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Introduction In this supplementary material, we present
a proof in A.a, detailed explanations in B.a and B.c, statis-
tics in B.b, additional ablations in C.a, and additional visu-
alized results in C.b to better understand the main paper. To
reproduce our work, we provide a pseudo-code and train-
ing scheme in A.b, and an anonymous Github link which
contains an executable code and a list of data.

A. Details on Deep Hash Distillation
A.a. Hamming Distance Analysis

For a given input image x; and x;, a deep hashing model
‘H produces corresponding hash codes h; and h;, which are
quantized to binary codes b; and b; in {—1, 1}* with sign
operation (b; = sign(h;), b; = sign(h;)), respectively. For
retrieval, Hamming distance Dy is computed with the bi-
nary codes as:

where XOR is a bit-wise count operation that outputs in the
range [0, K]. From a mathematical point of view, XOR can
be interpreted as:

XOR (b;,b;) = = (K —b] - b;)

NN R
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(1 =8 (bi; b)),

where ||b;|[, = ||b;|l, = VK, and S (,-) denotes cosine
similarity which also can be notated as:

S (bi,bj) = COS (g5
Y (i)
Dill b5,

where o is the angle between b; and b;. It should be noted
that 1—S (b, b;) presents a cosine distance between b; and
b; and can be approximated with h; and h; as:

1—S(bl,b]) ~ 1—S(h“h3) (IV)

where 1 — S (h;, h;) is a cosine distance between h; and
h;. Therefore, minimizing the cosine distance between hash
codes during the deep hashing training allows to reduce the
Hamming distance between their binary codes.



A.b. Pseudo-code and Learning Algorithm Algorithm 2 Self-distilled Hashing training scheme.

# H: deep hashing model

# sT: transformation occurrence scale
augT = augmentation(sT): # teacher group
4 augS = augmentation(l.0) # student group

We provide a PyTorch-like pseudo-code in Algorithm 1
and detailed training process in Algorithm 2 and 3 for repro-
ducibility of our Deep Hash Distillation (DHD) framework.

6 for x in loader: # load a minibatch of n-samples

Algorithm 1 Data augmentation and loss functions. 7 xT, xS = augT(x), augS(x) # random views
8 hT, hS = H(xT), H(xS) # hashing, n-by-K

1 # Import pytorch

> import torch as T

3 # Import kornia library for augmentation

+ # https://https://github.com/kornia/kornia
5 import kornia.augmentation as Kg

10 L = SdH (hT, hS) # loss
1 L.backward() # back-propagate
12 update (H(xS)) # Adam update

14 def SdH(hT, hS): #Self-distilled Hashing
15 hT = hT.detach() # stop gradient

7 # Augmentation class to separate teacher/student.
16 hT = normalize (hT, dim=1) # 12-normalize

8 class Augmentation() :

o 1 hS = normalize (hS, dim=1) # 12-normalize
10 # Transformation defined in kornia 18 return 1- (hT * hS).sum(dim=1) .mean ()

11 # Apply augmentation sequentially

12 def init (self, sT):

13 self.Aug = Sequential( Algorithm 3 Entire DHD training for batch size Np
14 Kg.RandomResizedCrop (p=1.0%sT), . X X N

s Kg.RandomHorizontalFlip (p=0.5#sT), 1: Initialize 0 with pretrained model weights.

16 Kg.ColorJitter (p=0.8%sT),

, Kg . RandomGrayscale (p=0.2+sT) , 2: Initialize 6 and 6 p with Xavier initialization.

18 Kg.RandomGaussianBlur (p=0.5%sT)) 3. 9+(}U ::exp(——(@jﬁf)
g

1 — _ (h+1)?

20 def forward(self, x): 4 g (}n —-exp(—— 252 )

21 return self.Aug (x)
) g Input: Parameters of each component: 0y, 0y, 0p

23 # Hash Proxy-based learning in Eqgn 4 of paper. Input: X» = {(= T
i class HP Loss () : P B {( 17Y1% 7( NBayNB)}

25 5: fOl"rLin{l,...,NB} do

26 # Employ trainable hash proxies .

- def init (self, N_cls, N_bit): 6:  draw two transformations to,_1 ~ T, ta, ~ Tg
28 self.HP = Parameter (shape=(N_cls, N_bit ~

o ( pe=(N_ X 7: Tan—1 <__t2nfl(-73n)

30 def forward(self, h, tau, L): 8: Ton e-th(wn)

31 # Compute cosine similarity B

2 # and Temperature scaling 9:  ho,_1 « tanh(Hy, (Eoy (Z2n—1)))
33 D = cos_sim(h, self.HP) / tau . ~

34 # Label normalization 10: hop taan(IYQH(l?gE(xgn)))

35 L = normalize (L) 11: p2n71<__}%P(h2n71)

36 return (-L % log_softmax (D)) .sum()

37 12: end for

33 # Reducing quantization error in Egn 6 of paper.

. : Np
w class BCE-0_Loss () : 13: Lsqm < Lgqm with {hay,_1,hop } 5

40 R : Np

4 # Utilize two Gaussian estimators 14 KHP < LHP with {p2n_17yn}n=1

0 def init(self, std): 15: Lpce-g + Loee-g With g, g7, {hzn,l}flvjl
13 self.gp = T.exp(-0.5%((x-1)/std)**2)

44 self.gn = T.exp(-0.5% ((x+1)/std) *=*2) 16: OE,H’é_ OEFH'_'V ggifﬁ gi;g +'ag§gi;?)
45 self .BCE = T.nn.BCELoss () . Mpp

“ 17: 9P(*0P7’)/W

47 def forward(self, x): Output: Updated 0g,0,0p

48 # Likelihood estimate

49 hp = self.gp(x)

50 hn = self.gn(x)

51 # Define binary goals

52 y = (x.sign().detach() + 1.0) / 2.0

53 # Compute Binary Cross Entropy

54 lp = self.BCE (hp, y)

55 In = self.BCE (hn, 1-y)

56 return 1lp + 1n




B. Experimental Setting
B.a. More Details on Implementation

The pretrained model weights of AlexNet [8] and
ResNet [6] are from Torchvision!. Especially for trans-
former backbones, we adopt base pretrained model weights
as:  VIiT [3] with vit_base_patchl6.224, DeiT
[12] with deit base_distilled_patchl6_224 and
SwinT [10] with swin_base_patch4_window7_224,
from timm 2 open source library respectively. In order to
fit in to deep encoders, we crop the center of the dataset im-
ages to the size of 224 x 224 after augmentation for training,
while cropping without augmentation for test.

There may be performance differences in the retrieval re-
sults of existing methods [1,2,4,9, 13—15] depending on the
implementation setups, but we set the same training strategy
as: Adam optimizer [7], learning rate schedule [11] with
warm-up for the first 10 epochs, and reducing the learn-
ing rate of the deep encoder by 1/20, for a fair comparison.
Batch size is set to 128 as default, however, we adjust it as a
half for pair-wise learning approaches [1,2] for stable learn-
ing, and as a quarter when training transformers, in order to
fit in NVIDIA 3090 RTX 24GB GPUs. Other conditions for
training are adopted with defaults proposed in each method.

B.b. Dataset Configuration and Statistics
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Figure A. Number of images per category in the training set.

Ihttps://pytorch.org/vision
2ht tps://github.com/rwightman/pytorch-image-models

During dataset preparation, we resize all images to 256 x
256. Figure A shows how distributed each category is in the
training sets of retrieval datasets.

ImageNet is a single-labeled dataset to evaluate the classifi-
cation performance, which consists of over 1.2M images in
the training set and S0K images in the validation set. There
are 1,000 categories to be classified. However, we employ
a subset of ImageNet with 100 categories, where the train-
ing set and the query set are configured by assigning single
label (1/100 = 1% of total) to each image. The training set
is composed of the same 130 images per category.
NUS-WIDE is a multi-labeled dataset which contains
269,648 images crawled from the Web, all annotated with
at least one concept out of a total of 81. We collect images
with 21 most frequent concepts to perform experiments,
where the training set and the query set are arranged to have
at least 500 and 100 images for each category, respectively.
To be specific with training set, one image has up to 10 la-
bels (10/21 = 48% of total), with an average of 2.94 labels
(2.93/21 = 14% of total).

MS COCO is a multi-labeled dataset containing 132,218
images of 80 categories, where each image is assigned
one or more semantic labels. We adopt randomly sampled
10,000 and 5,000 images for training and test, respectively.
In particular for training set, one image has up to 15 la-
bels (15/80 = 19% of total), with an average of 2.94 labels
(2.94/80 = 4% of total).

B.c. Deformation Setup

Following the experimental setup in [5] to investigate the
quality of image embeddings, we use the imgaug® library to
evaluate the deep hashing model performance when unseen
transformation (deformation) is given. Experimental results
are reported in Table 5 of the main paper.

e Cutout: each input image is randomly filled by two
grayish pixels that are 20% of the image size.

* Dropout: px100% of pixels are dropped from each
image where p = {¢|0 < ¢ < 0.01}.

e Zoom-in: each input image is transformed by zoom-in
at scale of 50%.

* Zoom-out: each input image is transformed by zoom-
out at scale of 200%.

* Rotation: each input image is rotated at a randomly
sampled degree d where d = {t| — 30° < ¢t < 30°}.

» Shearing: each input image is sheared at a randomly
sampled degree d where d = {t| — 30° < ¢t < 30°}.

* Gaussian Noise: noise is sampled once per pixel from
a normal distribution with std s where s = {¢|0 < t <
25.5} and added to each image.

3ht tps://github.com/aleju/imgaug


https://pytorch.org/vision
https://github.com/rwightman/pytorch-image-models
https://github.com/aleju/imgaug

‘ ImageNet s = 0.5

| NUS-WIDE sy = 0.5 | MS COCO sy = 0.5

Hyper-parameter | 16-bit | 32-bit | 64-bit | 16-bit | 32-bit | 64-bit | 16-bit | 32-bit | 64-bit

7=0.2 0.864 | 0.891 | 0.901
T=04 0.858 | 0.884 | 0.892
T =0.6 0.858 | 0.881 | 0.887
7=028 0.850 | 0.874 | 0.886
T=1.0 0.856 | 0.871 | 0.882

0.791
0.812
0.820
0.813
0.817

0.825 | 0.840 | 0.818 | 0.868 | 0.888
0.839 | 0.850 | 0.839 | 0.873 | 0.889
0.839 | 0.850 | 0.829 | 0.866 | 0.878
0.837 | 0.846 | 0.815 | 0.854 | 0.876
0.836 | 0.845 | 0.809 | 0.854 | 0.872

Table A. mAP scores by varying 7 on ResNet backbone DHD, where the setup utilized in the main paper is shown in bold.

‘ ImageNet 7 = 0.2 ‘

NUS-WIDE 7 = 0.6

| MSCOCOT =04

Hyper-parameter ‘ 16-bit ‘ 32-bit ‘ 64-bit ‘ 16-bit

32-bit | 64-bit | 16-bit | 32-bit | 64-bit

s =0.2 0.866 | 0.888 | 0.897
sp =04 0.866 | 0.889 | 0.896
st =0.5 0.864 | 0.891 | 0.901
st =0.6 0.860 | 0.885 | 0.895
st =0.8 0.858 | 0.881 | 0.890
st =1.0 0.845 | 0.874 | 0.884

0.812
0.810
0.820
0.817
0.819
0.815

0.838 | 0.849 | 0.839 | 0.871 | 0.889
0.839 | 0.848 | 0.837 | 0.873 | 0.888
0.839 | 0.850 | 0.839 | 0.873 | 0.889
0.839 | 0.849 | 0.834 | 0.871 | 0.886
0.837 | 0.843 | 0.828 | 0.866 | 0.883
0.833 | 0.841 | 0.825 | 0.860 | 0.878

Table B. mAP scores by varying s on ResNet backbone DHD, where the setup utilized in the main paper is shown in bold.

M A o | 16-bit | 64-bit
() 01 01 05| 0.657 | 0.721
2) 005 0.1 05 | 0652 | 0.716
3) 05 01 05 |0654 | 0715
4 01 005 05 | 0658 | 0.717
(5) 01 05 05 |065 |0713
6) 0.1 0.1 025/ 0654 | 0.716
(7 01 01 10 | 0656 | 0.717

Table C. Ablation study on hyper-parameters of DHD on Ima-
geNet. The setup utilized in the main paper is shown in bold.

C. Additional Experimental Results
C.a. Ablation Study on Hyper-parameters

To investigate the influences of hyper-parameters uti-
lized in DHD, we perform retrieval experiments and show
the results in Table B, A and C. Specifically, the mean Av-
erage Precision (mAP) scores are measured by varying the
value of hyper-parameter to be investigated, while fixing
others as defaults.

In Table A, we examine the temperature scaling parame-
ter 7. Following the results and the observation in Sec B.b,
we set the optimal 7 differently to each dataset, since cross
entropy-based L i p should be handled according to how the
labels are distributed. The more categories to classify, the
lower 7 is required to get more distinct predictions.

In Table B, we explore the impact of transformation oc-
currence st. It can be seen that the performance is almost
similar when s is less than 0.5, and the performance starts
to degrade when s is larger than 0.5. This indicates that di-
viding the augmentation groups as easy teacher and difficult

student, giving teacher group to low s, is effective.

In Table C (2-5), we change the balancing parameter \;
of Lsap and Ay of Lyce.q to figure out the impact of train-
ing objectives in retrieval performance. From the results
with little performance difference, it can be confirmed that
the proposed loss functions are not sensitive to the hyper-
parameters. In Table C (6, 7), we vary the standard devia-
tion value of the Gaussian estimators of Lyc..g. The mAP
scores show that providing a stricter estimator (o = 0.25)
tends to degrade performance, but that also did not seem to
have a significant effect. From the results in Table C (8), we
find out that applying LN does not change the results much.

C.b. Additional Visualized Results

Trainable Hash Proxies. We additionally visualized the
pairwise cosine similarity of trainable hash proxies for all
classes in each dataset in Figures B, C, D, with ResNet
backbone @ 64-bit. For single label ImageNet dataset,
semantically similar classes show higher similarity such
as European fire salamander-spotted salamander and elec-
tric locomotive-passenger car. For multi-label datasets,
the dependency between labels stands out. Classes that
frequency appear together in a single image show higher
similarity such as flowers-plants and ocean-beach in NUS-
WIDE, or baseball bat-baseball glove and truck-bus-car in
MS COCO. Particularly, we observed that discriminabil-
ity can still be preserved when two classes have high co-
sine similarity as shown in the buildings-window-vehicle
case of NUS-WIDE. Here the cosine similarity of buildings-
window (0.48) and window-vehicle (0.55) is high, but the
cosine similarity of buildings-vehicle (0.08) is low.



Qualitative Results. In order to see whether the difficulty
of transformation is really different according to sr, we il-
lustrate Figure E. For T, images do not significantly devi-
ated from the original. However, for Tg, some images are
distorted to the point of being hard to recognize. Figure F
shows what images are actually retrieved as results when
transformation is applied. We can confirm that our DHD is
robust to transformation and achieves high quality results.
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Figure B. Pairwise cosine similarities of trainable hash proxies on ImageNet.
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Figure C. Pairwise cosine similarities of trainable hash proxies on NUS-WIDE.
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Figure D. Pairwise cosine similarities of trainable hash proxies on MS COCO.
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