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Abstract. Recently, vehicle similarity learning, also called re-identification (ReID),
has attracted significant attention in computer vision. Several algorithms have
been developed and obtained considerable success. However, most existing meth-
ods have unpleasant performance in the hazy scenario due to poor visibility.
Though some strategies are possible to resolve this problem, they still have room
to be improved due to the limited performance in real-world scenarios and the
lack of real-world clear ground truth. Thus, to resolve this problem, inspired
by CycleGAN, we construct a training paradigm called RVSL which integrates
ReID and domain transformation techniques. The network is trained on semi-
supervised fashion and does not require to employ the ID labels and the corre-
sponding clear ground truths to learn hazy vehicle ReID mission in the real-world
haze scenes. To further constrain the unsupervised learning process effectively,
several losses are developed. Experimental results on synthetic and real-world
datasets indicate that the proposed method can achieve state-of-the-art perfor-
mance on hazy vehicle ReID problems. It is worth mentioning that although the
proposed method is trained without real-world label information, it can achieve
competitive performance compared to existing supervised methods trained on
complete label information.

Keywords: Hazy Vehicle Similarity Learning, Semi-supervised Learning, Im-
age Dehazeing

1 Introduction

Vehicle similarity learning, also called vehicle re-identification (ReID), is a crucial tech-
nique for intelligent surveillance systems in a smart city. It is to track the vehicles with
the same identity within a set of images captured by multiple cameras and various
viewpoints. With the development of the deep convolutional neural network (DCNN),
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Fig. 1: Illustration of different strategies to solve hazy vehicle ReID problem. One
can see that our method outperforms other existing methods in terms of the mean aver-
age precision (mAP) and CMC@1. Moreover, other strategies may have limited perfor-
mance problem in real-world scenarios. We adopt CAL [33] and MPR-Net [39] as the
ReID model and the dehazed model, respectively.

several approaches for vehicle ReID [13,18,31,41] have been proposed and achieved
impressive performance. Similar to other high-level vision applications such as object
detection and semantic segmentation [5], although existing methods can handle vehi-
cle ReID effectively on normal images, they have limited performance under inclement
weather, especially in hazy scenario. Haze is a common and inevitable weather phe-
nomenon that leads to poor visual appearances and causes the loss of discriminative
information by deteriorating the contents of images for vehicle ReID. Thus, this field
still has room for improvement.

Inspired by previous dehazing tasks [2], we can apply an atmospheric scattering
model [23] to synthesize haze images and then train the vehicle ReID models based on
the rendered images and the corresponding ID labels. Though this strategy can achieve
decent performance on synthetic images, they have limited performance on real haze
images due to the domain gap between synthetic and real-world images [3]. While this
issue can be resolved by adopting real haze images in the training stage, collecting the
real haze data and labeling the correct ground truths are difficult and troublesome.

Another possible baseline strategy is to adopt the existing dehazing approaches [4,40]
or comprehensive image restoration method [39] as the pre-processing technique and
then apply the ReID. Although the above strategies are shown to achieve promising
results in haze removal, there is no guarantee that the selected pre-processing tech-
niques would be able to improve ReID, since these two tasks are performed separately
and existing dehazing methods are not designed for the purpose of ReID but for hu-
man perception. Moreover, most existing dehazing methods require pair data to train
the model, but it is infeasible to attain the ground truths of haze images in real-world
scenes. Though we can adopt synthetic data to train the network, the domain gap prob-
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lem may still exist, which may generate undesired dehazed results in real haze scenes
and further limit the performance of ReID.

By the above analysis, there are two reasons that hinder the development of ReID
in real haze scenes: (i) the scarcity of labels of real-world data and (ii) the lack of ap-
propriate guidance for real haze. In this paper, to mitigate these problems, we construct
a novel training architecture based on the deep convolutional neural network (DCNN).
Inspired by CycleGAN [21] which can transform images between any two domains, we
introduce the domain transfer technique in the proposed network and combine it with
the vehicle ReID. Specifically, the proposed method is trained on a semi-supervised
paradigm in an end-to-end fashion and there are two parts in the training process: su-
pervised training for synthetic data and unsupervised training for real-world data. For
the former part, the network can learn the knowledge of transformation between two
domains and extract more discriminative features for vehicle ReID in fully supervision
by paired data (i.e., synthetic hazy images and the corresponding clear ground truths).
For the latter parts, we only leverage two sets of unpaired data (i.e., real hazy images
and clear images) to strengthen the robustness of the domain transformation and the
ReID in real-world scenes in an unsupervised manner.

The idea of our method is that, the domain transformation network transfers the
input image (i.e., hazy or clear images) between two domains with the same background
information and the ReID network extracts the latent features for classifying from two
images (i.e., input and transferred image). Inspired by the cycle consistency [21,37],
two extracted embedding features should be identical since they are from the same
vehicles. Thus, we can calculate the consistency of between two extracted features for
optimizing the network.

Based on the semi-supervised training scheme, the utilization of the synthetic data
can guide the unsupervised stage and prevent the network from unstable performance [21].
On the other hand, the use of real-world data can improve the generalization ability of
our model to real data and further mitigate the domain gap problem when the synthetic
data is applied in the training process [25]. Moreover, using the domain transformation
network can assist the ReID network to learn more discriminative features for the ReID
under real-world haze scenarios. By our design, the proposed method can perform vehi-
cle ReID in hazy scenarios effectively without additional annotations in real hazy data
which are usually hard to be obtained. Furthermore, our proposed training scheme can
be also applied in the case that we have annotations of vehicle ID and achieve better
performance.

The contribution of this paper is summarized as follows.

– A novel training paradigm based on semi-supervised learning and domain transfor-
mation is proposed to learn hazy vehicle ReID without the labels or clear ground
truths of real-world data. We term it Robust Vehicle Similarity Learning (RVSL).
As depicted in Fig. 1, by combining domain transferring technique with the ReID
network, the proposed method can achieve decent performance to learn discrim-
inative features under real haze scenes without using ID label. Surprisingly, the
proposed method achieves competitive performance compared with other existing
methods trained with complete ID information.
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– To constrain the unsupervised stage in the training process, we developed several
loss functions such as embedding consistency loss, colinear relation constraint, and
monotonously increasing dark channel loss to improve the performance. These loss
functions enable the network to learn both domain transformation and ReID in an
unsupervised way effectively. Experimental results prove the effectiveness of these
loss functions.

2 Related Works

Vehicle Re-identification. With the great effort of data collection and annotation, sev-
eral large-scale benchmarks for vehicle ReID such as VehicleID [28], VeRi-776 [29],
VERI-Wild [30], and Vehicle-1M [12]) are proposed. Based on these well-developed
benchmarks, several approaches [19,9,17,26,33,35] have been developed and most of
them rely on DCNN. We can divide them into the following categories.

1) Meta-information-based methods which integrate meta-information for feature learn-
ing. For example, Zheng et al. [42] leveraged the additional information such as the
camera view, and the vehicle type and color to guide the network. Shen et al. [34] in-
tegrated the visual-spatio-temporal path proposals and spatial-temporal relations to a
Siamese-CNN+Path-LSTM network. Rao et al. [33] proposed the attention mechanism
with counterfactual causality which enables the network to learn more useful attention
for fine-grained features for ReID.

2) Local information-based methods: Meng et al. [31] adopted the common region in-
formation extracted by a vehicle part parser to improve the mutual representation in-
formation between different viewpoints. Khorramshahi et al. [22] applied Variational
Auto-Encoder (VAE) to find crucial detailed information which can be regarded as the
pseudo-attention map for highlighting discriminative regions. He et al. [13] combined
local and non-local information based on a part-regularized mechanism. These strate-
gies can preserve the variance from near-duplicate vehicles to improve the performance
of vehicle ReID. Zhao et al. [41] applied Cross-camera Generalization Measure tech-
nique and integrated region-specific features and cross-level features together to im-
prove the performance of ReID.

3) Generative Adversarial Network (GAN) based methods: Zhou et al. [43] applied the
conditional multi-view generative network to extract global feature representation from
various viewpoints and then adopted adversarial learning to facilitate feature genera-
tion. Lou et al. [30] designed the FDA-Net to generate hard examples in the feature
space based on the GAN to improve the robustness of ReID. Yao et al. [38] proposed
to adopt a 3D graphic engine to reduce the content gap between the existing datasets to
suppress the domain gap problem.

4) Vision Transformer (ViT) based Methods: He et al. [18] leveraged the ViT to encode
input images as a vector for embedding representation. To further improve representa-
tion learning, the jigsaw patch module and side information were adopted in the training
scheme.

Though the above methods can achieve decent vehicle ReID performance on clear
images, they are still limited in real-world hazy image scenarios.
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Fig. 2: The architecture of the proposed semi-supervised hazy vehicle ReID net-
work. Our method consists of supervised and unsupervised training stages for synthetic
and real-world data.

Single Image Haze Removal. Based on Koschmieder’s model [23], the formation of
haze can be modeled by:

I (x) = J (x) t (x) +A (1− t (x)) , (1)

where I(x) is the hazy image, J(x) is the haze-free image and A is the global atmo-
spheric light. t (x) = e−βd(x) is the medium transmission map where β is the scattering
coefficient and d(x) is the depth from the camera to the object. There are numerous haze
removal methods proposed in past decades. They can be classified into prior-based and
deep learning-based methods. The former class is to explore the prior knowledge be-
tween hazy and haze-free images. For example, He et al. [14] proposed the dark channel
prior, Zhu et al. [44] developed the color attenuation prior, and Berman et al. proposed
the haze-line [1] to estimate the dehazed results. The other class is to apply the DCNN.
For instance, Qu et al. [32] proposed multi-resolution generators and discriminators for
dehazing in a coarse-to-fine way. Dong et al. [8] used the strengthen-operate-subtract
boosting strategy to improve the dehazing network. Wu et al. [36] proposed an auto-
encoder-like framework with additive mixup operation and a dynamic feature enhance-
ment module to improve the quality of extracted features for dehazing. Zamir et al. [39]
proposed a multi-stage architecture that can encode a diverse set of features simultane-
ously to restore accurate outputs. Chen et al. [6] proposed a unified architecture which
can learn multiple adverse weather based on a single architecture.

3 Proposed Method

3.1 Overview of the Proposed Method

As shown in Fig. 2, there are five modules in the proposed network. That is, two en-
coders for hazy and clear scenes (EH and EC), and three decoders for hazy, clear, and
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ReID (DH, DC, and DReID), respectively. These modules can be combined to two
sub-networks called domain transformation network and re-identification network. The
features extracted by EH and EC are termed FH and FC , respectively.

As mentioned in section 1, due to the lack of real haze data, in this paper, inspired by
semi-supervision [25], we apply both synthetic data and real data simultaneously in the
learning process. At the supervised training stage, the application of the synthetic data
can learn the transformation from various domains stably. At the unsupervised stage, we
first take the real clear images and then take real hazy images as inputs, respectively.
This operation enables our network to learn real-world information of hazy scenes,
clear scenes, and ReID through the domain transformation network and ReID network
simultaneously. We illustrate the details in the following subsections.

3.2 Domain Transformation Network.

The goal of the domain transformation network (DT-Net) is to help the ReID network
to learn haze-invariant features via transforming the domain of the input data. The de-
tailed illustration of this network is as follows.

Architecture. The DT-Net consists of two encoders (EH and EC) and two decoders
(DH and DC). Given a hazy input, the decoder DC generates the corresponding clear
image based on the features FH extracted by encoder EH. On the other hand, the de-
coder DH takes the features FC extracted from the encoder EC to produce the hazy
image. The features (i.e., FC and FH ) extracted by two encoders pass through a double
convolution block and a deconvolution block for dimension matching. Then, the up-
sampled features are concatenated with the features extracted by the first convolution
blocks in the encoders to improve the feature diversity. This operation is based on the
fact that the features in the shallow layer of the network contain more fruitful spatial
and contextual information which can benefit domain transformation [7,20] while the
deeper layers usually consist of more high-level vision. The concatenated features are
passed through a double convolution block and a deconvolution block to reconstruct the
final domain transformation results. The quality of domain transformation is crucial for
the ReID network since it may affect the feature extraction of the input image. Thus,
for the synthetic data, we adopt the supervised loss LDTs to optimize the networks. For
real data, we adopt unsupervised losses LDTu.

Supervised Training Stage. At this stage, we can train the network in a fully supervised
way since the corresponding clear ground truths and ID labels are available. First, we
adopt synthetic image pairs to train the DT-Net (i.e., EH, EC, DH, and DC). Specifi-
cally, the synthetic haze image KS

H and the corresponding clear ground truth (KS
H)GT

are fed into the domain transformation network to calculate the domain transformation
loss LDTs for synthetic data. This operation aims to constrain the distance between the
predicted results (i.e., the rendered hazy images and the rendered clear images) and the
corresponding ground truths. The domain transformation loss LDTs can be formulated
as follows.

LH→C
DTs

=
1

M

M∑
i=1

∥DC[EH[KS
H(i)]]− (KS

H)GT (i)∥1 (2)
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LC→H
DTs

=
1

M

M∑
i=1

∥DH[EC[(K
S
H)GT (i)]]−KS

H(i)∥1 (3)

where ∥ · ∥1 presents the L1 norm and M indicates the number of images. LC→H
DTs

and
LH→C
DTs

denote the domain transformation loss for ’clear to haze’ and ’haze to clear’,
respectively. The LDTs

loss is the summation of LC→H
DTs

and LH→C
DTs

.

Unsupervised Training Stage for Clear Data. At this stage, to train the DT-Net with-
out the hazy image ground truths, first, we adopted the cycle-consistency mechanism.
The input clear image KR

C is fed into the DT-Net to render the hazy image KR′

H , where
KR′

H = DH(EC(K
R
C )). Then, we further take the rendered image to the DT-Net to

generate the rendered clear image KR′′

C , where KR′′

C = DC(EH(KR′

H )). In the same
time, several loss functions are adopted to optimize the network. The loss at this stage
LDTuc consists of the rendering consistency loss (LRC), the monotonously increasing
dark channel loss (LMIDC), the colinear relation constraint (LCR), and the discrimina-
tive loss (LDis). We illustrate each of them as follows.

(i) Rendering Consistency Loss. This loss is to constrain the learning process of the
domain transformation network (i.e., EH, EC, DH, and EC). We adopt the pixel-wise
difference between the clear input image KR

C and the rendered clear image KR′′

C to en-
sure that the domain transformation process can be conducted in two different domains
robustly. This loss is formulated as follows.

LRC =
1

M

M∑
i=1

||KR
C (i)−KR′′

C (i)||1 (4)

(ii) Monotonously Increasing Dark Channel Loss. To further improve the image quality
of rendered haze images, inspired by dark channel prior (DCP) [14], we propose the
monotonously increasing dark channel loss LMIDC . The DCP demonstrates that for
most natural clear images, the dark channel values may be close to zero. Specifically, it
can be defined as:

DC(J)(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Jc (y)

)
≊ 0, (5)

where DC(·) is the operation of the dark channel, Jc(y) is the intensity in the color
channel c, and Ω(x) is a local patch with a fixed size centered at x. With this prior, it can
be further extended that, given an image deteriorated by haze, its dark channel value
may be higher than that of the original clear image (i.e., DC(I)(x) ≥ DC(J)(x)).
Based on this idea, we proposed LMIDC which is determined as:

LMIDC =
1

M

M∑
i=1

DM(i)||DC(KR′

H (i))−DC(KR
C )(i)||1 (6)

where DM(i) is a binary map that identifies the region where the dark channel val-
ues of the clear image KR

C are higher than that of its rendered haze result KR′

H (i.e.,
DC(KR′

H )(x) < DC(KR
C )(x)). With it, we can prevent the rendered pixels from irra-

tional results and further improve the robustness of domain transformation.
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(iii) Colinear Relation Constraint. Due to the inaccessibility of the ground truth of real-
world hazy images, the domain transformation process may generate undesired fake
image contents without appropriate training. Although we can leverage the synthetic
data to guide the network at the training stage of the synthetic data, it is not applica-
ble at the training stage of the real-world data. To further strengthen the robustness of
transformation (i.e., EC and DH), inspired by the haze-line prior [1,37], we develop
colinear relation constraint LCR.

Based on the physical model of haze illustrated in (1), Berman et al. [1] observe
that the clear image J , the hazy image I , and the atmospheric light A are colinear in the
RGB space (i.e., I(x)−A = t(x)(J(x)−A)). We can adopt this relation to constrain
the training process of the network for real-world scenarios. We define the colinear
relation constraint as follows.

LCR =
1

M

M∑
i=1

[
1− ϕ(KR

C (i)−A(i),KR′

H (i)−A(i))
]
, (7)

where A(i) is the atmospheric light estimated by the rendered hazy image KR′

H (i) and
ϕ(·) means the cosine similarity. Different from [37], we adopt the atmospheric light
estimation method in [14] in this loss. With this loss, the consistency of structure and
color can be further constrained.

(iv) Discriminative Loss. To further constrain unsupervised domain transformation, we
adopt the discriminative loss [10] in the training process to distinguish whether the
rendered hazy image KR′

H is real or fake. In our method, we adopt the saturating dis-
criminative loss [11].

Unsupervised Training Stage for Real Hazy Data. At this stage, the real hazy im-
ages are adopted to optimize the network without clean ground truths and ID labels.
Like the previous stage, the hazy images are fed into the DT-Net (i.e., EH and DC)
to generate the clear images KR′

C . Subsequently, the rendered clear images are fed into
the DT-Net to obtain the rendered hazy images KR′′

H . To optimize our framework, apart
from the monotonously increasing dark channel loss (LMIDC) and colinear relation
constraint (LCR), the rest of losses in LDTuc are adopted. Moreover, to improve the
predicted clear images by the DT-Net, we introduce two losses: the dark channel loss
LDC to curb the residual haze and total variation loss LTV to prevent the noise gener-
ation. They can be formulated as follows.

LDC =
1

M

M∑
i=1

∥DC(KR′

C (i))∥1, (8)

LTV =
1

M

M∑
i=1

∥ ▽x KR′

C (i)∥1 + ∥ ▽y K
R′

C (i)∥1, (9)

where ▽x and ▽y denote the gradient operations along the horizontal and vertical
directions, respectively.
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3.3 Re-identification Network

The re-identification network (ReID-Net) aims to extract discriminative features to
search the images with the same identification in the gallery. The details of architec-
ture and training are illustrated as follows.

Architecture. The ReID-Net consists two encoders (i.e., EH and EC) and one de-
coder (i.e., DReID). It adopts ResNet-50 [16] as the backbone, where we apply the
first two convolution blocks as the architecture of two encoders. As shown in Fig. 2,
the extracted features FH or FC are fed to the decoder DReID to generate the ReID
results where the decoder consists of the rest of convolution blocks in ResNet-50 and
extracted features are down-scaled by global average pooling (GAP) and batch normal-
ization (BN) to generate 2048-d embedding features FReID. Last, we adopt the fully
connected layer (FC layer) to match the number of identities for the classification. For
the supervised learning of synthetic data, since we have the corresponding ID label, we
adopt the triplet loss LTri and the ID loss LID. For the unsupervised learning stage, due
to lack of the ID label, the embedding consistency loss LEC is adopted to constrain the
network. This architecture enables our two encoders to learn domain adaptive features
because the features extracted by two encoders working on different domains are fed
into the same decoder.

Supervised Training Stage. At this stage, we train the re-identification network (i.e.,
EC, EH, and DReID) by adopting the triplet loss [19] LTri and the ID loss LID which
can be defined as follows.

LTri =
1

M

M∑
i=1

∑
k

[
max

zp∈P(zk
i )
D(zki , zp)− min

zn∈N (zk
i )
D(zki , zn) + δ

]
+

(10)

LID = − 1

M

M∑
i=1

∑
k

log
exp(σ

yk
i

i )∑C
j=1 exp(σ

j
i )

(11)

where k ∈ {(KS
H)GT ,K

S
H}. P(zki ) and N (zki ) denote the positive and negative sam-

ple sets, respectively. zki represents the extracted embedding features from the ith input
sample (i.e., ((KS

H)GT (i) or KS
H(i))). δ is the margin of the triplet loss, D(·, ·) is the

Euclidean distance, and [·]+ equals to max(·, 0). For LID, σj
i is the output of the FC

layer with the class j based on ith input image. C presents the total number of the class,
and yi donates the ground truth class. The ReID loss LReIDs

at this stage is the combi-
nation of LID and LTri.

Unsupervised Training Stage. At this stage, we feed both real clear data and real
hazy data separately. Due to the lack of labels about ID information, to train the ReID
network (i.e., EC, EH, and DReID) with real clear inputs, we develop embedding con-
sistency loss (LEC) to calculate the distance of two embedding features extracted from
the input clear image and the rendered haze image. Initially, given a clear image KR

C , it
is fed into the DT-Net to render the hazy image KR′

H and ReID-Net to extract embedding
feature (FReID)RC . Then, we further take the rendered image to the ReID-Net to pro-
duce the embedding feature (FReID)R

′

H . We can calculate the loss between (FReID)R
′

H
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Fig. 3: Examples of the images in the synthetic dataset and the real-world datasets
for vehicle ReID.

and (FReID)RC because they are the same vehicle. By using this loss, the haze-invariant
features can be learned by the ReID-Net effectively. The mathematical expression of
this loss is defined as follows.

LEC =
1

M

M∑
i=1

||[FReID(i)]RC − [FReID(i)]R
′

H ||1 (12)

By contrast, when the input data is a real hazy image (i.e., KR
H ), the same mechanism

is adopted.

4 Experiments

4.1 Dataset and Evaluation Protocols

Dataset Preparation. The proposed semi-supervised scheme is trained by both syn-
thetic and real-world haze data. We select haze-free images from Vehicle-1M and VERI-
Wild datasets. Subsequently, we apply the haze synthesis procedure proposed in [24] to
synthesize these images. First, we adopt the method in [27] to estimate the depth map
d. Then, we render the haze on these clear images by (1) with the predicted depth maps
and set β ∈ [0.4, 1.6] and A ∈ [0.5, 1]. Uniquely, each clear data generates a hazy image
and all rendered images are divided into the training and the testing sets, respectively.
For the real haze data, we survey all existing datasets and find that only Vehicle-1M and
VERI-Wild datasets contain the cases in the hazy weather. Thus, we carefully select the
vehicle images under hazy scenarios from two datasets. The selected images are split
to the training and the testing sets. The details and examples of two types of data are
presented in Table 1, Table 2 and Fig. 3, respectively.

Evaluation Protocols. Followed by the protocols of the evaluation proposed in [30,12],
we randomly select one hazy image for each vehicle and put it into the probe set. The
remained images form the gallery set. We adopt the cumulative matching characteristic
(CMC) curve and mean average precision (mAP) to evaluate the performance.
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Table 1: Detail of the synthetic dataset.
(IDs/Images)

Set Train Probe Gallery
VERI-Wild 1167/19532 389/389 389/6125
Vehicle-1M 1833/23026 611/611 611/7093

Total 3000/42558 1000/1000 1000/13218

Table 2: Detail of the real-world dataset.
(IDs/Images)

Set Train Probe Gallery
VERI-Wild 156/2472 389/389 389/5985
Vehicle-1M 247/2579 611/611 611/6242

Total 403/5051 1000/1000 1000/12227

4.2 Implementation Details

Training Stage. 3For the proposed ReID network, ResNet-50 is adopted as the back-
bone, whose weights are initialized from the model pre-trained on the ImageNet. In the
synthetic data training stage, the dimensions of FC layers are set to 3000. The weights
of the domain transformation network are initialized by Kaiming normalization [15].
The whole network is trained in an end-to-end fashion based on the training sets of
synthetic and real-world datasets for learning domain transformation, vehicle ReID and
ID classification simultaneously. The input image is resized to 384 × 384. The train-
ing batch sizes at the synthetic data and the real-world data stages are 72 (2M ) and 36
(M ), respectively. The local patch size in the dark channel operation is 5× 5. We apply
the data augmentation in the training process including the random cropping and hor-
izontal flipping techniques. The warm-up training strategy is adopted for 120 epochs.
The Adam optimizer is adopted with a decay rate of 0.6. The initial learning rate is
1.09 × 10−5, which increases to 10−4 after the 10th epoch. At the training stage of
the synthetic data, we adopt the synthetic dataset in Table 1 and randomly select one
hazy image for each vehicle and put it into the probe set. The rest of images form the
gallery set. For the training stage of real-world data, we apply 5051 clear images and
hazy images without ID labels, respectively. The network is trained on an Nvidia Tesla
V100 GPU for 3 days and we implement it using Pytorch.

Inference Stage. At the inference stage, the encoder (EC) and two decoders of the
domain transformation network (DC and DH) are not involved. The computational
burden caused by them can be ignored. The Euclidean distance D is computed through
embedding features to evaluate the performance.

4.3 Comparison with the Existing Methods

To evaluate the performance of the proposed method, we compare the proposed algo-
rithm with state-of-the-art ReID methods, the VRCF [9], the VOC [45], the DMT [17],
the CAL [33], the VEHICLEX [38], the TransReID [18], the PVEN [31], and the
HRCN [41]. For a fair and comprehensive comparison, these methods are retrained by
the following training sets: (i) The ground truth clear images in the synthetic dataset; (ii)
The hazy images from the training sets of both synthetic and real-world haze datasets
(denoted with the ’-haze’); (iii) The two-stage strategy (i.e., dehazing+ReID) which is
denoted with ’-dehaze’. Specifically, this strategy is the combination of the dehazing
method for pre-processing and the ReID models trained by setting (i). For the dehazing

3 More details about training each stage and results are presented in the Supplementary Material.
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Table 3: Quantitative evaluation on the
hazy vehicle ReID scenario. The words
with boldface indicate the best results, and
those with underline indicate the second-
best results. The texts ’S’ and ’R’ indicate
synthetic and real-world datasets.

Method mAP CMC@1 CMC@5 CMC@10
S R S R S R S R

VRCF 25.90 36.60 61.70 63.70 76.50 78.80 81.30 83.20
VRCF-dehaze 61.50 50.80 85.40 78.00 95.10 92.00 97.20 95.40
VRCF-haze 69.00 58.00 88.60 81.10 97.60 93.80 98.40 96.80
VRCF-all 73.00 64.40 90.90 85.50 97.30 95.70 98.60 97.80

VOC 59.70 57.40 86.10 82.80 94.30 94.00 95.60 96.60
VOC-dehaze 63.40 49.20 87.00 74.10 94.80 89.90 96.50 94.30
VOC-haze 67.10 59.90 88.70 83.50 95.10 94.00 96.50 97.20
VOC-all 84.20 78.70 93.60 91.00 97.60 96.30 98.30 98.30

DMT 73.90 71.70 93.40 93.20 97.20 97.40 97.90 98.50
DMT-dehaze 75.10 71.60 93.40 92.40 96.90 97.50 98.30 98.40
DMT-haze 77.30 73.40 94.00 93.40 97.60 97.60 98.60 98.80
DMT-all 82.50 80.90 98.30 96.10 98.20 98.20 98.80 99.00
VehicleX 63.64 61.56 86.50 83.20 95.00 95.20 97.40 97.90

VehicleX-dehaze 73.06 64.82 89.70 83.90 96.70 95.10 98.20 97.60
VehicleX-haze 77.86 69.01 91.20 84.80 97.10 96.10 98.70 98.10
VehicleX-all 80.75 76.39 93.10 89.90 97.60 96.90 98.60 98.40
TransReID 62.90 64.00 82.40 77.70 92.30 88.80 98.40 94.00

TransReID-dehaze 66.80 65.30 83.00 76.60 94.10 89.90 98.10 94.60
TransReID-haze 73.90 72.10 84.80 82.60 95.20 90.70 98.70 95.60
TransReID-all 79.20 76.90 89.40 84.50 96.80 93.20 98.90 97.30

PVEN 72.83 75.36 63.73 66.48 84.39 86.53 89.65 91.20
PVEN-dehaze 81.70 78.13 73.29 69.47 92.50 89.16 96.04 93.43
PVEN-haze 84.55 81.92 76.60 74.09 95.02 92.15 97.84 95.66
PVEN-all 88.63 84.08 83.55 78.31 98.45 95.40 99.20 97.76

HRCN 81.22 71.77 92.00 85.30 97.60 95.40 99.10 97.50
HRCN-dehaze 83.44 72.78 92.20 84.60 98.00 96.10 99.00 97.80
HRCN-haze 85.40 78.64 92.80 89.40 98.50 96.70 99.10 98.40
HRCN-all 87.91 81.41 94.60 91.80 98.20 97.30 99.30 99.00

CAL 75.52 75.94 92.50 91.70 96.50 97.60 97.90 98.40
CAL-dehaze 83.21 77.49 94.80 94.00 98.30 98.00 98.90 98.80
CAL-haze 86.00 80.31 95.00 94.20 97.90 98.30 98.90 99.10
CAL-all 88.20 83.84 96.30 96.00 98.40 98.20 98.90 99.00

Ours 88.66 84.12 96.70 95.60 98.60 98.60 99.30 99.30
Ours-F 89.14 87.72 96.50 96.90 98.60 98.40 99.40 99.60

Table 4: Ablation study for each module
in the real-world test set.

Method Metric
mAP CMC@1 CMC@5 CMC@10

Baseline-haze 76.17 93.40 97.50 98.50
Baseline-all 77.34 93.40 97.60 98.60

Ours w/o LCR& LMIDC 76.02 93.50 97.20 98.60
Ours w/o LMIDC 81.19 94.20 98.20 99.00

Ours w/o LCR 82.27 95.30 98.00 99.20
Ours w/o LDC&LTV 77.31 93.63 97.38 98.80

Ours w/o LDC 81.20 94.30 98.30 98.85
Ours w/o LTV 82.50 94.60 98.50 98.90

Ours 84.12 95.60 98.60 99.30

Table 5: Comparison of performance for
using different blocks as encoders EC

and EH in the real-world test set.

mAP CMC@1 CMC@5 CMC@10
Conv_2 84.12 95.60 98.60 99.30
Conv_3 83.84 94.90 98.20 98.90
Conv_4 82.56 94.40 98.20 99.00
Conv_5 80.82 94.90 98.10 99.00

Table 6: Ablation study for using dif-
ferent training data stages in real-world
test set.

Stage Metric
mAP CMC@1 CMC@5 CMC@10

Syn 78.17 92.20 96.70 97.20
Syn+RC 80.03 94.10 98.20 98.90
Syn+RH 81.26 94.60 98.10 98.90

Ours 84.12 95.60 98.60 99.30

method, we adopt one of the state-of-the-art dehazing methods called MPR-Net [39]
which was retrained on hazy vehicle images. (iv) The same training images used in our
method including synthetic haze, real-world clear and real-world haze datasets (denoted
with ’-all’). The aforementioned settings are all with complete ID labels.

The results are reported in Table 3. We can observe the following results. First,
compared with other strategies, the proposed method can achieve the competitive per-
formance on vehicle ReID in hazy weather on both synthetic and real-world datasets in
terms of mAP and CMC. Second, existing methods trained on all data can obtain better
performance compared to the methods trained on other training settings. Third, other
methods may have limited performance in real-world scenarios, especially when they
are only trained on synthetic images. Last, surprisingly, though our method is trained
without ID labels in real-world data, it can outperform most supervised methods trained
with complete ID labels.
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Fig. 4: Visual results of the ranking list on the real-world dataset. The query images
are in the first column and the retrieved top-10 ranking results are in the rest columns.
We denote the correct retrieved images with a green border while the false instances are
with a red border.

Fig. 5: Visual comparison of using the unsupervised losses LCR and LMIDC in
the domain transformation network. These loss functions can benefit the rendering
process to generate more desirable results.

We also adopt our method trained with ID labels in the real-world data training stage
which is denoted with the suffix ’F’. Specifically, we introduce the triplet loss and the
ID loss defined in (11) and (10) to train the real-world data stage. The result indicates
that the performance can be improved if we use complete ID labels in the training stage.
Our method can be also adopted in the fully supervised scenarios and obtain the decent
performance.

4.4 Ablation Studies

Effectiveness of the Semi-supervised Strategy. In this paper, we proposed the semi-
supervised training technique to solve hazy vehicle ReID problem. It uses the domain
transformation mechanism which enables us to train the real-world data without the
ID labels. We present the effectiveness of this strategy in Table 4. We adopt the our
ReID network as the baseline and train with two settings for comparison, that -is, the
settings (ii) and (iv) reported in subsection 4.3 with complete ID labels. One can see
that our method is against the first setting favorably. Moreover, even without the ID
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labels of real-world data, our method can outperform the baseline trained with complete
ID labels since our methods integrate the domain transformation technique, which can
improve the ReID network to learn better representation under the hazy scenes. We also
show the visual results of the ranking list on the real-world dataset in Fig. 4. One can
see that, the baseline retrieves wrong instances because the important features such as
the window and light become ambiguous due to the degradation of haze, which may
deteriorate the performance of ReID.

Moreover, in Table 5, we show the results of assigning different convolution blocks
as the encoders. One can see that adopting the first two convolution blocks as the en-
coders can obtain the best performance. However, the proposed domain transformation
architecture can assist the network to learn accurate ReID in the haze scenario.
Effectiveness of the Loss Functions. In Table 4, we verify the effectiveness of the
adopted loss functions: the monotonously increasing dark channel loss LMICD and the
colinear relation constraint LCR. One can see that, with two loss functions, the perfor-
mance of ReID can be improved in both mAP and CMC metrics since the DT-Net can
benefit the encoders to learn more robust features with appropriate constraints which
can further benefit the performance of ReID. Furthermore, using both the dark channel
loss LDC and the total variation loss LTV can improve the performance of the network.
Fig. 5 presents that, with the proposed loss functions, the rendered results can be more
realistic compared with other modules. The rendered results may have the color distor-
tion problems without using LCR.
Effectiveness of Each Training Stage. We verify the effectiveness of using real clear
data or real hazy data in the training process. We construct three settings for the com-
parison. Specifically, we adopt: (i) only the synthetic data stage (Syn), (ii) Syn with
real clear data stage (Syn+RC), and (iii) Syn with real haze data stage (Syn+RH). The
results are reported in Table 6. We can see that only adopting the synthetic data may
cause limited performance in real-world scenarios due to the domain gap problem.

5 Conclusion

In this paper, to address the vehicle ReID problem under hazy scenarios, a semi-supervised
training framework that integrates the domain transformation network and the ReID net-
work is proposed. Moreover, to constrain the unsupervised training stage, several loss
functions to bound the two networks are proposed. With these techniques, the proposed
method can learn haze-invariant features for robust vehicle ReID. Experimental results
show that, compared to existing methods trained on complete ID labels, the proposed
methods can achieve decent performance even without using the ID labels in real-world
data.
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