
Supplementary Material for
“Granularity-aware Adaptation for Image

Retrieval over Multiple Tasks”

Jon Almazán1 Byungsoo Ko2 Geonmo Gu2

Diane Larlus1 Yannis Kalantidis1

1NAVER LABS Europe 2NAVER Corp.

Appendix

We report further analysis that supports our choice to learn adaptors instead
of fine-tuning the backbone (Section A), zero-shot performance of Grappa on
datasets that are not in the Multiple Retrieval Tasks benchmark (Section B),
and results on learning Grappa’s fusion layer using class labels (Section C). We
also present PyTorch-style pseudo-code for our architecture (Section D).

A Learning adaptors vs fine-tuning the backbone

We validate the different configurations of adaptors presented in the main paper
and compare them in a supervised setting with a typical baseline that involves
fine-tuning all layers of a given pretrained model M. In particular, we compare
this baseline with fine-tuning just a single, randomly initialized adaptor (M +
A1), and with adding 8 random adaptors and fine-tuning them together with a
fusion layer (M∗).

For both settings, the underlying model M is kept fixed, and we use DINO [1]
pretrained on ImageNet in all models. We use the train splits of the 6 datasets
in MRT (Aircraft, Cars, CUB, Flowers, Food-101, and Products) and train 6
individual models per method, using class labels and a norm-softmax loss.

We report the performance on their respective test splits in the diagonal of
Table I. We observe that only adding a single adaptor outperforms the other
models in almost all datasets. This is probably due to the fact that these are
relatively small datasets and a single adaptor provides enough capacity to spe-
cialize, yet too little to overfit. When comparing M + A1 to M∗, we already
saw a similar behavior in Table 2 in the main paper (rows 2 and 3), suggesting
that randomly initialized adaptors perform worse when they are simultaneously
trained with a fusion layer, and that one way to address this is pretraining them
for different objectives.

B Zero-shot performance

Supervised training separately on each dataset. We consider specialized
models that have been trained in a supervised manner on each dataset separately,

2 J. Almazán et al.

Table I. Supervised finetuning using class and task labels, applied to the
current task and to other retrieval tasks. Based on the ImageNet pre-trained
DINO model M, each model is finetuned on a single dataset in a supervised
manner (row) and tested on the same and on the other datasets (column). We
report MAP@R (mAP) and RP. Note that those numbers constitute an upper-
bound and they are not directly comparable with those from the main paper.

Train \ Test
Aircraft Cars CUB Flowers Food-101 Products
RP mAP RP mAP RP mAP RP mAP RP mAP RP mAP

DINO (M) 17.5 9.2 9.0 3.5 33.6 22.9 62.5 57.0 27.0 16.1 34.1 31.5

Aircraft

M (supervised finetuning) 33.3 20.5 7.7 2.7 17.2 8.6 56.2 49.5 14.3 5.5 33.9 31.3
M + A1 (supervised) 33.2 20.9 10.5 4.4 23.2 13.4 59.4 53.1 18.3 8.6 30.0 27.5
M∗ (random, supervised) 19.9 10.1 8.4 3.0 12.1 5.1 54.9 47.6 13.8 5.2 29.0 26.6

Cars

M (supervised finetuning) 15.9 8.0 35.2 24.9 18.6 9.7 59.0 52.6 14.0 5.4 30.2 27.7
M + A1 (supervised) 19.6 10.9 33.4 23.1 28.2 18.0 62.3 56.4 19.3 9.4 28.7 26.2
M∗ (random, supervised) 12.2 5.1 8.3 2.7 10.8 4.2 49.1 41.1 11.7 3.9 26.4 24.2

CUB

M (supervised finetuning) 14.1 6.4 7.5 2.7 39.1 28.2 50.0 42.7 16.0 6.7 34.8 32.1
M + A1 (supervised) 16.4 8.4 9.2 3.7 45.0 34.8 58.7 52.9 23.2 12.6 36.5 33.7
M∗ (random, supervised) 16.4 8.4 9.1 3.6 42.0 31.5 59.2 53.4 24.4 13.7 34.5 31.8

Flowers

M (supervised finetuning) 14.7 6.7 7.3 2.5 21.1 11.6 68.7 63.5 15.9 6.7 34.5 31.8
M + A1 (supervised) 17.3 8.9 9.1 3.5 29.9 19.3 73.8 69.6 23.0 12.5 36.1 33.4
M∗ (random, supervised) 17.2 8.7 9.6 3.7 28.3 17.9 68.1 62.6 20.0 9.9 32.3 29.8

Food-101

M (supervised finetuning) 8.4 2.8 5.0 1.4 8.7 2.9 44.0 35.8 30.9 18.8 25.0 22.8
M + A1 (supervised) 16.7 8.6 8.5 3.1 35.1 24.3 56.0 49.4 36.2 24.9 35.2 32.5
M∗ (random, supervised) 17.5 9.3 8.9 3.4 35.6 24.8 60.3 54.4 34.1 22.9 35.5 32.8

Products

M (supervised finetuning) 7.2 2.3 4.9 1.6 5.6 1.5 36.6 27.9 8.8 2.2 42.4 39.7
M + A1 (supervised) 12.1 5.2 7.0 2.4 20.8 11.2 53.0 46.0 15.0 6.1 53.6 50.9
M∗ (random, supervised) 13.3 5.9 6.9 2.3 24.0 13.7 54.9 48.1 18.9 9.1 49.0 46.2

i.e. only on one of the six train splits that compose MRT. Our goal is to measure
how much the performance of these specialized models drops when exposed to
other retrieval tasks. For this, we evaluate each of these models on the remaining
five datasets and report their performance in the off-diagonal part of Table I.
We can see how their performance drops significantly compared to the pretrained
DINO model, showing that they are overly suited to the retrieval task they have
been trained on, and lose the generalization capability of the original pretrained
model. It is also interesting to see that M+A1 reports the lowest drops across
all datasets, probably due to the fact that the underlying models are kept fixed
and the adaptor’s features are added in a residual fashion to the features of the
backbone, retaining some of the generalization ability of the pretrained DINO
model.

Supervised training jointly on all datasets. Finally, we measure how much
the zero-shot ability of the underlying model is altered after adapting it with
Grappa on multiple datasets (e.g . MRT) using label supervision. We compare
with other adaptation strategies: supervised fine-tuning of all layers, supervised
fine-tuning of a single adaptor, and supervised fine-tuning of 8 adaptors and a
fusion layer. For this experiment, we use three new datasets that were not part
of MRT: DTD [2], Eurosat [3], and Pets [4]. We report RP and mAP in Table II.

Granularity-aware Adaptation for Image Retrieval over Multiple Tasks 3

Table II. Performance of models trained on MRT, and tested on other
retrieval tasks. We measure the drop in generalization (zero-shot performance)
after adapting the DINO model with Grappa versus alternative ways. Training
is always performed on MRT, in a supervised manner for all methods (middle
section), except for Grappa which is fully unsupervised (bottom section). We
report MAP@R (mAP) and RP.

Train \ Test
Supervised? DTD Eurosat Pets

RP mAP RP mAP RP mAP

M (DINO – zero-shot model) - 41.5 30.6 76.3 52.5 76.0 70.9

M (supervised finetuning) ✓ 23.1 12.7 65.8 41.9 23.4 10.5
M + A1 (supervised) ✓ 39.2 28.5 76.6 52.8 74.1 68.7
M∗ (random, supervised) ✓ 39.5 28.7 75.8 51.7 73.2 67.5

Grappa-N ✗ 41.3 30.5 75.2 51.0 74.4 68.9
drop versus DINO (↓ 0.2) (↓ 0.1) (↓ 1.1) (↓ 1.5) (↓ 1.6) (↓ 2.0)
gains over best adapted (↑ 1.8) (↑ 1.8) (↓ 1.4) (↓ 1.8) (↑ 0.3) (↑ 0.2)

Table III. Performance of a model trained on MRT, using supervised
learning of the fusion layer using class labels (supervised fusion). We
report MAP@R (mAP) and RP on the six tasks of the MRT benchmark. We
compare with Grappa-N which is unsupervised.

Aircraft Cars CUB Flowers Food-101 Products
RP mAP RP mAP RP mAP RP mAP RP mAP RP mAP

Grappa-N 18.1 9.5 9.9 4.0 35.1 24.1 67.2 61.9 30.5 19.3 36.3 33.6
Supervised fusion 19.8 10.7 11.1 4.7 34.7 23.7 67.6 62.2 30.8 19.5 43.2 40.3

First, we can see how little the zero-shot performance of Grappa drops compared
to DINO, performing almost on par with DINO on DTD, and with only slightly
larger drops on the other two datasets. Second, we can also see that compared
to other supervised adaptation methods, retains a similar generalization ability.

C Supervised learning for adaptor fusion

We report additional results where the fusion layer over pseudo-granularity adap-
tors is learned in a supervised way. More precisely, for this experiment, we freeze
adaptors P1-P8 and we learn the fusion layer on the training set of MRT us-
ing class labels, a normsoftmax loss, and adam optimizer. We report results
on Table III. As expected, we observe this fusion to significantly improve over
Grappa-N in most of the datasets (we again stress that Grappa does not use any
kind of labels). The difference is especially large on Products, mostly likely due
to imbalance issues; this dataset accounts for 97% of the total number of classes.

D Pseudocode for a Grappa layer

In Algorithm 1 we show pseudocode for a layer of the Grappa model, consisting
on a ViT block, followed by a set of adaptors, and a fusion layer combining the

4 J. Almazán et al.

Algorithm 1 PyTorch-style pseudocode for a Grappa layer.

B: batch size
T: number of tokens
D: dimensionality of the embeddings
N: number of adaptors
#
mm: matrix -matrix multiplication
pool: average pooling
MSA: multi -headed self attention
MLP: multi -layer perceptron
Adaptors: list of N bottleneck layers
Q: learnable "query" DxD projection
K: learnable "key" DxD projection
#
h_1: input of size BxTxD

ViT layer
x = MSA(LayerNorm(h_1)) + h_1
y = MLP(LayerNorm(x))
h = y + x # BxTxD

Compute N adaptors
U = []
for Adaptor in Adaptors:

U.append(Adaptor(h) + y)
U = stack(U). permute(1, 2, 0, 3) # BxTxNxD

Fusion
q = mm(Q.T, pool(h, dim =1)) # BxD
k = mm(K.T, pool(U, dim =1)) # BxNxD
Dot product between "query" and "key" to get the raw attention score
attn = mm(k.T, q.unsqueeze (-2)) # BxN
Normalize the attention scores to probabilities
attn = softmax(attn , dim=1)
Fuse adaptors using attention probabilities
f = mm(U.T, attn.unsqueeze (-2)) # BxTxD

h = f + x # BxTxD

output of these adaptors. Details of this layer are also shown in Figure 3 in the
main paper.

References

1. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.:
Emerging properties in self-supervised vision transformers. Proc. ICCV (2021)

2. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures
in the wild. In: Proc. CVPR (2014)

3. Helber, P., Bischke, B., Dengel, A., Borth, D.: Eurosat: A novel dataset and deep
learning benchmark for land use and land cover classification. JSTAEORS (2019)

4. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Cats and dogs. In: Proc.
CVPR (2012)

	Supplementary Material for ``Granularity-aware Adaptation for Image Retrieval over Multiple Tasks''

