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Abstract. Retrieving desired videos using natural language queries has
attracted increasing attention in research and industry fields as a huge
number of videos appear on the internet. Some existing methods at-
tempted to address this video retrieval problem by exploiting multi-
modal information, especially audio-visual data of videos. However, many
videos often have mismatched visual and audio cues for several reasons
including background music, noise, and even missing sound. Therefore,
the naive fusion of such mismatched visual and audio cues can negatively
affect the semantic embedding of video scenes. Mismatch condition can
be categorized into two cases: (i) Audio itself does not exist, (ii) Audio
exists but does not match with visual. To deal with (i), we introduce
audio-visual associative memory (AVA-Memory) to associate audio cues
even from videos without audio data. The associated audio cues can guide
the video embedding feature to be aware of audio information even in the
missing audio condition. To address (ii), we propose audio embedding
adjustment by considering the degree of matching between visual and au-
dio data. In this procedure, constructed AVA-Memory enables to figure
out how well the visual and audio in the video are matched and to adjust
the weighting between actual audio and associated audio. Experimental
results show that the proposed method outperforms other state-of-the-
art video retrieval methods. Further, we validate the effectiveness of the
proposed network designs with ablation studies and analyses.

Keywords: Video retrieval, audio-visual mismatch, audio association,
embedding adjustment, memory

1 Introduction

Video retrieval is to find corresponding videos from natural language queries
made by humans. Given the huge number of videos on the internet, it is highly
time-consuming and labor-intensive for people to find desired video scenes man-
ually. Thus, automatic video retrieval has attracted increasing attention in re-
search and industry fields due to its high practicality.

Video retrieval methods utilizing deep neural networks (DNNs) have been
proposed to address arising issues in video retrieval. Some works focused on
hierarchical feature matching [46, 61] for video retrieval. These methods tried
to perform video-text matching in both local (e.g., word-scene) and global (e.g.,
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1. A woman giving speech on news channel.

2. Hillary Clinton gives a speech.

3. Hillary Clinton is making a speech at the conference.

4. A woman is giving a speech on stage.

5. A lady speak some news on TV.
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Fig. 1: (a) shows the examples of mismatching between visual and audio cues.
(b) describes the concept of the proposed method for video embedding. To cope
with the mismatch condition, the model adjusts the proportion of using actual
audio and associated audio considering the degree of audio-visual matching.

sentence-video) levels. There exist metric learning-based video retrieval methods
[45,52,53]. They formulated training metric criterion by considering similarities
and relationships among samples. Several works addressed architectural aspects
[4, 10]. They investigated effective architectures such as multi-level embedding
and pooling strategies. These works mainly focused on visual and text matching.

However, natural language queries vary greatly and often contain details re-
lated to audio cues. For example, language queries ‘A woman giving speech on
news channel’ and ‘A woman is singing while men are playing on guitars’ include
audio information and it is worth to give guiding the model with audio infor-
mation. Some existing works tried to address such video retrieval problem using
multi-modal information, especially audio-visual data of videos [17, 36, 50, 54].
They showed that audio cues can contribute to the performance of video re-
trieval. Nonetheless, these works did not take into account the mismatch con-
dition of visual and audio. In many videos, visual and audio cues are often not
matched due to several reasons such as background music, noise, and even miss-
ing sound. Therefore, the naive fusion of visual and audio can negatively affect
matching video with text queries. When fusing the visual and audio in the video,
mismatched audio can guide the video embedding to have distracted semantics.

Our work addresses audio-visual mismatch issues for retrieving video from
text, which have not been properly dealt with in previous video retrieval works.
The audio-visual mismatch in video can be categorized into two cases: (i) Audio
itself does not exist, (ii) Audio exists but does not match with visual (e.g.,
background music, noise). Figure 1-(a) shows that such mismatched audio cues
do not help to obtain appropriate embeddings for matching language semantics.
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In this paper, we introduce a novel mismatch-aware associative transformer
(MA-Transformer) with association and adjustment processes to deal with the
aforementioned issues. To address the issue (i), we propose audio-visual associa-
tive memory (AVA-Memory) in MA-Transformer to associate audio cues even
from videos without actual audio data. AVA-Memory is composed of visual and
audio memories to store information of two modalities and enables to associate
different modal cues from the other modal input. The associated audio cues
from visual data can guide the video embedding feature to be aware of audio
information for video-text matching even in the missing audio condition.

In addition, to deal with the issue (ii), we propose audio embedding ad-
justment by considering the degree of matching between visual and audio data
(See Figure 1-(b)). Through AVA-Memory, the degree of audio-visual matching
is determined by performing mutual associations from audio to visual and from
visual to audio. It is possible to figure out how well the visual and audio of the
video are matched and to adjust the weighting between actual audio and asso-
ciated audio. If the visual and audio are matched well, the actual audio cue is
mainly used for video embedding. Conversely, if the visual and audio are mis-
matched, the model adaptively lowers the use of the actual audio and performs
video embedding mainly by using the associated audio. In the case of missing
audio, only associated audio can be used for embedding.

The major contributions of the paper are as follows.

– We introduce a novel MA-Transformer with AVA-Memory for video retrieval.
We can associate the audio cues from visual cues in the video. It enables to
guide the visual embedding to be aware of audio context jointly for video-text
matching even in the missing audio condition.

– We propose audio embedding adjustment which enables to address the mis-
match between existing visual and audio cues. We can figure out the degree
of audio-visual matching through the constructed AVA-Memory and adjust
the use of audio cues based on it. To the best of our knowledge, it is the first
attempt to deal with audio-visual mismatch issues in video retrieval.

2 Related Works

2.1 Video Retrieval

Video retrieval is to find corresponding videos from natural language queries
made by humans. Based on the high practicality, video retrieval attracts in-
creasing attention. Compared with image retrieval [13, 24, 28], video retrieval is
more challenging because it necessitates thorough comprehension of temporal
dynamics as well as complicated text semantics.

Early video retrieval works extended the image retrieval approach by spatio-
temporal aggregation of frames for each video [8, 43, 47, 57]. There have been
methods which develop feature aggregation for video retrieval. For example,
average pooling [36,42] and max pooling [41,54] were used as aggregation meth-
ods for embedding feature in retrieval. Chen et al. [4] proposed a generalized
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pooling operator to automatically use the best pooling strategy for each fea-
ture for retrieval. Recently, Dong et al. [10] proposed a dual-encoding network
with multiple levels of feature capabilities for video retrieval. In [10], multi-level
features are from average pooling, bi-directional GRU, and convolutional layer.
Some works focused on hierarchical feature matching in terms of global and lo-
cal matching. [60] estimates similarity through comparison between each word of
text description and video frame. Zhang et al. [61] performs a paragraph-based
video search using hierarchical decomposition of videos and paragraphs. Song et
al. [46] proposed varied representations by combining global context with local
features to consider polysemous videos. There were attempts to effectively pre-
train the model with uncurated instruction [39] or image-level caption data [1].

These approaches do not take advantage of the further diverse information
related to videos, including voice and other background sounds, which in practice
can affect human-made natural language descriptions. [40,42] proposed a method
using a pretrained model for audio and motion recognition. [36] investigated
additional cues such as faces, OCR, speech. They proposed a more effective use
of multi-modal features through a collaborative gating method. In addition to
this, [12,16,17,35,38,50] introduced a video retrieval method by fusing the multi-
modalities with transformer [48] structures. [50] proposed video-text matching
method in terms of global and local alignment with multi-modal transformer.

However, the previous works did not take into account the visual and audio
mismatch conditions. Many videos often have mismatched visual and audio cues,
which can negatively affect matching video with text queries. When fusing the
visual and audio in the video, mismatched audio can guide the video embedding
to have distracted semantics. We introduce a novel MA-Transformer with AVA-
Memory for addressing such mismatch issues.

2.2 Memory-Augmented Network

A memory-augmented network represents the neural network that includes exter-
nal memory components for reading and writing historical information. Memory-
augmented networks have been proposed to handle a variety of challenges in
the deep learning field. There were several tasks to exploit the memory such as
anomaly detection [18,44], few-shot learning [2,23,62], object tracking/detection
[15, 25, 58], future prediction [29, 37], and representation learning [19, 26, 30].
There exist methods that exploit the memory-augmented network for cross-
modal retrieval which is image and sentence matching [22]. It utilizes memoriza-
tion of shared semantic representations to address the few-shot condition.

Unlike the existing memory-augmented networks, we introduce a novel AVA-
Memory for learning audio-visual correspondences with audio and visual sub-
memories. Through proposed audio-visual associative learning with the memory,
it is possible to recall audio cues from the videos without audio and further to
measure how well visual and audio are matched. The degree of matching from
AVA-Memory is utilized to adjust audio embeddings afterward.
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Fig. 2: Overall framework containing a proposed MA-Transformer for video re-
trieval. MA-Transformer mainly consists of 3 parts: a visual context embedder,
an audio-visual associative memory, and a mismatch-aware semantic embedder.
Each of them is for extracting spatio-temporal context of visual data, associating
audio cues from visual features, and encoding video semantics jointly with visual
and audio with being aware of mismatch condition, respectively.

3 Proposed Approach

Video retrieval task can be formulated as follows. Let v = {vt}nt=1 denote the
n frames in video clip while a = {at}nt=1 indicates audio cues with n partial
audio samples. at is VGGish [36] feature of 1s audio and vt is middle frame
in 1s. Let s denote text sentence. A video mapping function Fv and a text
mapping function Fs are optimized to make video embedding Fv(v, a) and text
embedding Fs(s) be matched. As a result, it is possible to retrieve videos from
text by measuring similarity between the embeddings. The goal of this work is
to make video embedding to be aware of the auditory context even in the case
of audio-visual mismatch conditions (e.g., missing sound, background music).

To this end, we introduce a mismatch-aware associative transformer (MA-
Transformer) for video embedding. MA-Transformer consists of three major
parts: a visual context embedder, an audio-visual associative memory (AVA-
Memory), and a mismatch-aware semantic embedder. The visual contexts are
processed with self-attention mechanism to focus on the parts suitable for as-
sociating audios and embedding the semantics of visual data. AVA-Memory in-
cludes visual and audio sub-memories and is able to associate audio cues from
visual cues. Finally, in the mismatch-aware semantic embedder, the degree of
use between actual audio and associated audio is adjusted in consideration of
the degree of matching between visual and audio. Then, it encodes audio-visual
semantic embeddings that effectively match text queries. In terms of training, we
propose audio-visual associative learning which enables to learn the association
between visual and audio modalities in a self-supervised way.
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3.1 Mismatch-Aware Associative Transformer

Figure 2 shows the overall framework of the proposed MA-Transformer. First,
each frame of the input video is independently fed to a spatial encoder (CNN)
to extract spatial features fsp= {fspt }

n
t=1∈Rn×dsp (dsp is channel dim).

Visual context embedder. The extracted spatial features are received by
the visual context embedder to encode the relationship between features. The
visual context embedder mainly has the form of transformer [11, 48] and can
encode the overall spatio-temporal context of visual features through the self-
attention mechanism. The overall process of the context embedder is similar to
that of the transformer [48]. However, the last part of it consists of multi-head
attention, not feed-forward. It can be formulated as follows.

e0 = [fsp1 Wvc; f
sp
2 Wvc; . . . ; f

sp
n Wvc] + EPOS,

e′l = MHA(LN(el−1)) + el−1, l = 1, . . . , Lv

el = MLP(LN(e′l)) + e′l, l = 1, . . . , Lv

fvc = MHA(LN(eLv
)) + eLv

,

(1)

where Wvc∈Rdsp×dv indicates a fc layer and EPOS is positional encoding. MHA
and LN represent multi-head attention and layer normalization, respectively. Lv

indicates the number of layers. As a result, we obtain visual context feature
fvc={fvct }

n
t=1∈Rn×dv . We apply multi-head attention as the last layer to ag-

gregate fvct differently with separate feed forward layers later. Note that the
feed forward layer indicates y = MLP(LN(x)) + x operation. fvc separately
goes through two paths. One (upper path of fvc in Figure 2) is for embedding
semantic-related visual features. The other (lower path of fvc in Figure 2) is for
associating audio features from the visual context.

In the upper path, visual semantic feed forward is further applied to fvc

to aggregate for attending the semantic-related positions of the video sequence.
Through the procedure, we obtain visual embedding hv={hvt }

n
t=1∈Rn×dv that

contains semantic characteristics of visual cues. The visual embedding is directly
utilized as input of the mismatch-aware semantic embedder.

In the lower path, another feed forward layer, associative feed forward is fur-
ther applied to fvc to aggregate the audio-related characteristics of the video se-
quence. It is possible because we construct the audio-visual association based on
the output of this feed forward. We get visual associative feature fva={fvat }

n
t=1∈

Rn×dv which is used to recall audio cues from AVA-Memory.
AVA-Memory. The extracted visual associative features are utilized as

memory queries for accessing a visual memory mv and an audio memory ma

in AVA-Memory. The visual and audio memories are constructed as mv =
{mv

r}
k
r=1∈Rk×dv and ma = {ma

r}
k
r=1∈Rk×da , respectively with k slots and (dv,

da) channels. A vector mv
r∈Rdv indicates the r-th memory component of mv.

AVA-Memory has key-value memory structure to map one modal space to an-
other. In this case, the visual memory is the key and the audio memory is the
value. Addressing vectors wv

t = {wv
t r}

k
r=1∈Rk is individually obtained from each

time component fvat of visual associative features fva. Note that each addressing
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vector is used to access the components of audio memory ma. The addressing
procedure with input fvat can be written as

wv
t r =

exp(d(fvat ,mv
r)/τm)∑k

r=1 exp(d(fvat ,mv
r)/τm)

, (2)

d(fvat ,mv
r) =

fvat ·mv
r

||fvat || ||mv
r ||
, (3)

where d(·, ·) indicates cosine similarity, exp(·)/
∑

exp(·) denotes softmax, and
τm is a memory temperature. Each component wv

t r of wv
t can be considered as

an attention weight for audio memory slot ma
r at time-step t. ma outputs an

associated audio feature fa,mem
t ∈Rda as follows.

fa,mem
t =

∑k

r=1
wv

t rm
a
r . (4)

Repeating this for each time, we obtain associated audio features fa,mem=
{fa,mem

t }nt=1∈Rn×da . It passes through a fc layer and we obtain associated audio
embedding ha,mem={ha,mem

t }nt=1 ∈ Rn×da . The learning scheme of AVA-Memory
is addressed in Section 3.2. In the meantime, we acquire the actual audio embed-
ding ha={hat }

n
t=1 ∈ Rn×da from audio data via audio semantic embedder which

is typical transformer [48] (bottom path of Figure 2).
Mismatch-aware semantic embedder. The last part of MA-Transformer,

mismatch-aware semantic embedder receives the visual embedding hv, the actual
audio embedding ha, and the associated audio embedding ha,mem. The positional
encoding is applied separately to hv, ha, and ha,mem. In addition, [CLS] token
is applied for aggregating the feature afterward as [7]. The integrated input of
the mismatch-aware semantic embedder is formulated as follows.

eav0 =[[CLS]; [hv
1 ; . . . ;hv

n]; [ha
1 ; . . . ;ha

n]; [ha,mem
1 ; . . . ;ha,mem

n ]]

+[0;EPOS;EPOS;EPOS].
(5)

The mismatch-aware semantic embedder has a similar structure to the visual
context embedder except for the last part (it ends with feed forward). To adjust
the weighting between the associated audio and the actual audio, we define
matching index α (0∼1) which indicates how well visual and audio are matched.
If α is high, the degree of using actual audio ha is increased, and vice versa, it
is lowered. This matching index α is obtained by exploiting AVA-Memory and
it is described in Section 3.2. We apply α according to each index c of eav0 . In
multi-head attention of the embedder, we adjust the attention with α as follows.

βc =


1 if c ∈ index of [CLS] and hv

α if c ∈ index of ha

1− α if c ∈ index of ha,mem

(6)

Attention(Q,Kc) = Softmax(QKT
c /
√
dim+ log βc), (7)

where c indicates the index of eav0 . Q and K are query and key in multihead
attention [48] while dim indicates their dimension. This attention is applied to
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Fig. 3: Proposed audio-visual associative learning with AVA-Memory. Through
the associative learning, it is possible to store audio-visual features in sub-
memories and naturally associate with one another. As a result, we can obtain
the corresponding audio cues from the visual features with AVA-Memory and
further determine whether the visual and audio are well matched.

value V from eav0 to focus on parts of hv, ha, and ha,mem. By applying α in log
form, each attention weight is adjusted proportionally considering exponential
scale in softmax function. Based on this self-attention scheme, the embedder
integrally attends to information considering the reliability of audio cues. If the
audio cue is not reliable (not matched with visual), it decreases the proportion
of actual audio ha while it increases the proportion of associated audio ha,mem.
Finally, we get an audio-visual embedding hav by aggregating features of the
semantic embedder with [CLS] output. hav is used to match text embedding hs.

3.2 Associative Learning with AVA-Memory

AVA-Memory is trained with audio-visual data as shown in Figure 3. The goal of
the associative learning is to store visual and audio features in their sub-memories
and to build the link between sub-memories. As a result, we can associate differ-
ent modality from the other modal input and further determine whether visual
and audio are well matched or not.

With the video frames vi and audio cues ai from i-th video, we extract
visual associative features fva i and audio features fa i from MA-Transformer
and audio semantic embedder, respectively. Note that fa does not pass through
the last fc layer of the audio semantic embedder and thus is different from audio
embedding ha. We randomly sample paired features (fva i

t , fa i
t ) at time t. We

perform sampling a pair to construct associative learning (attract and repel) in a
computationally efficient way. In addition, the combination of training data can
be diversified with randomness. In terms of the visual feature fva i

t , the visual
memory is used as a key while the audio memory is used as a value. In contrast
for the audio feature fa i

t , those memories are switched at this time. Each feature
changes its modality space through key-value memory addressing as described
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in the previous section. We can obtain concatenated features [fa,mem i
t ; fva i

t ]
and [fa i

t ; fv,mem i
t ]. They pass through the projection head with a fc layer to

make zv i and za i, respectively. Actually, they should be zv i
t and za i

t . However,
z represents the feature for each video, so it is denoted as zv i and za i here.
If zv i and za i are from a pair, we consider them as a positive set (e.g., zv i,
za i). Otherwise, we regard them as a negative set (e.g., zv i, za j). The memory
can associate one to another modality by making such a positive set distinctly
close. However, the training data also includes videos in which visual and audio
are not matched. Therefore, we introduce a new audio-visual associative loss
which is the transformed version of contrastive loss [6] to reduce the influence of
these mismatched samples. This is inspired by the work [21] that uses log(1− p)
loss rather than the typical − log(p) (cross-entropy) to reduce the effect of noisy
class labels. In case of − log(p), the gradient on the hard samples (p ↓) is higher,
whereas in the case of log(1 − p), the gradient on the easy samples (p ↑) is
higher. Therefore, when log(1 − p) is used, learning can proceed in a direction
that does not force optimization on difficult mismatched samples. As a result,
our audio-visual associative loss can be formulated as follows.

Lv→a =
1

N

N∑
i=1

log(1− exp(d(zv i, za i)/τl)∑N
j=1 exp(d(zv i, za j)/τl)

), (8)

La→v =
1

N

N∑
i=1

log(1− exp(d(za i, zv i)/τl)∑N
j=1 exp(d(za i, zv j)/τl)

), (9)

LA =
La→v + Lv→a

2
, (10)

where N and τl indicate a batch size and a loss temperature parameter, respec-
tively. By minimizing LA, we can attract one another within the positive set and
repel each other within the negative set to properly associate distinct audio cues
from visual and vice versa. During the training phase, the weights of mv and ms

are updated via backpropagation as [18,29].
Furthermore, we can determine whether the visual and audio are aligned or

not by utilizing AVA-Memory. When a specific i-th video (vi, ai) is given, we
formulate the matching index α as follows.

α = max(0,
1

n

n∑
t=1

d(zv i
t , za i

t )), (11)

where d(·, ·) indicates cosine similarity function. zv i
t and za i

t indicates the visual
and audio projections of i-th video at time t. As a result, α has a value between
0 and 1. α has a high value for a high degree of matching between visual and
audio. In case of missing audio condition, matching index α is set as 0.

3.3 Video-Text Matching

To encode the text embedding hs in the side of natural language query, we
adopt common language model, BERT [7] as [17, 50]. The networks are trained
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to match hs with hav in latent space (See Figure 2). Based on them, triplet
ranking loss [13] is applied to formulate video-text matching loss LM as follows.

LM = max(0, δ + d(hav, hs−)− d(hav, hs))
+max(0, δ + d(hav−, hs)− d(hav, hs)),

(12)

where d(·, ·) indicates cosine similarity and δ is a margin parameter. hav− and
hs− indicate the features from negative samples which are not paired with one
another. Model training is conducted with both associative loss and matching
loss concurrently. The total objective loss is defined as L = LA+LM for training.

At inference time, we can obtain the similarity between a video v and a text
s with latent space similarity as follows.

sim(v, s) = d(hav, hs). (13)

As a result, the videos with high similarities can be retrieved from text queries.

4 Experiments

4.1 Datasets

MSR-VTT. MSR-VTT dataset [56] consists of 10k web videos and correspond-
ing 200k text descriptions. Each video has 20 text captions with diverse descrip-
tions. About 10% of the videos in MSR-VTT do not contain audio data. The
MSR-VTT-Original partition [56] of MSR-VTT employs 6,513 clips for train-
ing, 497 clips for validation, and 2,990 clips for testing. In another partition
MSR-VTT-Miech [40], 6,656 and 1,000 clips are used for training and testing,
respectively. We evaluated these partitions for comprehensive validation.
VATEX. VATEX [51] consists of YouTube videos with multilingual text descrip-
tions. Chinese and English descriptions exist and we adopt English descriptions
only. As following the data partition [5], we perform the retrieval experiments
with 25,991 training videos, 1,500 validation videos, and 1,500 testing videos.
TGIF. TGIF [33] is a GIF format dataset which does not have audio data. It
contains 100,000 GIF videos and corresponding 120,000 text descriptions about
the GIFs’ content. According to the data split [32], we perform the experiments
with 78,799 training videos, 10,705 validation videos, and 11,351 testing videos.

4.2 Implementation

For MSR-VTT and TGIF, we adopt the spatial encoder as pretrained ResNeXt-
101 [55] and ResNet-152 [20]. We concatenate the two features to make a 4,096-d
feature as [10]. In terms of VATEX dataset, we use the I3D [3] features with
1,024-d offered by the dataset constructor [51]. Audio data is firstly processed
with pretrained VGGish as [36]. The proposed model is trained by Adam op-
timizer [27] with an initial learning rate of 0.00005 and a batch size of 128.
Memory slot size s is fixed as 500 for all experiments. Memory and loss temper-
ature parameters (τm, τl) are both set as 0.1 for all experiments according to
temperature setup [6]. The margin parameter δ is set as 0.2. The overall detailed
network structures are described in the supplementary material.
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Table 1: Video retrieval performance results on MSR-VTT-Original dataset.

Method
Video Retrieval Performance

R@1↑(%) R@5↑(%) R@10↑(%) MedR↓ mAP↑(%)

W2VV [8] 1.1 4.7 8.1 236 3.7
Francis [14] 6.5 19.3 28.0 42 -
VSE++ [13] 8.7 24.3 34.1 28 16.9
W2VV++ [31] 11.1 29.6 40.5 18 20.6
TCE [59] 7.7 22.5 32.1 30 -
HGR [5] 9.2 26.2 36.5 24 -
UWML [53] 10.9 30.4 42.3 - -
HSL [10] 11.6 30.3 41.3 17 21.2
PSM [34] 12.0 31.7 43.0 16 21.9
T2VLAD [50] 12.7 34.8 47.1 12 -

Proposed Method 14.7 37.0 48.6 11 25.6

Table 2: Video retrieval performance results on MSR-VTT-Miech dataset.

Method
Video Retrieval Performance

R@1↑(%) R@5↑(%) R@10↑(%) MedR↓ mAP↑(%)

W2VV [8] 2.7 12.5 17.3 83 7.9
VSE++ [13] 17.0 40.9 52.0 10 16.9
W2VV++ [31] 21.7 48.6 60.9 6 34.4
TCE [59] 17.1 39.9 53.7 9 -
HGR [5] 22.9 50.2 63.6 5 35.9
MMT [17] 20.3 49.1 63.9 6 -
HSL [10] 23.0 50.6 62.5 5 36.1
PSM [34] 24.2 53.0 65.3 5 37.9
T2VLAD [50] 26.1 54.7 68.1 4 -

Proposed Method 27.8 57.3 68.7 4 41.2

4.3 Performance Evaluation

Video retrieval performance is measured by rank-based metrics such as recall
at K (R@K), median rank (MedR), and mean average precision (mAP). R@K
(K=1, 5, 10) indicates the percentage of queries that find correct samples among
the top K results. MedR indicates the median rank of the first correct sample in
the retrieved results. mAP represents the mean of the average precision scores for
each query. Higher R@K, mAP and lower MedR indicate better performances.

Video Retrieval Performance Comparison. We perform performance com-
parisons according to the training and testing protocol [5, 10], not with the
pretraining-based methods using a large amount of additional visual-text data
[1, 12, 38]. We conduct the experiments on MSR-VTT with different types of
data partitions MSR-VTT-Original [56] and MSR-VTT-Miech [40]. Table 1 and
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Table 3: Video retrieval performance results on VATEX dataset.

Method
Video Retrieval Performance

R@1↑(%) R@5↑(%) R@10↑(%) MedR↓ mAP↑(%)

W2VV [8] 14.6 36.3 46.1 - -
VSE++ [13] 31.3 65.8 76.4 - -
CE [36] 31.1 68.7 80.2 - -
W2VV++ [31] 32.0 68.2 78.8 - -
Dual Encoding [9] 31.1 67.4 78.9 3 -
HGR [5] 35.1 73.5 83.5 2 -
HSL [10] 36.8 73.6 83.7 2 52.0
HGR (+GPO) [4] 37.3 73.4 82.4 - -

Proposed Method 39.0 75.6 84.1 2 55.3

Table 4: Video retrieval performance results on TGIF dataset.

Method
Video Retrieval Performance

R@1↑(%) R@5↑(%) R@10↑(%) MedR↓ mAP↑(%)

W2VV++ [31] 9.4 22.3 29.8 48 16.2
Dual Encoding [9] 9.1 21.3 28.6 50 15.7
HGR [5] 4.5 12.4 17.8 160 -
CF-GNN [49] 10.2 23.0 30.7 44 -
SEA (BERT) [32] 10.7 24.4 31.9 37 17.9
SEA (BERT+biGRU) [32] 11.1 25.2 32.8 35 18.5

Proposed Method 11.5 26.3 34.9 31 19.2

2 show the text-to-video retrieval performances on MSR-VTT dataset. In case of
MSR-VTT, we use (ResNeXt101+ResNet152) for visual and (VGGish) for au-
dio. [8,10,13,31,34] in tables use the same visual feature as us. While, multimodal
models [17, 50] use (VGGish+Speech) audio features in addition to many vi-
sual features together (DenseNet161+SENet154 +ResNet50+S3D+OCR). Ours
outperforms these even with simple and fewer features. We perform the video
retrieval experiments on VATEX according to the data split [5]. Table 3 shows
the comparison results on VATEX dataset. In case of VATEX, we use (I3D) for
visual and (VGGish) for audio. All the other methods use the same visual fea-
ture as us. The proposed method surpasses the other state-of-the-art methods
in terms of all evaluation metrics. These MSR-VTT and VATEX include both
mismatching cases (i.e., missing audio or existing audio but not matched). To
validate our method on fully missing audio condition, we conduct the experi-
ments on TGIF which does not have audio data at all. We utilize MSR-VTT for
training AVA-Memory concurrently. In terms of TGIF experiment, MSR-VTT is
additional data but not supervision data because we do not use any text labels of
MSR-VTT. Thus, we use the same video-text pairs with the other methods. At
testing time, only associated audio cues are used dominantly (α=0). We conduct
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Table 5: Effects of the network designs on the performances. Performance eval-
uations are conducted on MSR-VTT-Miech.

Method
Video Retrieval Performance

R@1↑(%)R@5↑(%)R@10↑(%)MedR↓ mAP↑(%)

w/o Audio Association 26.5 56.4 68.1 4 40.3
w/o Mismatch-Aware Adjustment 25.0 55.0 66.6 4 39.1

Proposed Method 27.8 57.3 68.7 4 41.2

Table 6: Effects of using different dataset in associative learning procedure to
validate the generalizability of audio-visual association on TGIF dataset.

Method Associative Learning
Video Retrieval
Performance

R@1↑(%) mAP↑(%)

w/o AVA-memory 7 10.8 18.5

Proposed Method 3 (w/ MSR-VTT) 11.5 19.2

the video retrieval experiments on TGIF as follows the split [32]. We use only
(ResNeXt101+ResNet152) for visual and state-of-the-art [32] uses the same one.
As a result, ours outperforms the other methods on TGIF as shown in Table 4.

4.4 Ablation Study

Effects of network designs. We analyze the effects of the network design by
conducting ablation studies as shown in Table 5. We investigate the effectiveness
of audio association and mismatch-aware adjustment. In the table, the model
‘w/o Audio Association’ indicates the MA-Transformer without using associ-
ated audio features at mismatch-aware semantic embedder. It means the video
embedding is made with only visual and actual audio cues (adjustment is still
conducted for only actual audio). The second model ‘w/o Mismatch-Aware Ad-
justment’ indicates the model without adjusting weights between actual audio
and associated audio. As shown in the table, the final proposed method clearly
outperforms the base models ‘w/o Audio Association’ and ’w/o Mismatch-Aware
Adjustment’. The results show the superiority of the proposed network designs
in terms of both association and adjustment.

Generalizability of AVA-Memory. To validate the generalizability of AVA-
memory in terms of audio-visual association, we observe the effect of exploiting
different dataset in associative learning. Table 6 shows the results about the
generalizability of audio-visual association on TGIF dataset. The first baseline
model is trained without AVA-Memory. The second one is the model that utilizes
a different dataset, MSR-VTT in associative learning. The training set of TGIF
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Fig. 4: Matching index examples obtained by AVA-Memory on VATEX dataset.

is mainly used for learning with the video-text matching loss LM while MSR-
VTT is used for learning with the associative loss LA. Then, the models are
evaluated on the test set of TGIF. As shown in the table, the associative learning
with the different dataset (i.e., MSR-VTT) also can fairly contribute to the
retrieval performances. Note that TGIF does not include actual audio at all and
fully exploits the associated audio cues at searching time. This result shows the
generalizability of audio-visual association in terms of training data. Since the
proposed audio-visual associative learning does not require any labels at all, any
videos with audio-visual information are available for this learning scheme.

4.5 Qualitative Results on Matching Index

Figure 4 shows the matching index examples on VATEX test dataset. Each
matching index is obtained by AVA-Memory according to equation (11). As can
be seen in the figure, matching indexes are high for video samples in which
visual and audio are well matched. Contrary, the matching index is low for
samples where visual and audio are not matched (e.g., music). Such matching
index values are convincingly obtained and used in the adjustment process.

5 Conclusion

The objective of the proposed work is to address the audio-visual mismatch con-
dition when retrieving videos from the text semantics. To this end, we propose
MA-Transformer with AVA-Memory which enables to associate audio cues from
visual and further to adjust the audio embeddings considering the degree of
matching between visual and audio cues. As a result, the proposed method out-
performs the state-of-the-art video retrieval methods on various datasets includ-
ing audio-visual mismatch conditions. Further, we validate the network designs
by conducting ablation studies and qualitative analyses.
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