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Abstract. Visible-infrared person re-identification (VI-ReID) is a chal-
lenging task due to the large cross-modality discrepancies and intra-class
variations. Existing works mainly focus on learning modality-shared rep-
resentations by embedding different modalities into the same feature
space. However, these methods usually damage the modality-specific in-
formation and identification information contained in the features. To
alleviate the above issues, we propose a novel Cross-Modality Trans-
former (CMT) to jointly explore a modality-level alignment module and
an instance-level module for VI-ReID. The proposed CMT enjoys several
merits. First, the modality-level alignment module is designed to com-
pensate for the missing modality-specific information via a Transformer
encoder-decoder architecture. Second, we propose an instance-level align-
ment module to adaptively adjust the sample features, which is achieved
by a query-adaptive feature modulation. To the best of our knowledge,
this is the first work to exploit a cross-modality transformer to achieve
the modality compensation for VI-ReID. Extensive experimental results
on two standard benchmarks demonstrate that our CMT performs fa-
vorably against the state-of-the-art methods.
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1 Introduction

Person re-identification (Re-ID) aims at matching person images captured from
non-overlapping camera views [40,42]. In recent years, it has gained increasing
attention due to its significant practical value in video surveillance. Most of
the existing methods [16,21,13,26,44,11,43,24] focus on visible (RGB) cameras
and formulate the Re-ID task as a single-modality matching problem. However,
the visible cameras are incapable of capturing valid appearance information of
persons under poor illumination conditions (e.g., at night). To image clearly
in the dark, in addition to the visible cameras, infrared (IR) cameras that are
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Fig. 1. Our motivation. The modality prototypes are introduced to store the global
modality characteristics, which can be utilized to compensate for the missing modality
features and thus contributes to the modality-level alignment. Then, by use of
the query feature modulation, we can adaptively adjust the gallery sample features to
activate query-related patterns and achieve instance-level alignment.

robust to illumination variants are also equipped in many surveillance scenarios.
Hence, visible-infrared person re-identification (VI-ReID) [3,37,20] has recently
been of great interest, which aims at retrieving IR person images of the same
identity as the given RGB query and vice versa.

VI-ReID is challenging due to the cross-modal discrepancies between RGB
and IR images, and the key issue is how to bridge the two modalities. To narrow
the gap between two modalities, existing methods mainly focus on modality-level
alignment. Some works are based on modality-shared feature learning [6,9,37,38,41],
which decouple features into modality-specific and modality-shared features.
Then they utilize the latter ones to align the modalities in the feature level
while abandoning the modality-specific features. However, the modality-specific
features also contain useful identity information that helps the final retrieval,
such as colors. Therefore, with modality-shared cues only, the upper bound of
the discrimination ability of the feature representation is limited. To address
this limitation, modality compensation methods [32,20] have been proposed to
compensate for the missing modality features. Specifically, in [20], the authors
utilize the graph convolutional networks to obtain the compensated modality
features based on the similarities between cross-modality samples in the current
mini-batch.

By studying the previous VI-ReID methods based on modality compensa-
tion, we discover two characteristics that play an important role in achieving the
robust VI-ReID. (1)Modality-level alignment. In previous modality compen-
sation methods [20], the compensated features are produced solely based on the
samples of the current mini-batch. This strategy suffers from a certain random-
ness, and thus causes the inconsistency of generated modality features when the
samples are in the different mini-batches. To address this issue, an intuitive idea
is to model several modality prototypes for representing global modality infor-
mation. These modality prototypes can be used as the global basis for learning
robust modality compensation for every sample. Therefore, it is necessary to
model global modality prototypes to facilitate a better alignment between RGB
and IR modalities. (2) Instance-level alignment. Due to intra-class variations
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(e.g., viewpoint, illumination, and background clutter), the feature distribution
of different samples with same ID varies greatly even under the same modal-
ity. Performing the modality-level alignment alone may lead to cases where the
IR (RGB) instances are incorrectly aligned with the RGB (IR) instances of a
different category. To align the cross-modal instances in the same class, most
methods [9,37,38] utilize the supervised triplet loss to reduce the distances of
the features of the same ID on the training set. However, in the open-set setting,
because the categories of training and test sets have no overlap, the discrimina-
tive representations learned on the training set may not be optimal for the test
images. Therefore, it is of vital importance to achieve dynamic instance-level
alignment. In this way, the gallery instances can be adaptively refined according
to the query features and be aligned to the query instances in the same class(as
shown in Figure 1).

Inspired by the above discussions, we propose a novel Cross-Modality Trans-
former (CMT) by jointly exploring a modality-level alignment module and an
instance-level alignment module for visible-infrared person re-identification. In
the modality-level alignment module, we introduce an encoder-decoder ar-
chitecture, which can achieve the modality feature enhancement and compensa-
tion. In the encoder, we adopt a self-attention mechanism to capture the interre-
lationship between local human parts. Then, we introduce two sets of learnable
modality prototypes to represent the RGB and IR modalities respectively, and
design a decoder to compensate for the missing modality. Taking a RGB sample
as the example, we take the IR modality prototypes as queries and the part fea-
tures of the RGB sample as keys and values of the transformer decoder. By use
of the cross-attention between the part features and the modality prototypes, we
can obtain the attention scores which can be regarded as the soft correspondences
between IR modality prototypes and part features. Then we can compensate for
IR modality-specific features by aggregating the related part features according
to the attention matrix. Besides, to guide the learning of modality prototypes,
we design a modality consistency loss to constrain the compensated IR features
to be aligned with the real IR modality features. Similarly, the modality com-
pensation for IR images can be achieved in the same way. In the instance-level
alignment module, a feature modulator is proposed to adaptively adjust the
representations of instances. Concretely, given the query sample x, we can utilize
its feature to generate the channel-wise modulation parameters. These parame-
ters reveal the most discriminative patterns of sample x, and can be employed
to modulate other samples of the current mini-batch in the channel dimension.
Thus, the crucial x-related channels of other samples can be strengthened, and
the irrelevant channels can be suppressed. In this way, we can achieve query-
adaptive feature modulation during the test, which can adaptively activate co-
herent patterns between query instances and gallery instances and facilitate a
better instance-level alignment even for the unseen test categories.

The main contributions of this paper can be summarized as follows: (1)
We propose a novel Cross-Modality Transformer for VI-ReID to jointly explore
modality-level alignment and instance-level alignment. To the best of our knowl-
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edge, this is the first work to exploit a cross-modality transformer to achieve
the modality compensation for VI-ReID. (2) A modality-level alignment mod-
ule is proposed to compensate for the missing modality-specific information via
a Transformer encoder-decoder architecture. Also, we design an instance-level
alignment module to adaptively adjust the sample features, which is achieved
by query-adaptive feature modulation. (3) Extensive experimental results on two
standard benchmarks demonstrate that the proposed model performs favorably
against state-of-the-art VI-ReID methods.

2 Related Work

Single-Modality Person Re-ID. Single-modality person re-identification aims
at matching pedestrian images across disjoint visible cameras. The considerable
viewpoint changes and human pose variations under different visible cameras are
the main challenges of single modality person Re-ID. Existing works mainly fo-
cuses on representation learning [42,16,21,26,30] and metric learning [43,24,36],
and have achieved excellent performance on the widely-used datasets. However,
due to the large cross-modality discrepancies, these methods may not be appli-
cable for the VI-ReID task in the practical surveillance scenarios. Differently, our
method proposes a modality-level alignment module and an instance-alignment
module to learn a unified ReID framework for both RGB and IR modalities.

Visible-Infrared Person Re-ID. Visible-Infrared person Re-ID is chal-
lenging due to the cross-modal discrepancies between visible and infrared images.
To address this challenge, existing methods [9,15,6,37,29,3,39,41] mainly focus
on learning modality-shared feature representations to achieve modality-level
alignment. Some image translation-based methods [3,14,28,29] are developed to
firstly achieve modality unification and then learn modality-shared representa-
tions. Wang et al. [29] propose an end-to-end alignment generative adversarial
network by exploiting pixel alignment and feature alignment jointly. [28] gener-
ates cross-modality paired-images and performs both global set-level and fine-
grained instance-level alignments. Another line of works [37,7,8,18] attempts to
learn modality-shared features by designing various two-stream architectures.
Ye et al. [37] propose a novel modality-aware collaborative ensemble learning
method with the middle-level sharable two-stream network. [7] exploits the opti-
mal two-stream architecture by neural architecture search for VI-ReID. However,
the modality-specific features are generally ignored by the above methods, which
limits the upper bound of the discrimination ability of the feature representation.
To address this limitation, modality compensation methods [32,20] are proposed
to compensate for the missing modality features. [32] generates multi-spectral
images to compensate for the lacking specific information by utilizing the genera-
tive adversarial network. In [20], a cross-modality shared specific feature transfer
algorithm is proposed to explore the potential of both the modality-shared infor-
mation and the modality-specific features. However, the compensated features
extracted by [20] only depend on the current mini-batch, which causes the in-
consistency of generated modality features when the samples are in the different
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Fig. 2. Framework of our Cross-Modality Transformer. (1) The modality-level align-
ment module compensates for the missing modality information by the cross-attention
between the modality prototypes PI/PR and features F̃R/F̃I . A modality consistency
loss Lcyc is proposed to make the modality prototypes focus on the corresponding
global modality information. (2) The instance-level alignment module leverages the
characteristics of the given query to automatically adapt the other instance features
by the query-adaptive modulation, which helps align the query and gallery instances
in the same class. For simplicity, we take an IR image I as an example and show the
process of using I as the query for the modulation in the figure.

mini-batches. Differently, we introduce two sets of global modality prototypes
to represent the RGB and IR modalities respectively, which can be used as the
global basis to learn modality compensation for every sample.

Transformer in Person Re-ID. Transformers have recently received in-
creasing attention for computer vision tasks, including image classification [5,19],
object detection [1,45], image segmentation [31,19], and so on. Most existing Re-
ID methods apply Transformer to a single modality. For example, He et al. [11]
utilize a pure-transformer with a side information embedding and a jigsaw patch
module to learn discriminative features. Li et al. [17] exploit a transformer ar-
chitecture to discover diverse parts for occluded person Re-ID. Different from
the above methods, our CMT is designed for VI-ReID to compensate for the
missing modality-specific information.

3 Our Method

In this section, we introduce the details of the proposed Cross-Modality Trans-
former (CMT) for the VI-ReID task. As shown in Figure 2, the proposed CMT
mainly consists of two modules. (1) The modality-level alignment module aims
at compensating for the missing modality-specific information via a Transformer
encoder-decoder architecture. (2) The instance-level alignment module is respon-
sible for aligning the gallery instances with the query instance in the same class
by a query-adaptive feature modulation mechanism.
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3.1 Modality-level Alignment Module

In order to achieve the modality-level alignment, we follow the architecture of
Transformer [27] and design a representation encoder and a modality compen-
sation decoder, which is able to adaptively compensate for the lacking modality-
special information. Different from the previous modality compensation method [20]
that depends on the information in the mini-batch, we design two set of learn-
able modality prototypes to provide the global modality information for more
robust modality compensation.

Representation Encoder. Following existing works [8,25,40,39], we adopt
a two-stream network based on ResNet-50 as our feature extractor for the RGB
and IR modalities, where the first two stages are parameter-independent and the
latter three stages are parameter-shared. We first use the feature extractor ϕ to
extract the feature maps for the given visible images and infrared images. Then,
following the practice in the part-based methods [39,18], we horizontally split
the feature maps into p non-overlapping parts with a region pooling strategy.
In this way, the RGB and IR images can be represented by the set of the part
features: FR =

[
fR
1 ; fR

2 ; . . . ; fR
p

]
∈ Rp×d and FI =

[
f I
1 ; f

I
2 ; . . . ; f

I
p

]
∈ Rp×d,

where fR
i , f I

i ∈ Rd indicate the ith part feature of two modalities. These part
features are taken as the inputs of transformer encoder. For the simplicity of the
description, we take the RGB image as an example.

In the representation encoder, we adopt a self-attention layer to capture the
inter-relationship between the local human parts to refine the part representa-
tions. Specifically, we take part features as the query Q, key K and value V. We
generate the (Q, K, V) triplets by independent linear projection layers:

Q = FRWQ, K = FRWK , V = FRWV , (1)

where WQ ∈ Rd×d,WK ∈ Rd×d,WV ∈ Rd×d are linear projections, and
Q,K,V ∈ Rp×d. Then, the attention weights between the query Q and the
key K can be derived by the inner product with a scaling operation and a Soft-
max normalization. Based on the attention weights, we can obtain the refined
part features as the weighted sum of values V ∈ Rp×d. Formally:

Attention (Q,K,V) = softmax

(
QKT

√
d

)
V. (2)

Equation (2) is implemented with the multi-head attention mechanism, and
a feed-forward network is also applied. For more details, please refer to the
work [27].

Modality Compensation Decoder. In the modality compensation de-
coder, we introduce two sets of learnable modality prototypes to represent the
global modality information of RGB and IR modalities respectively, which are
denoted as PR =

[
pR1 ; p

R
2 ; . . . ; p

R
p

]
,PI =

[
pI1; p

I
2; . . . ; p

I
p

]
∈ Rp×d, where pIi is the

modality prototype for the i-th part feature in the IR modality. Following the
standard architecture of the transformer [27], we first use a self-attention layer to
incorporate the local context information between prototypes. The implementa-
tion is the same as the self-attention layer in the representation encoder, but the
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keys, queries and values arise from IR/RGB modality prototypes. Subsequently,
we compensate for the missing modality features by the cross-attention between
the modality prototypes and part features. Given the RGB/IR feature map of

the encoder output F̃R =
[
f̃R
1 ; f̃R

2 ; . . . ; f̃R
p

]
/ F̃I =

[
f̃ I
1 ; f̃

I
2 ; . . . ; f̃

I
p

]
∈ Rp×d (f̃R

i

and f̃ I
i represent the ith part feature of RGB and IR samples, respectively), we

take RGB features as an example to elaborate on the compensation process of
the IR modality. Specifically, the IR modality prototypes PI are taken as the
queries QI , and the RGB part features F̃R are taken as keys KR and values VR

of the modality compensation decoder. Formally:

QI = PIWQ,KR = F̃RWK ,VR = F̃RWV . (3)

Then, we can obtain the dot-production attention scores between queries QI

and keys KR, which can be regarded as the soft correspondences between the
modality prototypes and part features. To compensate for the missing modality
features, we can project the part features into the corresponding modality space
according to the attention weights. Concretely, the compensated IR part features

F̂I =
[
f̂ I
1 ; f̂

I
2 ; . . . ; f̂

I
p

]
for the RGB sample are derived as the weighted sum over

all values VR:

F̂I = Attention
(
QI ,KR,VR

)
= softmax

(
QI(KR)T√

d

)
VR,

(4)

where F̂I ∈ Rp×d. Similarly, the compensated RGB part features F̂R for the sam-
ples with the IR modality can also be derived by Equation (3) and Equation (4).
Finally, the complete modality representations can be acquired by combining
the original features and the compensated modality features:

R = FR + F̂I , I = FI + F̂R, (5)

where R and I are the complete RGB and IR modality representations, re-
spectively. These complete representations are in the shared embedding space,
where the samples with different modalities can be aligned well. In this way,
our modality compensation decoder can achieve a robust modality-level align-
ment and bridge the inter-modality discrepancies, which can facilitate a better
cross-modality retrieval.

Modality Consistency Loss. As we have no ground truths for the compen-
sated modality features, the learning of the decoder is difficult. To resolve this
issue, we design a modality consistency loss to guide the learning of modality
prototypes, which constrains the compensated RGB/IR features to be aligned
with the real RGB/IR modality features. We first compute the two centroid
features of each identity for two modalities in the mini-batch:

CR
i =

1

K

K∑
j=1

FR
i,j , CI

i =
1

K

K∑
j=1

FI
i,j , (6)
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where FR
i,j ,F

I
i,j denote the jth RGB/IR image feature of the ith person in the

mini-batch, and CR
i , C

I
i represent the RGB/IR centroid features of the ith per-

son. Based on the centroids, the modality consistency loss LR
cyc and LI

cyc for
RGB/IR modalities are defined as:

LR
cyc =

1

NK

N∑
i=1

K∑
j=1

∥F̂R
i,j −CR

i ∥2, (7)

LI
cyc =

1

NK

N∑
i=1

K∑
j=1

∥F̂I
i,j −CI

i ∥2, (8)

where F̂R
i,j , F̂

I
i,j are the compensated RGB, IR features. Constrained by LR

cyc and

LI
cyc, the modality prototypes are forced to learn the corresponding modality in-

formation to approach the real modality features, which consequently facilitates
a more reliable modality compensation.

ID Loss. To guide the complete representations R and I to focus on the ID-
related discriminative information, we design an ID loss consisting of an identity
classification loss Lcls and a hetero-center based triplet loss Lhc−tri following the
practice in [18]. Concretely, the ID loss is formulated as:

LID = Lcls + Lhc−tri (9)

Lcls = E (−log p (R)) + E (−log p (I)) (10)

Lhc−tri = E
[
α+ dca,cp − dca,cn

]
+
, (11)

where p () is the probability of correct prediction, and E represents the expec-
tation. In Equation (11), ca denotes the centroid feature calculated by the RGB
features R or IR features I in the current mini-batch. ca and cp form a posi-
tive pair of centroid features belonging to the same person but with different
modalities, while ca and cn form a negative pair of centroid features belonging
to different persons, and α is a margin parameter.

3.2 Instance-level Alignment Module

Due to the large intra-class variations like viewpoint changes and background
clutter, the feature distribution of different samples with the same ID has large
differences. Therefore, we propose an instance-level alignment module, where
we leverage the characteristics of the given query to automatically adapt the
instance features by the query-adaptive modulator. Specifically, the modulator
employs an affine transformation to excite the query-related channels by the
learned modulation parameters. Next we will give the details.

Parameter Generator. The Instance-level Alignment Module is symmetry
for the visible and infrared modality. Given any sample feature X ∈ Rp×d in
the current mini-batch from RGB or IR modality, we take it as the query and
transform the query characteristics into the modulation parameters. Concretely,



Cross-Modality Transformer for VI-ReID 9

we propose two parameter generators gγ and gβ to obtain the channel-wise mod-
ulation parameters, i.e., the scaling parameter γ and the shifting parameter β.
Each generator contains two linear layers, with the first layer followed by a ReLU
activation function. Formally, the modulation parameters γ and β are generated
by

γ = gγ(GAP (X)), β = gβ(GAP (X)), (12)

where γ, β ∈ Rd, and GAP represents the global average pooling, which is used
to aggregate the part features. After the end-to-end training, the parameter
generators gγ and gβ can extract key characteristics in the query feature, and
project them into the modulation weights that indicate which channels could
be useful in the instance-level alignment. Although sharing a similar network
structure with SENet [12], the parameter generator is designed to modulate
other samples rather than enhance the samples themselves.

Query-adaptive Modulation. The modulation parameters reveal the most
discriminative patterns ofX, and can be employed to perform the query-adaptive
modulation on the other sample features Y in the current mini-batch to achieve
the instance-level alignment. Specifically, the query-adaptive modulation layer
employs an affine transformation by the scaling parameter γ and the shifting
parameterβ on Y :

Ȳi = Yi ⊙ γ + β, (13)

where ⊙ denotes a point-wise vector multiplication, and Yi represents the i
th part

features of the sample Y , Ȳi is the modulated feature. In the modulation, the
crucial query-related channels of the Y can be strengthened and the irrelevant
channels can be suppressed based on the modulation weights of γ and β. In this
way, the instances that have the same ID with the query can be better aligned
together. During the testing, the query-adaptive feature modulation will adjust
the gallery representations according to the query features, which promotes the
alignment between the query and gallery with the same ID, and contributes to
a better retrieval.

Modulation Discriminative Loss. Without the constraints, the modula-
tion on the channels may cause some disturbances to the representations, which
will undermine the discrimination power of each instance. To help the modulated
features preserve the discriminative ability, we propose a modulation discrimina-
tive loss to restrain the modulated features, which takes the form of the triplet
loss:

Lmod = E
[
α+ dX,Ȳp

− dX,Ȳn

]
+
, (14)

where X and Ȳp form a positive pair of feature vectors belonging to the same
person, X and Ȳn form a negative pair of feature vectors belonging to different
persons, α is a margin parameter.
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3.3 Training and Inference

For the VI-ReID task, our proposed CMT is trained by minimizing the overall
objective with identity labels as defined in

LCMT = LID + LR
cyc + LI

cyc + λLmod. (15)

During the testing stage, we first extract query features, and then generate mod-
ulation parameters according to query features to adjust the feature embedding
of galleries. Finally, we reshape the feature dimension to Rpd for the feature
retrieval.

4 Experiments

In this section, we first introduce datasets and implementation details. Then, we
show experimental results and some visualizations.

4.1 Dataset and Evaluation Protocol

SYSU-MM01 [34] is the first large-scale benchmark dataset for VI-ReID col-
lected by 6 cameras, including 4 visible and 2 infrared cameras. Specially, four
cameras are deployed in the outdoor environments and two are deployed in the
indoor environments. SYSU-MM01 contains 491 persons with a total of 287,628
visible images and 15,792 infrared images. The training set contains 395 persons,
including 22258 visible images and 11909 infrared images. The test set contains
96 persons, with 3,803 IR images for query and 301/3010 (one-shot/multi-shot)
randomly selected RGB images as the gallery. Meanwhile, it contains two differ-
ent testing settings, all-search and indoor-search settings. Detailed descriptions
of the experimental settings can be found in [34].

RegDB [23] is collected by a dual-camera system, including one visible and
one infrared camera. There are 412 identities and 8,240 images in total, with
206 identities for training and 206 identities for testing. For each person, there
are 10 visible images and 10 infrared images. The testing stage also contains two
evaluation settings. One is Visible to Infrared to search IR images from a RGB
image. The other setting is Infrared to Visible to search RGB images from a IR
image. The evaluation procedure is repeated for 10 trials to record the mean
values.

Evaluation Protocol. Two evaluation metrics are used to measure the
performance. The first one is the Cumulative Matching Characteristic (CMC)
curves. The CMC represents the probability that a query identity appears in dif-
ferent sized candidate lists. We report the rank-1,10,20 accuracy in experiments.
The other is the Mean Average Precision (mAP).

4.2 Implementation Details

The proposed method is implemented with the PyTorch framework on a single
RTX3090Ti GPU. Following the existing methods [33,25,20], we choose ResNet-
50 [10] pretrained on ImageNet as the backbone network and reduce the stride of
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Table 1. Performance comparison with state-of-the-art methods on SYSU-MM01
dataset. Rank-k accuracy (%) and mAP (%) are reported.

Method Venue
All-Search Indoor-Search

Single-Shot Multi-Shot Single-Shot Multi-Shot
R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

Zero-Padding [34] ICCV-17 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.86
cmGAN [4] IJCAI-18 26.97 67.51 80.56 27.80 31.49 72.74 85.01 22.27 31.63 77.23 89.18 42.19 37.00 80.94 92.11 32.76
D2RL [32] CVPR-19 28.90 70.60 82.40 29.20 - - - - - - - - - - - -
Hi-CMD [3] CVPR-20 34.94 77.58 - 35.94 - - - - - - - - - - - -
JSIA-ReID [28] AAAI-20 38.10 80.70 89.90 36.90 45.10 85.70 93.80 29.50 43.80 86.20 94.20 52.90 52.70 91.10 96.40 42.70
AlignGAN [29] ICCV-19 42.40 85.00 93.70 40.70 51.50 89.40 95.70 33.90 45.90 87.60 94.40 54.30 57.10 92.70 97.40 45.30
cm-SSFT(sq) [20] CVPR-20 47.70 - - 54.10 - - - - 57.40 - - 59.10 - - - -
XIV [15] AAAI-20 49.92 89.79 95.96 50.73 - - - - - - - - - - - -
DDAG [39] ECCV-20 54.75 90.39 95.81 53.02 - - - - 61.02 94.06 98.41 67.98 - - - -
LbA [25] ICCV-21 55.41 - - 54.1 57.4 - - 59.1 - - - - - - - -
NFS [2] CVPR-21 56.91 91.34 96.52 55.45 63.51 94.42 97.81 48.56 62.79 96.53 99.07 69.79 70.03 97.7 99.51 61.45
HCT [18] TMM-20 61.68 93.1 97.17 57.51 - - - - 63.41 91.69 95.28 68.17 - - - -
CM-NAS [7] ICCV-21 61.99 92.87 97.25 60.02 68.68 94.92 98.36 53.45 67.01 97.02 99.32 72.95 76.48 98.68 99.91 65.11
MCLNet [8] ICCV-21 65.40 93.33 97.14 61.98 - - - - 72.56 96.98 99.20 76.58 - - - -
SMCL [33] ICCV-21 67.39 92.87 96.76 61.78 72.15 90.66 94.32 54.93 68.84 96.55 98.77 75.56 79.57 95.33 98.00 66.57
MPANet [35] CVPR-21 70.58 96.21 98.80 68.24 75.58 97.91 99.43 62.91 76.74 98.21 99.57 80.95 84.22 99.66 99.96 75.11

CMT(our) ECCV-22 71.88 96.45 98.87 68.57 80.23 97.91 99.53 63.13 76.9 97.68 99.64 79.91 84.87 99.41 99.97 74.11

the last convolutional block from 2 to 1. For each mini-batch, we randomly choose
8 identities from each modality and sample 8 person images for each identity.
The input images are first resized to 384× 144, then we adopt random cropping
with zero-padding, random horizontal flipping, and random erasing for data
augmentation. In addition, we use the Adam optimizer for optimization with an
initial learning rate of 3.5 × 10−4, and the weight decay is set to 5 × 10−4. We
decay the learning rate by 0.1 and 0.01 at 60 and 90 epochs. The whole training
process consists of 120 epochs. The number of part features p is set to 6. The
hype-parameters λ is set to 0.2.

4.3 Comparison with the State-of-the-art Methods

Comparisons on SYSU-MM01. We compare our CMT with various state-
of-the-art methods under both all-search and single-search settings. As shown in
Table 1, our CMT ranks either the first or the second among all settings, and
sets the new state-of-the-art results in all-search setting, which strongly proves
the effectiveness of our method. In the indoor-search setting, our method also
performs comparably with the state-of-the-art methods. Based on the results, we
have the following observations. (1) Compared with the methods (cmGAN [4],
Hi-CMD [3],AlignGAN [29]) that only focus on learning modality-shared features
by feature disentanglement, our method achieves much better performance on all
settings. This is because the modality-shared features lose some useful identity
information, such as colors. Therefore, with modality-shared cues only, the upper
bound of the discrimination ability of the feature representation is limited. Dif-
ferently, we design a modality-level alignment module to adaptively compensate
for the lacking modality-special information via a transformer encoder-decoder
architecture. (2) Compared with the best modality compensation method (i.e.,
cm-SSFT [20] in a multi-query setting), our method improves the Rank-1 accu-
racy and mAP by 10.28% and 5.37% in the all-search single shot setting. The
reason is that the compensated features in [20] are produced solely based on
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Table 2. Comparison of the Rank-k accuracy (%) and mAP (%) performances with
state-of-the-art methods on RegDB.

Method Venue
Visible to Infrared Infrared to Visible

R1 R10 R20 mAP R1 R10 R20 mAP

Zero-Padding [34] ICCV-17 17.75 34.21 44.35 18.90 16.63 34.68 44.25 17.82
D2RL [32] CVPR-19 43.4 66.1 76.3 44.1 - - - -
JSIA-ReID [28] AAAI-20 48.50 - - 48.90 - - - -
AlignGAN [29] ICCV-19 57.90 - - 53.60 56.30 - - 53.40
XIV [15] AAAI-20 - - - - 62.21 83.13 91.72 60.18
cm-SSFT(sq) [20] CVPR-20 65.4 - - 65.6 63.8 - - 64.2
DDAG [39] ECCV-20 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80
Hi-CMD [3] CVPR-20 70.93 86.39 - 66.04 - - - -
LbA [25] ICCV-21 74.17 - - 67.64 72.43 - - 65.46
MCLNet [8] ICCV-21 80.31 92.70 96.03 73.07 75.93 90.93 94.59 69.49
NFS [2] CVPR-21 80.54 91.96 95.07 72.1 77.95 90.45 93.62 69.79
MPANet [35] CVPR-21 83.7 - - 80.9 82.8 - - 80.7
SMCL [33] ICCV-21 83.93 - - 79.83 83.05 - - 78.57
CM-NAS [7] ICCV-21 84.54 95.18 97.85 80.32 82.57 94.51 97.37 78.31
HCT [18] TMM-20 91.05 97.16 98.57 83.28 89.3 96.41 98.16 81.46

CMT(our) ECCV-22 95.17 98.82 99.51 87.3 91.97 97.92 99.07 84.46

the samples of the current mini-batch. This strategy suffers from a certain ran-
domness, and does not match the default single query settings of most methods.
Notably, we introduce several modality prototypes to store the global modality
characteristics without relying on the current mini-batch. (3) Compared with
JSIA-ReID [28] that is based on instance-level alignment between the cross-
modality paired images generated by the GAN, our method acquires a better
performance in all results. This is because different from JSIA-ReID, we ex-
ploit query-adaptive feature modulation to conduct more diverse and flexible
instance-level alignment. In our method, the gallery instances can be adaptively
refined according to the query features, while other methods do not take this
into account.

Comparisons on RegDB. As shown in Table 2, it can be seen that our
CMT has distinct advantages over the state-of-the-art methods on RegDB. Un-
der the Visible to Infrared setting, compared with the state-of-the-art HCT [18],
our method improves the Rank-1 accuracy and mAP by 4.12% and 4.02%. When
switching to the Infrared to Visible setting, our method surpasses the HCT by
4.02% and 3% in terms of the Rank-1 accuracy and the mAP, respectively.
Hence, it can be proved that our proposed method is robust against different
query settings.

4.4 Ablation Study

In this section, we perform detailed ablation studies on SYSU-MM01 dataset
under the all-search setting to evaluate each component of our CMT. We denote
the Modality-level Alignment Module as MAM and the Instance-level Alignment
Module as IAM. The results are shown in Table 3.

Baseline. We adopt the HCT [18] as our baseline method, which explores
the two-stream network with shared parameters and uses a hetero-center based
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Table 3. Analysis of the effectiveness of different components on SYSU-MM01 dataset
under the all-search setting. Rank-k accuracy (%)and mAP (%) are reported.

Base MAM IAM Rank-1 Rank-10 Rank-20 mAP

✓ ✗ ✗ 65.35 93.57 97.58 64.27
✓ ✓ ✗ 70.55 95.27 98.21 66.50
✓ ✗ ✓ 68.5 94.21 98.34 67.25
✓ ✓ ✓ 71.88 96.45 98.87 68.57

92.77 93.93 95.17 94.62
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Fig. 3. The effect of weight λ in Equation (15) on SYSU-MM01 dataset under the
all-search setting and the number of parts p on RegDB dataset. Rank-1 and mAP (%)
are reported.

triplet loss to improve the traditional triplet loss. In addition, we replace the
optimizer with the Adam optimizer and add random erasing as extra data aug-
mentation. The details of the implementation can be found in Section 4.2.

Effectiveness of the Modality-level Alignment. Compared with the
baseline model, the modality-level alignment module improves the Rank-1 accu-
racy and mAP by 5.2% and 2.23%. The improvements can be mainly ascribed to
two reasons. For one thing, we automatically explore the modality prototypes by
the modality consistency constraint, which can adaptively learn the modality-
related information. The other reason is that, we conduct the modality feature
compensation by the transformer, which can project the features of different
modalities into a common complete space to achieve a better modality-level
alignment.

Effectiveness of the Instance-level Alignment. Compared with the
baseline model, adding the instance-level alignment, the performance is greatly
improved by 2.98% and up to 67.25% mAP. Besides, on top of the modality-level
alignment, the instance-level alignment can still achieve 2.07% improvements in
mAP. This shows that the instance-level alignment is useful to reduce the dis-
tances of the samples in the same class. The complete version of our CMT
gives the best results on SYSU-MM01 dataset under all-search setting, achiev-
ing a whopping accuracy gain of 6.53% and 4.3% on in Rank-1 and mAP, which
proves the effectiveness of CMT.
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(a)  RGB modality (𝑭𝑅 and ෡𝑭𝑅) (b)  IR modality (𝑭𝐼 and ෡𝑭𝐼)

Fig. 4. The t-SNE visualization of features on SYSU-MM01 dataset.The colors rep-
resent different categories. Circles represent original RGB/IR features and triangles
represent compensated RGB/IR features.

4.5 Model Analysis

Parameters Analysis. We first evaluate the effect of the weight λ in Equation
(15) on SYSU-MM01 dataset under the all-search setting. The Rank-1 and the
mAP results of CMT with different λ are exhibited in Figure 3 (a). The most
suitable parameter setting is to set λ as 0.2. Then, we compare the performance
of CMT and our baseline model HCT [18] with different number of parts p. As
shown in Figure 3 (b), with p increasing, the performance keeps improving before
p arrives 6 on RegDB dataset. This is because a bigger p allows the network to
pay more attention to the details. Besides, we can observe that CMT shows sur-
prisingly powerful results and significant improvements over the baseline under
the same p setting. Compared with the HCT, CMT is more robust to p, which
further verifies the effectiveness of our method.

Visualization Analysis. To further verify the effectiveness of our modality-
level alignment module, we use t-SNE [22] to visualize the original modality
features (FR and FI) and the compensated modality features (F̂R and F̂I).
As shown in Figure 4, compensated RGB/IR features are aligned with original
RGB/IR features of the same ID in the feature space. It proves that our work can
compensate for the lacking modality information to achieve a better modality-
level alignment.

5 Conclusion

In this paper, we propose a novel Cross-Modality Transformer (CMT) to jointly
explore a modality-level alignment module and an instance-level module for VI-
REID. The proposed modality-level alignment module is able to compensate
for the missing modality-specific information via a Transformer encoder-decoder
architecture. We have also designed an instance-level alignment module to adap-
tively adjust the sample features, which is achieved by query-adaptive feature
modulation. Extensive experimental results on two standard benchmarks demon-
strate that our model performs favorably against state-of-the-art methods.
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