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Abstract. Visible-Infrared Re-Identification (VI-ReID) is challenging
in image retrievals. The modality discrepancy will easily make huge intra-
class variations. Most existing methods either bridge different modalities
through modality-invariance or generate the intermediate modality for
better performance. Differently, this paper proposes a novel framework,
named Modality Synergy Complement Learning Network (MSCLNet)
with Cascaded Aggregation. Its basic idea is to synergize two modal-
ities to construct diverse representations of identity-discriminative se-
mantics and less noise. Then, we complement synergistic representa-
tions under the advantages of the two modalities. Furthermore, we pro-
pose the Cascaded Aggregation strategy for fine-grained optimization
of the feature distribution, which progressively aggregates feature em-
beddings from the subclass, intra-class, and inter-class. Extensive ex-
periments on SYSU-MM01 and RegDB datasets show that MSCLNet
outperforms the state-of-the-art by a large margin. On the large-scale
SYSU-MM01 dataset, our model can achieve 76.99% and 71.64% in
terms of Rank-1 accuracy and mAP value. Our code will be available
at https://github.com/bitreidgroup/VI-ReID-MSCLNet

Keywords: VI-ReID, Modality Synergy, Cascaded Aggregation

1 Introduction

Person re-identification (ReID) is a technique that retrieves a specific person
in the gallery set shot by non-overlapping cameras [40,51,5,16]. The advance-
ment of ReID plays an important role in smart city infrastructure and public
security from the perspective of intelligent surveillance systems [28,11,20]. With
the increasing demands for public security, surveillance systems are expected
the ability to retrieve specific people precisely day and night. A technological
requirement for Visible Infrared Person Re-Identification (VI-ReID) arises from
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Fig. 1: Idea Illustration (a) shows that, visible images usually contain dis-
criminative fine-grained semantics, more noise and infrared images contain more
similar semantics, less noise. (b) and (c) show that Synergistic features contain
rich information about identities.

it. In contrast to visible person ReID [4,56], VI-ReID faces huge intra-class vari-
ations mainly due to the discrepancy between visible and infrared modalities.
The modality discrepancy derives from properties of lights consisting of distinct
wavelengths. Yet, their images are equivalently parsed as numerical matrices.
Near-infrared is smoother and loses texture details due to longer wavelengths
and more scattering. It becomes much more agnostic to skin color, albedo, and
illumination. Similar texture, scatter, and color can represent different seman-
tics. Besides, it is also difficult to ensure the perspectives of camera shooting,
clothing of pedestrians, occlusion, and so on. These factors all contribute to a
huge challenge in VI-ReID.

To address the aforementioned difficulties, most of the existing methods
chiefly pay attention to learning modality-invariance to bridge the gap between
visible and infrared images [49,9,10,11] or generating images of intermediate or
the opposite modality for person retrieval [17,41]. However, GAN-based methods
usually suffer from computational complexity and noise introduction. Unfortu-
nately, pursuing modality-invariance may cause the networks to overlook feature
properties of semantic diversity, as well as loss of identity discrimination.

Differently, we consider the distinct representations and the semantic diver-
sity between visible and infrared modalities. The success of visible person ReID
validates that visible features are always discriminative enough to a large num-
ber of identities. Infrared cameras tend to capture thermal objects rather than
non-thermal objects. The thermal sensitivity results in semantic loss and filter-
ing of background noise. Infrared images represent relatively stable about the
same identity and are comparatively immune to noise. Therefore, we conclude
that synergizing visible identity-discrimination and infrared noise-immunity can
build noise-robust and retrieval-efficient representations for VI-ReID by learning
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homogeneous semantic discrimination and complementary characteristics across
modalities as shown in Fig. 1.

Furthermore, traditional approaches to hard sample mining and feature-
aggregation optimize distances of feature embeddings on the instance level. This
kind of coarse-grained metric learning neglects the comprehensive distribution of
all instances. We target to optimize on the different levels organized in cascaded
manner. The basic idea is to subdivide instances of each identity into several
subclasses according to the same shooting cameras. Instances in each subclass
are much easier to aggregate, whose feature embeddings have a higher intra-class
similarity. In this way, we can constrain distances between feature embeddings
step-by-step.

Hence, we propose a novel framework, namely, Modality Synergy Comple-
ment Learning Network (MSCLNet). It aims at reducing the intra-class varia-
tions and boosting representations of identities discrimination. Firstly, it retains
the intrinsic semantic diversity and identity relevance from visible and infrared
modalities by constructing a synergistic representation with the Modality Syn-
ergy module (MS). Then, it enhances the synergistic representations by the
specific advantages of the two modalities as shown in Fig. 2. MC contains these
two parallel complementary processes with visible and infrared representations.
On one hand, it provides guidance of fine-grained and discriminative features
from the visible modality. On the other, it supplies global pedestrian statis-
tics from the infrared modality. MS and MC greatly improve the capability of
the network to represent identities across modalities. In addition, we propose
the Cascaded Aggregation strategy (CA) to optimize the distribution of feature
embeddings. It progressively aggregates samples into sub-class, intra-class, and
inter-identities. In a cascaded manner, instance belonging to the same identi-
ties are lean to aggregation, and instances belonging to different identities are
mapped to dispersion.

In conclusion, the main contributions of our work can be summarized as
follows: We propose a novel framework named Modality Synergy Complement
Learning Network (MSCLNet) with Cascaded Aggregation for VI-ReID. To fetch
more discriminative semantics, it learns enhanced feature representations by di-
verse semantics and specific advantages of visible and infrared modalities. And
we propose a Modality Synergy module (MS) which innovatively mines the
modality-specific diverse semantics and a Modality Complement module (MC)
which further enhances the feature representations by two parallel guidances
of modality-specific advantages. They provide a reference for further high-level
identity representation. Then we design a Cascaded Aggregation strategy (CA)
to optimize the distribution of feature embeddings on a fine-grained level. It pro-
gressively aggregates the overall instances in a cascaded manner and enhances
the discrimination of identities. Extensive experimental results show that our
proposed framework outperforms the state-of-the-art methods by a large margin
on two mainstream benchmarks of VI-ReID.
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(a) Infrared Advantages

SimilarSimilar

(a) Infrared Advantages (b) Visible Advantages
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Fig. 2:Demonstration of Infrared and Visible advantages. Infrared images
contain similar semantics and their feature embeddings are easier to aggregate.
Visible images contain distinctive semantics even they describes the same person.

2 Related Work

Single-Modality Person Re-Identification retrieves pedestrians in the set of
visible images. Visible person ReID is a reliable technique which plays an impor-
tant role in daily life. These methods mainly solved the single-modal ReID prob-
lem via ranking [2,29], local and global attention [38,57], camera style [3,55,59],
person key-points [36], siamese network [58], similarity graph [22], network ar-
chitecture searching [18], .etc. Some works attempted domain adaptation [8,59].
And Some research dealt with the misalignment of human parts, such as cascaded
convolutional module [39], refined part pooling [34], transformer [19] and so on.
Beside, single-modality person re-identification contains several subdivided ar-
eas, for example, video person re-identification [26,44,60], unsupervised person
re-identification which tackles pseudo labels [46,54], unsupervised domain adap-
tion [1,31] and generalized person re-identification [16]. Due to the tremendous
discrepancy between visible and infrared images, single-modal solutions are not
suitable for cross-modality person re-identification, which creates a demand for
the development of VI-ReID solutions.
Visible-Infrared Person Re-Identification focuses on narrowing the gap
between visible and infrared modalities and learning appropriate representa-
tions for pedestrian retrieval across modalities. [43] proposed a deep zero-fill
network to extract useful embedded features to reduce cross-modal variation.
Dual-stream networks [21,48,49,50,51] simultaneously learned modal-shared and
modal-specific features. [30] used Gaussian-based variational auto-encoder to dis-
tinguish the subspace of cross-modal features. [15] exploited samples similarity
within modalities. A modality-aware learning approach [47] processed modality
differences on the classifier level. Some works generated images of intermediate
or the corresponding modality [7,17,35,37,40] to mitigate the effect of modal-
ity discrepancy. However, extracting modality-shared features causes the loss
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Fig. 3: Illustration of our MSCLNet. The images of visible and infrared
modalities are fed into convolution blocks for visible and infrared representa-
tions. We synergize the single-modal features and complement synergistic fea-
tures. Then, we design the Cascaded Aggregation strategy to fine-grained and
progressively enhance feature embeddings.

of semantics related to identity discrimination, and GAN-based methods bring
computational burden and non-original noise.

Differently, our work pays more attention to deep supervised knowledge syn-
ergy [32], which explores explicit information interaction between the supervised
branches. We propose to make the most use of the intrinsic information of visible
and infrared modalities, which learns diverse semantics and enhances feature rep-
resentations by a modality synergy and complement learning scheme. To better
discriminate identities, we introduce a cascaded feature aggregation strategy.

3 Modality Synergy Complement Learning

In this section, we formulate the VI-ReID problem and introduce the frame-
work of our proposed MSCLNet (§ 3.1). It mainly contains three major com-
ponents: Modality Synergy module (MS, § 3.2), Modality Complement module
(MC, § 3.3), and Cascaded Aggregation strategy (CA, § 3.4). We utilize MS to
synergize modality-specific diverse semantics from the extractors, and then use
MC to enhance feature representations under the guidance of advantages from
the two modalities. To optimize the distribution of the features and aggregate
instances of the same identity, we exploit CA to constrain the feature distribu-
tion in a fine-grained and progressive way. Finally, we summarize the proposed
loss function (§ 3.5).
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3.1 Problem Formulation

We take V = {xv
i |xv

i ∈ V} and R = {xr
i |xr

i ∈ R} to denote visible and infrared
images, respectively. Yv = {yvi |xv

i ∈ V} and Yr = {yri |xr
i ∈ R} indicates the

corresponding identity labels. Given a query person image xv
Q or xr

Q, VI-ReID
aims to retrieve the most precise result in the gallery set xr

G or xv
G. Existing

methods extract modality-shared features at the cost of discarding modality-
specific semantics of diversity which can well depict the person. Therefore, we
take these intrinsic diverse semantics and the special advantages of each modality
into consideration, to learn more precise and better discriminative representation
for identities.

Fig. 3 illustrates the framework of Modality Synergy Complement Learn-
ing Network (MSCLNet) with Cascaded Aggregation. It adopts a dual-stream
network as the feature extractor. Firstly, based on the extracted feature repre-
sentations fv and fr from visible and images, MSCLNet constructs synergistic
representations fs by constraining the diversity of the feature distributions be-
tween the two modalities. The synergistic feature will be further enhanced by
modality complement guidance. The visible modality provides fine-grained dis-
criminative semantics, while the infrared modality supplies with stable global
pedestrian statistics. Then we aggregate feature embeddings of the same class
via Cascaded Aggregation strategy which optimizes the comprehensive distribu-
tion of feature embeddings progressively on three aspects.

3.2 Modality Synergy Module

According to the differences in imaging principles and the heterogeneity of the
image contents, visible and infrared images reveal quite different semantics to
depict the same person. In our work, we design the network to learn and synergize
the diverse semantics of the two modalities. Given a pair of visible and infrared
images xv

i ∈ V, xr
i ∈ R, the dual-stream network extracts their features fv

i and
fr
i . With the prerequisite of precise pedestrian re-identification, we concentrate
on acquiring the semantic diversity to the largest extent. Features fv

i and fr
i are

normalized by the following operations.

f̂v
i =

fv
i − E [fv

i ]√
Var [fv

i ] + ϵv
× γ + β,E [fv

i ] =
1

HW

W∑
l=1

H∑
m=1

fitlm, (1)

Where Var [fv
i ] =

1
HW

∑W
l=1

∑H
m=1 (fitlm − E [fv

i ])
2
are calculated per-dimension

separately for each instance in a mini-batch. Let S(·) indicate the Modality Syn-
ergy module to construct synergistic feature fs

i with label yi on the basis of
fv
i , f

r
i :

fs
i = S(f̂v

i , f̂
r
i , yi, θs), (2)

where θs acts as parameters of the Modality Synergy module S(·). We utilize
Mogrifier LSTM [25] as a synergistic feature encoder to maximize the effect of
modality synergy learning, and the synergistic feature fs

i is encoded with visible
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and infrared features with their shared ground-truth label. To construct fs
i with

diverse semantics, we exploit KL-Divergence to constrain the logistic distribution
of visible and infrared features fv

i , f
r
i , which can be formulated as follows:

Ldiv = −KL(f̂v ∥ f̂r) = − 1

N

N∑
i=1

(f̂v
i · log f̂v

i

f̂r
i

, θv, θr), (3)

where N denotes the number of samples in a batch. θv and θr act as learned
feature extractors of visible and infrared modalities respectively, which aim to
maximize the diversity of semantic representation across modalities. fv and
fr are firstly designed in the representation spaces to maximize the modality-
specific discrimination among identities. Then, the synergistic feature extractor
θs projects f̂v

i , f̂
r
i to a shared representation space and constructs synergistic

features fs
i .

Furthermore, we constrain the diverse semantics by identity-relevance, which
introduces cross entropy constraining the logistic probability of visible and in-
frared features pvi and pri and the ground truth label yi.

Lt = − 1

N

N∑
i=1

[ŷi · log p̂vi (f̂v
i , θv)]−

1

N

N∑
i=1

[ŷi · log p̂ri (f̂r
i , θr)] (4)

where λdiv and λt are hype-parameters to balance the contributions of individual
loss terms. The optimization processes of θv, θr separately track the the gradient
of (∂f

v

∂xv ,
∂fs

∂xv ) and (∂f
r

∂xr ,
∂fr

∂xr ).

LSynergy = L(θv, θr) = λdiv · Ldiv + λt · Lt (5)

3.3 Modality Complement Module

Although synergistic representation contains more identity-relevant diverse se-
mantics, it is uncertain whether synergistic feature outperforms the combination
of visible and infrared features Concat(fv

i , f
r
i ). Due to infrared images contain-

ing global pedestrian statistics with less noise and visible images containing fine-
grained discriminative semantics, we enhance the representation effectiveness of
synergistic feature fs

i from two aspects. Considering fine-grained semantics, we
enhance synergistic features with advantages of visible features fv

i in terms of
local parts. And considering coarse-grained semantics, we enhance synergistic
features with advantages of infrared features fr

i about global parts.
On the fine-grained level, we split visible and synergistic features into n = 6

parts as MPANet [45] and get separate feature blocks as fv
i = [bv1, b

v
2 · · · , bvn],

fs
i = [bs1, b

s
2 · · · , bsn]. The local discrimination of synergistic features can be

boosted with nuanced regions of visible modality. Cosine similarity cos(·, ·) is
utilized for the optimization process.

Llocal =
1

N

N∑
i=1

n∑
j=1

(cos(bvj , b
s
j) +

√
2− 2cos(bvj , b

s
j)) (6)
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In parallel, on the coarse-grained level, we supervise fs
i by keeping the statistic

centers of synergistic features consistent with that of the infrared feature fr
i . The

global statistics of synergistic features can get optimized with center consistency
of infrared modality.

Lglobal =
1

N

N∑
i=1

||Cs
yi
− Cr

yi
||2
2
, (7)

where Cs
yi
, Cr

yi
denote the center of the yi

th class for synergistic features fs
i , f

r
i .

Lglobal helps to coordinate semantics of the synergistic and the infrared feature
and filter identity-irrelevance of the synergistic representation.

In the progress of Modality Complement module, we update the parameters
of synergistic feature extractor θs, which aims to construct features with less
noise, more diverse and more precise semantic description for each identity. θs
is optimized as follows:

LCom(θs) = λlocal · Llocal + λglobal · Lglobal, θ̂s = argmin
θs

L(θs), (8)

where λlocal, λglobal are hyper-parameters to balance the contributions of indi-
vidual loss terms.

3.4 Cascaded Aggregation Strategy

Due to factors like shooting perspectives, clothing, and occlusion, the results
of person retrieval will easily be affected [53,33]. To cope with this problem,
center loss [23] and triplet loss [14] are widely adopted in ReID problems to
simultaneously learn the centralized representation of feature embeddings and
mine hard samples. Center loss Lc and Triplet loss Ltri can be formulated as:

Lc =
1

N

∑N

i=1
∥fi − Cyi∥

2
2 ,

Ltri =
N∑
i

[
∥f (xa

i )− f (xpos
i )∥22 − ∥f (xa

i )− f (xneg
i )∥22 + α

]
+

(9)

where xi denotes the i
th input sample, Cyi

is the yi
th class center, fi is the feature

embedding, xa
i is the anchor. Center loss pays attention to aggregating feature

embeddings but neglects the intrinsic differences and diverse semantics existing
in the visible and the infrared modalities. Triplet loss specializes in handling hard
samples separately rather than considering the comprehensive distribution across
modalities, which limits the performance. Considering the diverse semantics and
structural distribution across modalities, we propose Cascaded Aggregation to
progressively optimize the features distribution of, as shown in Fig. 4.

1) Aggregation on Sub-class level. We utilize the identity of shooting cameras
for each image as the natural sub-class, since images of the same person shot by
the same camera have high similarities with each other, where Csi denotes the
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Fig. 4: Cascaded Aggregation demonstration (a) indicates the optimization
for subclass aggregation, (b) indicates the intra-class aggregation, and (c) indi-
cates the inter-class dispersion.

sthi sub-class center:

Lsub =
1

N

N∑
i=1

||fs
i − Csi ||22, (10)

2) Aggregation on the intra-class level, which keeps the structural priors of
the features during the training progress. The formulation of the aggregation
can be represented as follows, where Ns denotes the number of the sub-classes
of each identity.

Lintra =
1

N

N∑
i=1

Ns∑
j=1

||Csj − Cyi ||22, (11)

3) Aggregation on the inter-class level. Our method of aggregation not only max-
imizes the similarity of intra-class instances but also maximizes the dissimilarity
of inter-class instances on the whole. The dispersion between different identities
and the two types of aggregation in 1) and 2) of the same identities are inde-
pendent of each other. Formally, the dispersion between different identities can
be represented as:

Linter = − 1(
N
2

) N∑
i=1

N∑
j ̸=i

||Cyi − Cyj ||22. (12)

The loss function of CA for metric learning can be represented as:

Lcascade = Lsub + Lintra + Linter

=
1

N

N∑
i=1

||fs
i − Csi ||22 +

1

N

N∑
i=1

Ns∑
j=1

||Csj − Cyi
||22 −

1(
2
N

) N∑
i=1

N∑
j ̸=i

||Cyi
− Cyj

||22.

(13)
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Compared with Center Loss, our method begins with only a few samples of
high similarity for the same shooting cameras and it will become much easier to
learn sub-center representations.
Compared with Triplet Loss, our method deals with negative samples si-
multaneously by guiding the negative samples to the correspondent sub-class
instead of easily pushing away alongside the gradient.

3.5 Objective Function

Firstly, we utilize Synergy Loss LSynergy to enrich the representation on diverse
semantics. The parameters of feature extractors θv and θr are updated as:

LSynergistic = L(θv, θr) = λdiv · Ldiv + λt · Lt. (14)

Then, we enhance the synergistic feature representation with the advantages of
two modalities, namely, the discriminative local parts from the visible feature and
global identity statistics from the infrared feature. We utilize Complementary
Loss LCom to update the modality synergy feature extractor θs:

Lcom = L(θs) = λlocal · Llocal + λglobal · Lglobal. (15)

Finally, we constrain the distribution of visible, infrared and synergistic feature
fv, fr, fs with cascaded aggregation strategy Lcascaded:

Lcascaded = L(θv, θr, θs) = Lsub + Lintra + Linter. (16)

Overall, the objective function of our MSCLNet can be summarized as follows:

Ltotal = λdivLdiv + λtLt + λlocalLlocal + λglobalLglobal + Lsub + Lintra + Linter

(17)

4 Experiment

4.1 Datasets and Evaluation Protocol

SYSU-MM01 [43] is a large-scale dataset for VI-ReID which contains 491
pedestrians with total 287,628 visible images and 15,792 infrared images. It col-
lects samples by 6 cameras, i.e. 4 visible and 2 infrared cameras, in the outdoor
and indoor environments. It contains two different testing modes, all-search and
indoor-search modes. Compared with RegDB, SYSU-MM01 is more challenging
due to the large variations between samples.

RegDB [28] collects 412 identities, and each identity has 10 visible images
and 10 infrared images. We randomly choose 206 identities for training and
the left for testing [48]. There are two modes in testing, visible-to-infrared and
infrared-to-visible.The former denotes that the model retrieves the person in the
infrared gallery when given a visible image, and vice versa. We average the results
for 10 trials for stable performance [40].

Evaluation Protocol. The cumulative matching characteristics (CMC) [27],
and mean average precision (mAP) are used as evaluation metrics.
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4.2 Implement Details

Training. We implement MSCLNet with PyTorch on a single NVIDIA RTX
2080 Ti GPU and deal with 64 images consisting of 32 visible and 32 infrared
images of 8 identities in a mini-batch by randomly selecting 4 visible and 4
infrared images for each identity. Our baseline is AGW*, which means AGW [51]
with Random Erasing. We adopt pre-trained ResNet-50 [13] on ImageNet as the
backbone network. Then, we pre-process each image by re-scaling in to 288 ×
144 and augment images through random cropping with zero-padding, random
horizontal flipping and random erasing (80% probability, 80% max-area, 20%
min-area) . During the training process, we optimize the feature extractors θv, θr
and modality synergy module θs with SGD optimizer. We set the initial learning
rate η = 0.1, the momentum parameter p = 0.9. The learning rate is changed
as η = 0.05 at 21-50 epoch, η = 0.01 at 51-100 epoch, and η = 0.001 at 101-200
epoch. The hyper-parameters λdiv, λt, λlocal, λglobal are set to 0.5, 1.25, 0.8, and
1.5, respectively. We synergize visible and infrared instances to train a concise
end-to-end network, which retrieves specific person across modalities.

Testing. For testing, the model works in Single-shot mode by extracting the
query and the gallery features from a single modality by the feature extractor
θv or θr. Besides, MS and MC modules do not participate in testing stage.

4.3 Ablation Study

In this subsection, we conduct an ablation study to evaluate the effectiveness of
each component of MSCLNet, as summarized in Eq. 17. The results are demon-
strated in Tab. 1. We evaluate how much improvement can be made by each
component on the all-search mode of SYSU-MM01 dataset.

Table 1: Analysis of the effectiveness of MS, MC, CA on SYSU-MM01 dataset
in the all-search mode. Rank-1 accuracy(%) and mAP(%)are reported.

Methods
Metric

MS MC CA
B Ldiv Lt Lglocal Llocal Lsub Lintra Linter Rank-1 mAP
✓ 59.82 56.07
✓ ✓ 60.32 56.79
✓ ✓ 60.67 58.12
✓ ✓ 62.14 59.94
✓ ✓ 61.33 59.23
✓ ✓ 61.74 59.88
✓ ✓ 61.96 60.40
✓ ✓ 63.55 60.97
✓ ✓ ✓ 62.82 60.25
✓ ✓ ✓ 64.84 61.00
✓ ✓ ✓ ✓ 66.13 61.99
✓ ✓ ✓ ✓ ✓ 71.16 66.30
✓ ✓ ✓ ✓ ✓ ✓ 69.78 65.29
✓ ✓ ✓ ✓ ✓ ✓ 72.81 67.66
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 76.99 71.64
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Fig. 5: Visualization Results. (a) and (b) show the feature embeddings dis-
tribution of baseline and MSCLNet via t-SNE [24], where circles and triangles
in different colors denote visible and infrared modalities. (c) and (d) show the
intra-and-inter distribution of feature distance.

Effectiveness of MS. Referring to the ninth row, we add the MS structure
to the baseline, and the baseline obtains a rank-1 score of 62.82% and a mAP of
60.25%, improved by 3% and 19.75%. Meanwhile, we add MS to other combina-
tions as shown in the 12th, 13th, 15th rows. MS also brings different degrees of
enhancement to the model.

Effectiveness of MC. The experimental setting of Base+MC acquires 64.84%
at Rank-1 and 61.00% at mAP. When baseline works with MS+MC, a further im-
provement is reached, where rank-1 is 71.16% and mAP is 66.3%. This illustrates
that Modality Synergy Complement Learning effectively improves performance.

Effectiveness of CA. The settings of Base+MS+CA and Base+MC+CA
work better than merely utilizing one of the three modules. Base+MS+MC+CA
reaches the best result, in which rank-1 is 69.78%, mAP is 65.29%.

Overall. The results show that each component of MSCLNet can improve
precision. At the same time, they work better when cooperating, which reveals
that the three components focus on different aspects of optimization.

4.4 Visualization Analysis

To present the effectiveness of MSCLNet, we visualize the feature distribution
via t-SNE [24] as shown in Fig. 5. Different colors denote different identities. For
the baseline, feature embeddings of some identities entangle with each other,
which indicates the baseline is confused about these identities. In comparison,
MSCLNet discriminates and aggregates these feature embeddings of the same
identity separately and clearly.

Meanwhile, we also visualize the feature distances analysis between baseline
and MSCLNet in Fig. 5. After numerical analysis, our conclusions are as fol-
lows: 1) Distances between these distribution increase d = 0.23 → 0.26 and the
mean distance of intra-identity reduces µ = 1.31 → 1.27. 2) Variance of intra-
identity distribution reduces prominently σ = 9.5× 10−2 → 8.8× 10−2 and the
distribution of intra-identity aggregates better.
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Fig. 6: Hyper-parameters Sensitive Graph

4.5 Parameters Analysis

We analyze the parameter sensitivity under the condition that, single hyper-
parameter was selected as a variable and all other hyper-parameters are kept con-
stant. Thus, we can obtain the curve of the effect of changing hyper-parameters
on Rank-1 accuracy (%). In turn, by continuously changing the variables, we can
get the sensitivity graphs of all hyper-parameters λdiv, λt, λglobal, λlocal as shown
in Fig 6. It clearly shows that five hyper-parameters present different sensitivities
and most of their optimal intervals of these parameters are in [1, 2].

4.6 Comparison with State-of-the-Art Methods

Table 2: Comparison with the state-of-the-arts on SYSU-MM01 dataset. Rank-k
accuracy (%) and mAP (%) are reported.

Settings All Search Indoor Search
Method Venue R1 R10 R20 mAP R1 R10 R20 mAP
Zero-Pad [43] ICCV17 14.80 54.12 71.33 15.95 20.58 68.38 85.79 26.92
HCML [48] AAAI18 14.32 53.16 69.17 16.16 24.52 73.25 86.73 30.08
cmGAN [7] IJCAI18 26.97 67.51 80.56 27.80 31.63 77.23 89.18 42.19
HSME [12] AAAI19 20.68 32.74 77.95 23.12 - - - -
AliGAN [37] ICCV19 42.40 85.00 93.70 40.70 45.90 87.60 94.40 54.30
CMSP [42] IJCV20 43.56 86.25 - 44.98 48.62 89.50 - 57.50
JSIA [35] AAAI20 38.10 80.70 89.90 36.90 43.80 86.20 94.20 52.90
XIV [17] AAAI20 49.92 89.79 95.96 50.73 - - - -
MACE [47] TIP20 51.64 87.25 94.44 50.11 57.35 93.02 97.47 64.79
MSR [9] TIP20 37.35 83.40 93.34 38.11 39.64 89.29 97.66 50.88
Hi-CMD [6] CVPR20 34.94 77.58 - 35.94 - - - -
cm-SSFT [21] CVPR20 47.70 - - 54.10 - - - -
AGW [51] TPAMI21 47.50 84.39 92.14 47.65 54.17 91.14 95.98 62.97
MCLNet [11] ICCV21 65.40 93.33 97.14 61.98 72.56 96.88 99.20 76.58
SMCL [41] ICCV21 67.39 92.87 96.76 61.78 68.84 96.55 98.77 75.56
NFS [5] CVPR21 56.91 91.34 96.52 55.45 62.79 96.53 99.07 69.79
CM-NAS [10] CVPR21 61.99 92.87 97.25 60.02 67.01 97.02 99.32 72.95
MPANet [45] CVPR21 70.58 96.21 98.80 68.24 76.74 98.21 99.57 80.95
MSCLNet Ours 76.99 97.63 99.18 71.64 78.49 99.32 99.91 81.17

We compare the proposed MSCLNet with state-of-the-art methods. Tab. 2
and Tab. 3 illustrate the comparison results on the SYSU-MM01 and the RegDB
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datasets. MSCLNet outperforms the other methods on both of the benchmarks.
On the SYSU-MM01 dataset, MSCLNet achieves the rank-1 scores of 76.99%
and mAP score of 71.64% in the all-search mode, higher than MPANet [45] by
6.41% and 3.40%. On the RegDB dataset, MSCLNet achieves Rank-1 scores of
84.17% and 83.86% in visible-to-infrared and infrared-to-visible modes, better
than NFS [10] by 3.63% and 5.91%, respectively.

Table 3: Comparison with the state-of-the-arts on RegDB dataset. Rank-1 ac-
curacy (%) and mAP(%) are reported.

Settings Visible to Infrared Infrared to Visible
Method Venue Rank-1 mAP Rank-1 mAP
Zero-Pad [43] ICCV’17 17.75 18.90 16.63 17.82
HCML [48] AAAI’18 24.44 20.08 21.70 22.24
HSME [12] AAAI’19 50.85 47.00 50.15 46.16
AliGAN [37] ICCV’19 57.90 53.60 56.30 53.40
CMSP [42] IJCV’20 65.07 64.50 - -
JSIA [35] AAAI’20 48.10 48.90 48.50 49.30
XIV [17] AAAI’20 62.21 60.18 - -
DG-VAE [30] ACM MM’20 72.97 71.78 - -
HAT [52] TIFS’20 71.83 67.56 70.02 66.30
MSR [9] TIP’20 48.43 48.67 - -
MACE [47] TIP’20 72.37 69.09 72.12 68.57
DDAG [50] ECCV’20 69.34 63.46 68.06 61.80
Hi-CMD [6] CVPR’20 70.93 66.04 - -
AGW [51] TPAMI’21 70.05 66.37 70.49 65.90
MCLNet [11] ICCV’21 80.31 73.07 75.93 69.49
NFS [5] CVPR’21 80.54 72.10 77.95 69.97
MPANet [45] CVPR’21 83.70 80.90 82.80 80.70
MSCLNet Ours 84.17 80.99 83.86 78.31

5 Conclusion and Discussion

In this paper, we propose a novel VI-ReID framework, which has the capability
to make full use of the visible and the infrared modality semantics and learn
discriminative representation of identities by synergizing and complementing in-
stances of visible and infrared modalities. Different from existing methods pur-
suing modal-shared information at the risk of identity-relevant semantics loss,
MSCLNet provides an innovative approach exploring high-level unity in VI-ReID
task. Meanwhile, we propose Cascaded Aggregation strategy to fine-grained and
progressively optimize the distribution of feature embeddings, which assists the
network discriminate identities and extract more precise and more comprehen-
sive features. Experimental results validate the merit of the framework, as well
as the effectiveness of each component in this framework. In the future work, we
plan to explore background scenes, gender, and appearances to construct better
different sub-classes.
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