, both top-K operation and one-hot opera-
tion are non-differentiable. To make token selection module differentiable, we
employ the perturbed maximum method proposed in [6]. Specifically, a discrete
optimization problem with input S ∈ R(N+1) (S is the importance score matrix
in Eq.1) and optimization variable M ∈ R(N+1)×K (M is the index indicator
matrix in Eq. 2) can be formulated as:

F (S) = max
M∈C

⟨M,S⟩,M∗(S) = argmax
M∈C

⟨M,S⟩, (3)

where F (S) represents the top-K selection operation, M∗(S) represents the op-
timal value. Based on Eq.3, we can select top-K informative tokens by F (S). We
calculate forward and backward pass following [1,13].

3.3 Text-Video Matching

The similarity between the text query and video candidate is computed by in-
tegrating the similarity between the query and each video frame. To be specific,
given the query representation q and a sequence of frame-wise video representa-
tion v = {f1, f2, ..., ft}, we compute the frame-level similarity as follows:

si =
q · fi

∥q∥ ∥fi∥
. (4)

The final text-video matching similarity is defined as the weighted combination
of frame-level similarities:

s =

n∑
i=1

αisi, (5)

where αi = exp(λsi)∑n
i=1 exp(λsi)

and λ is a temperature parameter. We set λ as 4

empirically in our experiments.
Symmetric cross-entropy loss is adopted as our training objective function.

For each training step with B text-video pairs, we calculate symmetric cross-
entropy loss as follows:

Lt2v
t = − 1

B

B∑
i

log
exp (τ · sim (qi, vi))∑B
j=1 exp (τ · sim (qi, vj))

, (6)

Lv2t
t = − 1

B

B∑
i

log
exp (τ · sim (qi, vi))∑B
j=1 exp (τ · sim (qj , vi))

, (7)

L =
1

2
(Lt2v + Lv2t) , (8)

where τ is a trainable scaling parameter and sim (q, v) is calculated using Eq.5.
During inference, we calculate the matching score between each text and video
based on Eq.5, and return videos with the highest ranking.
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4 Experiment

In this section, we carry out text-video retrieval evaluations on multiple bench-
mark datasets to validate our proposed model TS2-Net. We first ablate the core
ingredients of our video encoder, the token shift transformer and the token se-
lection transformer, on the dominant MSR-VTT dataset. We then compare our
model with other state-of-the-art models on multiple benchmark datasets quan-
titatively and qualitatively.

4.1 Experimental Settings

Datasets. To demonstrate the effectiveness and generalization ability of our
model, we conduct evaluations on five popular text-video benchmarks, including
MSR-VTT[46], VATEX[44], LSMDC[40], ActivityNet-Caption[18,25], DiDeMo[2].
All these datasets are collected from different scenarios with various amounts of
captions. Videos in different datasets also have different content styles and dif-
ferent lengths.

• MSR-VTT[46] contains 10,000 video clips with 20 captions per video. Our
experiments follow 1k-A split protocol used in [21,31,35], where the training
set has 9,000 videos with its corresponding captions and test set has 1,000
text-video pairs.

• VATEX[44] contains 34,991 video clips with several captions per video. We
follow HGR[11] split protocol. There are 25,991 videos in the training set,
1,500 videos in the validation set and 1,500 videos in the test set.

• LSMDC[40] contains 118,081 video clips, which are extracted from 202
movies. Each video clip has one caption. There are about 100k videos in
the training set, 7,408 videos in the validation set and 1,000 videos in the
test set. Especially, videos in the test set are from movies disjoint with the
training and validation set.

• ActivityNet-Caption[18,25] contains 20,000 YouTube videos. Following
the same setting as in [34,49,21], we regard it as a paragraph-video retrieval
by concatenate all descriptions of a video. We train our model on train split
and test our model on val1 split.

• DiDeMo[2] contains over 10k videos. There are 8,395 videos in the training
set, 1,065 videos in the validation set and 1,004 videos in the test set. Fol-
lowing the same setting as in [34,31,26], we concatenate all descriptions of a
video to retrieval videos with paragraphs.

Evaluation Metrics. We measure the retrieval performance using standard
text-video retrieval metrics: Recall at K (R@K, higher is better), Median Rank
(MdR, lower is better) and Mean Rank (MnR, lower is better). R@K calculates
the fraction of correct videos among the top K retrieved videos. Similar to pre-
vious works [34,31,12], we use K=1,5,10 for different datasets. We also sum up
all the R@K results as rsum to reflect the overall retrieval performance. MedR
calculates the median rank of correct results in the retrieval ranking list and
MeanR calculates the mean rank of correct results in the retrieval ranking list.
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Table 1. Performance comparison with different parameter settings of the Token Shift
Transformer on MSR-VTT-1k-A test split

Text =⇒ Video Video =⇒ Text

Method Layers Ratio R@1 R@5 R@10 MnR R@1 R@5 R@10 MnR rsum

Baseline - - 45.4 74.3 82.7 13.6 44.5 72.3 82.3 9.8 401.5
w/ Token Shift 1-12 25% 42.8 71.2 80.9 14.4 43.2 70.3 80.4 11.3 388.8
w/ Token Shift 3-12 25% 44.1 71.0 81.8 14.5 43.5 71.2 81.8 10.8 393.4
w/ Token Shift 5-12 25% 44.4 71.9 81.6 14.6 44.8 72.0 80.6 11.3 395.3
w/ Token Shift 7-12 25% 44.1 72.3 82.9 13.6 43.8 72.3 82.1 10.3 397.5
w/ Token Shift 9-12 25% 45.2 73.8 83.1 13.4 45.3 72.1 82.5 9.5 402

w/ Token Shift 11-12 12.5% 46.0 73.3 82.2 13.8 45.8 72.9 83.0 9.5 403.2
w/ Token Shift 11-12 50% 46.1 74.5 83.3 13.3 45.6 72.9 82.2 9.5 404.6
w/ Token Shift 11-12 25% 46.2 73.9 83.8 13.0 45.6 73.5 83.2 9.3 406.2

Table 2. Performance comparison between other shift operation variants and our
proposed token shift module on MSR-VTT-1k-A test split

Text =⇒ Video Video =⇒ Text

Method R@1 R@5 R@10 MnR R@1 R@5 R@10 MnR rsum

Baseline 45.4 74.3 82.7 13.6 44.5 72.3 82.3 9.8 401.5
Channel Shift[50] 45.6 73.6 83.1 13.7 45.0 73.2 82.7 9.7 403.2
[VIS] Channel Shift[50] 45.1 73.8 83.5 13.9 44.7 73.3 82.2 9.8 402.6
[CLS] Channel Shift[50] 45.8 74.3 83.0 13.6 44.7 72.9 82.5 9.8 403.2

Token Shift 46.2 73.9 83.8 13.0 45.6 73.5 83.2 9.3 406.2

Implementation Details. The layer of GPT, token shift transformer and token
selection transformer is 12, 12 and 4, respectively. The dimension of text em-
bedding and frame embedding is 512. We initialize transformer layers in GPT,
token shift transformer and token selection transformer with pre-trained weight
from CLIP(ViT-B/32)[37], using parameters with similar dimension, while other
modules are initialized randomly. We choose 4 most informative tokens in MSR-
VTT, VATEX, ActivityNet-Caption, DiDeMo, and 1 in LSMDC. We set the
max query text length as 32 and max video frame length as 12 in MSR-VTT,
VATEX, LSMDC. For ActivityNet-Caption and DiDeMo, we set the max query
text length and max video frame length as 64. We train our model with Adam[24]
optimizer and adopt a warmup[23] setting. We choose a batch size of 128. The
learning rate of GPT and token shift transformer is 1e-7 and the learning rate
of token selection transformer is 1e-4.

4.2 Ablation Experiments

In this section, we evaluate the proposed token shift transformer and token
selection transformer under different settings to validate their effectiveness. We
conduct ablation experiments with the 1k-A test split on MSR-VTT[46]. We set
our baseline model as the degraded TS2-Net model which removes the token
shift and token selection modules from TS2-Net.
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Fig. 5. The text-video retrieval results of different network architecture. Left: with to-
ken shift transformer, our model is able to distinguish ‘shake hands’, while the baseline
model retrieves an incorrect video. Right: with token selection transformer, our model
retrieves the correct video, although ‘bag’ is only shown in small part of video frames.
Green boxes: correct target video; red boxes: incorrect target video.

Ablation of Token Shift Transformer. We first analyze the impact of some
factors on the token shift module in Tab.1, including shift layer and shift ratio.
Shift layer (in which layers should we insert token shift) and shift ratio (how
many tokens should we shift) are two main factors that affect the final retrieval
performance. The backbone of our token shift transformer is the 12-layer ViT.
We thus experiment to insert the token shift module in different layers. As shown
in Tab.1, shift operation in deeper layers (i.e. 11-12 layers) brings retrieval per-
formance improvement. But if we shift more layers (i.e. 9-12 layers), it hurts
the retrieval performance, and it hurts more if we operate shift in shallower lay-
ers (i.e. 1-12 layers). We think that shallow layers in ViT are more important in
modeling spatial information, so shift in shallow layers damages spatial modeling
ability. We thus choose to insert the token shift module in the 11-12 layers in the
following experiments. In terms of shift ratio, we find that shifting 25% tokens
back-and-forth across frames achieves the best retrieval performance. Despite
some slight fluctuations, token shift with different ratios achieves better results
than the baseline model. The improvement is more obvious especially for R@1.

We further conduct experiments to compare our proposed token shift mod-
ule with other shift operation variants proposed in Shift-ViT[50]. As shown in
Tab.2, our proposed token shift module outperforms all other shift operation
variants. This is because our token shift operation can preserve the integrity
of the token feature, posing minor impact on the spatial modeling ability. We
visualize the retrieval results from the baseline model and the model with token
shift transformer in Fig.5(a). With token shift transformer, the model is able to
capture subtle movement such as ‘shake hand’.
Ablation of Token Selection Transformer.

The token selection transformer follows the token shift transformer to select
the most informative tokens for the next transformer propagation. We conduct
experiment to verify what proportion of tokens is beneficial to the final retrieval
in Tab.3. As can be observed, selecting fewer tokens per frame tends to achieve
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Table 3. Comparison results with different settings of Token Selection Transformer

Text =⇒ Video Video =⇒ Text

Method top-K R@1 R@5 R@10 MnR R@1 R@5 R@10 MnR rsum

Token Shift 1 46.2 73.9 83.8 13.0 45.6 73.5 83.2 9.3 406.2

w/ all token 50 45.8 73.5 83.4 13.5 44.7 73.1 82.4 9.4 402.9
w/ Random select 4 46.4 73.9 83.5 13.1 45.1 73.5 82.1 9.5 404.5

w/ Select token 2 47.0 74.2 83.6 13.1 45.6 74.0 83.5 9.3 407.9
w/ Select token 6 46.6 74.4 84.3 13.2 44.5 73.8 83.2 9.2 406.8
w/ Select token 8 46.4 73.9 83.5 13.2 45.0 74.1 83.9 9.2 406.8

TS2-Net 4 47.0 74.5 83.8 13.0 45.3 74.1 83.7 9.2 408.4

Table 4. Retrieval results on MSR-VTT-1kA. Other SOTA methods are adopted as
comparisons. Note that CLIP2TV uses patch size of 16×16, so we use TS2-Net(ViT16)
for fair comparison. All results in this table do not use inverted softmax

Text =⇒ Video Video =⇒ Text

Method R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

CE[31] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1
TACo[47] 26.7 54.5 68.2 4.0 - - - - - -
MMT[21] 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3

SUPPORT-SET[36] 27.4 56.3 67.7 3.0 - 26.6 55.1 67.5 3.0 -
TT-CE[14] 29.6 61.6 74.2 3.0 - - - - - -
T2VLAD[43] 29.5 59.0 70.1 4.0 - 31.8 60.0 71.1 3.0 -

HIT-pretrained[30] 30.7 60.9 73.2 2.6 - 32.1 62.7 74.1 3.0 -
Frozen[4] 31.0 59.5 70.5 3.0 - - - - - -

MDMMT[17] 38.9 69.0 79.7 2.0 16.5 - - - - -
CLIP[37] 39.7 72.3 82.2 2.0 12.8 11.3 22.7 29.2 5.0 -

CLIP4Clip[34] 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6
CAMoE[12] 44.6 72.6 81.8 2.0 13.3 45.1 72.4 83.1 2.0 10.0

CLIP2Video[19] 45.6 72.6 81.7 2.0 14.6 43.5 72.3 82.1 2.0 10.2
TS2-Net 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2

CLIP2TV[22] 48.3 74.6 82.8 2.0 14.9 46.5 75.4 84.9 2.0 10.2
TS2-Net(ViT16) 49.4 75.6 85.3 2.0 13.5 46.6 75.9 84.9 2.0 8.9

better performance than selecting more. For example, the R@1 performance
decreases from 47.0 to 45.8 while the number of selected tokens increases from
2 to 50. We consider that fewer informative tokens are sufficient to preserve
the salient spatial information, while adding more tokens may bring redundancy
problem. Although random selection also improves the performance slightly, it
can not beat the proposed learnable token selection module. In Fig.5(b), we
show a retrieval case from the baseline model and the model with token selection
transformer. With token selection transformer, the model is able to capture the
small object ‘bag’ in video frames.

4.3 Comparisons with State-of-the-art Models

MSR-VTT-1kA. We compare our proposed TS2-Net with other state-of-the-
art methods on five benchmarks. Tab.4 presents the results on MSR-VTT-1kA
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Table 5. Text-to-Video retrieval results on VATEX, LSMDC, ActivityNet and
DiDeMo. QB-Norm uses dynamic inverted softmax during inference, while other meth-
ods report results without inverted softmax

VATEX

Method R@1 R@5 R@10 MdR MeanR

Dual Enc.[15] 31.1 67.5 78.9 3.0 -
HGR[11] 35.1 73.5 83.5 2.0 -
CLIP[37] 39.7 72.3 82.2 2.0 12.8

CLIP4Clip[34] 55.9 89.2 95.0 1.0 3.9
QB-Norm*[7] 58.8 88.3 93.8 1.0 -

CLIP2Video[19] 57.3 90.0 95.5 1.0 3.6

TS2-Net 59.1 90.0 95.2 1.0 3.5

ActivityNet

Method R@1 R@5 R@10 MdR MeanR

CE[31] 20.5 47.7 63.9 6.0 23.1
ClipBERT[26] 21.3 49.0 63.5 6.0 -

MMT-Pretrained[21] 28.7 61.4 - 3.3 16.0
CLIP4Clip[34] 40.5 73.4 - 2.0 7.5

TS2-Net 41.0 73.6 84.5 2.0 8.4

LSMDC

Method R@1 R@5 R@10 MdR MeanR

JSFusion[48] 9.1 21.2 34.1 36.0 -
CE[31] 11.2 26.9 34.9 25.3 -

Frozen[4] 15.0 30.8 39.8 20.0 -
CLIP4Clip[34] 22.6 41.0 49.1 11.0 61.0
QB-Norm*[7] 22.4 40.1 49.5 11.0 -
CAMoE[12] 22.5 42.6 50.9 - 56.5

TS2-Net 23.4 42.3 50.9 9.0 56.9

DiDeMo

Method R@1 R@5 R@10 MdR MeanR

ClipBERT[26] 20.4 48.0 60.8 6.0 -
TT-CE[14] 21.1 47.3 61.1 6.3 -
Frozen[4] 31.0 59.8 72.4 3.0 -

CLIP4Clip[34] 42.5 70.2 80.6 2.0 17.5

TS2-Net 41.8 71.6 82.0 2.0 14.8

test set. Our model outperforms previous methods across different evaluation
metrics. With token shift transformer and token selection transformer, our model
is able to capture subtle motion and salient objects, and thus our final video
representation contains rich semantics. Compared with video-to-text retrieval,
the gain on text-to-video retrieval is more significant. We consider it is because
the proposed token shift and token selection modules enhance the video encoder,
while a relative simple text encoder is adopted.
Other Benchmarks. Tab.5 presents text-to-video retrieval results on VATEX,
LSMDC, ActivityNet-Caption and DiDeMo. Results on these datasets demon-
strate the generalization and robustness of our proposed model. Our model
achieves consistent improvements across different datasets, which demonstrates
that it is beneficial to encode spatial and temporal features simultaneously by
our token shift and token selection. Note that our performance surpasses QB-
Norm[7] on LSMDC and VATEX even without inverted softmax, as shown in
Tab.5. More detailed analysis can be found in supplementary materials.

4.4 Qualitative Results

We visualize some retrieval examples from the MSR-VTT testing set for text-to-
video retrieval in Fig.6. In the top left example, our model is able to distinguish
‘hand rubbing’ (in the middle picture) during a guitar-playing scene. The bot-
tom right example shows our model can distinguish ‘computer battery’ from
‘computer’. In the bottom left example, our model retrieves the correct video
which contains all actions and objects expressed in the text query, especially
the small object ‘microphone’ and tiny movement ‘talking’. In the bottom right
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Fig. 6. Visualization of text-video retrieval examples. We sorted results based on its
similarity scores. Green: ground truth; Red: incorrect

example, our model retrievals the correct result although ‘rotating’ is a periodic
movement and is hard to spot.

We also select a subset from the MSR-VTT-1kA test set. Queries in this
subset are selected based on their corresponding video’s visual appearance, where
objects mentioned in query are shown in a small part of video and movements
mentioned in query is slight. Such as ‘little pet shop cat getting a bath and
washed with little brush’, ‘a golf player is trying to hit the ball into the pit ’. Since
such cases account for a small proportion, so the total number of this subset is
103. During inference, we calculate similarity between queries in subset with
videos in whole test set. We compare our model with another strong baseline on
this subset. Our model achieves 79.6 on R@1 metric, while CLIP4Clip[34] only
achieves 39.8. There is a significant margin and this verifies the effectiveness of
TS2-Net in handling local subtle movements and local small entities.

5 Conclusion

In this work, we propose Token Shift and Selection Network (TS2-Net), a noval
transformer architecture with token shift and selection modules, which aims to
further improve the video encoder for better video representation. A token shift
transformer is used to capture subtle movements, followed by a token selection
transformer to enhance salient object modeling ability. Superior experimental
results show our proposed TS2-Net outperforms start-of-the-art methods on
five text-video retrieval benchmarks, including MSR-VTT, VATEX, LSMDC,
ActivityNet-Caption and DiDeMo.
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Program of China (No. 2020AAA0108600) and National Natural Science Foun-
dation of China (No. 62072462).
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