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Abstract. Video object re-identification (reID) aims at re-identifying
the same object under non-overlapping cameras by matching the video
tracklets with cropped video frames. The key point is how to make
full use of spatio-temporal interactions to extract more accurate repre-
sentation. However, there are dilemmas within existing approaches: (1)
3D solutions model the spatio-temporal interaction but are often trou-
bled with the misalignment of adjacent frames, and (2) 2D solutions
adopt a divide-and-conquer strategy against the misalignment but can-
not take advantage of the spatio-temporal interactions. To address the
above problems, we propose a Contextual Alignment Vision Transformer
(CAViT) to the spatio-temporal interaction with a 2D solution. It con-
tains a Multi-shape Patch Embedding (MPE) module and a Temporal
Shift Attention (TSA) module. MPE is designed to retain spatial se-
mantic information against the misalignment caused by pose, occlusion,
or misdetection. TSA is designed to achieve contextual spatial semantic
feature alignment and jointly model spatio-temporal clues. We further
propose a Residual Position Embedding (RPE) to guide TSA in focusing
on the temporal saliency clues. Experimental results on five video person
reID datasets demonstrate the superiority of the proposed CAViT. Ad-
ditionally, the experiment conducted on VVeRI-901-trial also shows the
effectiveness of CAViT for the video vehicle reID. Our code is available
on https://github.com/KimWu1994/CAViT.

Keywords: Video object reID, Vision transformer, Temporal shift at-
tention, Residual position embedding

1 Introduction

Video object re-identification (reID) is a challenging task which matches
video tracks of objects across non-overlapping cameras. The spatio-temporal re-
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Fig. 1: Illustration of various solutions applied in spatio-temporal learning. (a)
3D solutions. (b) 2D solutions. (c) The proposed temporal shift attention jointly
models spatio-temporal clues against the misalignment of adjacent frames.

lation information of video tracklets often contains diverse viewpoints and pose
variations. Thus, how to learn accurate and robust spatio-temporal representa-
tions in a video track is a crucial component for video object reID.

Many existing methods as shown in Fig. 1(a) apply 3D convolutional neural
networks to learn spatio-temporal features in a sequence of video frames. Al-
though it can integrate feature extraction and temporal modeling in one step,
it is inevitably affected with spatial misalignment caused by the movement of
objects. To this end, some 2D solutions in Fig. 1(b) attempt to adopt a divide-
and-conquer strategy that tackles feature representation and feature aggregation
separately. However, the divide-and-conquer strategy cannot take full advantage
of spatio-temporal interactions.

In this paper, we proposeContextualAlignmentVisionTransformer (CAViT)
which learns accurate and robust spatial-temporal features. Firstly, we replace
the self-attention of ViT [9] with a Temporal-Shift Attention (TSA) to align the
objects of adjacent frames. It naturally transfers the spatio-temporal modeling
task from a 3D representation learning problem to a 2D contextual alignment
problem, as shown in Fig. 1(c). To further guide TSA in focusing on the tempo-
ral saliency region, we propose a novel yet effective residual position embedding
module (RPE) which utilizes the relative variation of the adjacent frames de-
noting the temporal position. We also design a multi-shape patch embedding
(MPE) that provides rich semantic information to improve the ability of feature
representation. Experiments on video person reID and vehicle reID show that
CAViT achieves relatively high performance even in the presence of heavy occlu-
sion and misdetection. Moreover, CAViT significantly outperforms the state-of-
the-arts on video person / vehicle reID benchmarks. Especially, on LSVID and
PRID2011, CAViT respectively achieves 89.3% rank1 and 97.5% rank1 perfor-
mance.

Generally speaking, the main contributions of this paper are as follows:

– We propose a novel video representation learning framework CAViT for video
object reID, which jointly learns accurate and robust spatio-temporal fea-
tures with a 2D vision transformer model.

– We propose a new temporal shift attention module to replace the self-
attention mechanism of the vision transformer. It aligns the adjacent frames
to extract accurate pedestrian representations from an entire sequence.
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– We develop a multi-shape patch embedding module to improve the scala-
bility of the vision transformer. A novel residual position embedding is also
introduced to guide our model in focusing the temporal saliency information
among consecutive frames.

2 Related work

2.1 Video Re-identification

The research of video reID has made great progress. As shown in Fig. 2,
the rank1 accuracy improves from 30.7% to 91.5% in recent years on MARS
dataset. We mainly review highly related video-reID methods in this subsection
and give comparisons in Sec. 4 to show the superiority of our method on multiple
datasets.

3D solutions. Some approaches consider video reID as a spatio-temporal
representation learning task. To make full use of the temporal clues, some 3D
solutions (e.g., C3D [41], P3D [40], SlowFast [11], I3D [44]) are introduced to
video reID. However, due to the misalignment of adjacent frames, 3D CNNs are
troubled with the background and occlusion. In order to solve this, some 3D
alignment convolutional layers are proposed. For example, Li et al. [26] design a
two-branch 3D CNN network, where one branch is used to capture optical flow
clues and the other is used for spatial clues. Another approach is to develop a
3D non-local module (e.g., AP3D [13], Bicnet-tks [19], RFCne [22]) and insert
this module to 3D CNNs for the alignment of adjacent frames. However, limited
by the locality of the convolution, these methods only align the local region of
adjacent frames and cannot solve the misalignment of the whole frame.

2D solutions. Other approaches treat video reID as a set representation
learning task. To obtain the set representation, some divide-and-conquer based
strategies are proposed. They firstly apply 2D CNNs as the feature extractor
to obtain features of each frame and then use a feature post process module
(e.g., average/maximum temporal pooling, recurrent neural networks (RNNs),
or attention mechanisms) to obtain the set average feature. Zhou et al. [54]
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Fig. 2: Development of video reID methods on MARS. The number in parenthe-
ses for each method represents the corresponding rank1 performance.
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apply a RNN to aggregate multiple frame features. Yang et al. [47] propose
a spatial-temporal graph convolution network to model the temporal relations
of different frames and spatial relations within a frame. Abandoning temporal
interaction can free models from the misalignment of adjacent frames [1] but it
may disregard some important temporal clues. So PSTA [43] uses aggregation
module for ID switch problem. As discussed in above, all those methods cannot
tackle temporal dependency, attention, and spatial misalignment simultaneously.

2.2 Transformer based reID

Transformer breaks the locality limitation of the convolution model, and
shows its superiority over convolutional architectures in many vision tasks like
image classification and object detection, e.g., DETR [4]. These methods are
designed based on the encoder-decoder architecture of the transformer, which
applies queries to read the target information from the encoding representations.
However, the decoder may be not the necessary component for the visual rep-
resentation learning task. The decoder-free methods are then proposed, named
vision transformer, e.g., ViT [9], Cross ViT [6] and Swin transformer [36]. These
methods mainly adopt a patch embedding module and a self-attention mecha-
nism for visual representation learning.

Benefiting from the development of the transformer, the object reID task
also makes great progress. For the image-based object reID task, Li et al. [30]
introduce the vanilla transformer into the partial person reID task, in which the
decoder applies K queries for robust representations against the misalignment
caused by occluded and partial situations. Liao et al. [31] propose a pair-based
cross-attention strategy. They use the transformer decoder as a feature post-
processing module to re-fine the similarity score of the probe-gallery pair in the
unseen scene. Several vision transformer-based methods are also applied to the
image-based reID task. He et al. [16] propose a ViT based object reID model.
To learn representations suitable for cross-camera retrieval, it proposes several
strategies including camera position embedding, overlapping patch embedding,
jigsaw patch module, etc. Zhu et al. [55] propose an auto-aligned strategy in
vision transformer to alleviate the misalignment of the feature matching. For
the video reID task, He et al. [17] design a dense interaction method for trans-
former to obtain robust embedding. However, it is difficult for training, i.e.,
dense interaction needs 4 GPUs and 800 epochs for convergence.

3 Methodology

3.1 Problem Formulation

Video object reID aims to retrieve the same object with a query sequence
from a gallery set. Let denote P as the query sequence and G = {G1,G2, . . . ,GK}
as the gallery set, where it contains K sequences and each sequence has multiple
images. Corresponding features fGk

for a gallery sequence and fQ for the query
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sequence can be extracted by a video feature learning network. Video object
reID retrieves the target gallery video G that is the most similar to the query in
the video representation space, i.e,

G = max
K

S(fGk
, fQ), (1)

where S is the similarity score of the gallery and query sequences. The key of
this task is how to extract discriminative representations from the given sequence
T = {I1, · · · , IN }.

fT = ϕ(I1, · · · , IN ), (2)

where ϕ is a model extracting discriminative representation from spatio-temporal
clues of the video.

3.2 Contextual Alignment Feature Learning

There are two existing frameworks for designing ϕ: 3D solutions and 2D
solutions. 3D solutions often apply the 3D CNN as the backbone to jointly learn
representations from the whole sequence, as follow:

fT = ϕ3D(I1, · · · , IN ), (3)

where ϕ3D denotes 3D CNN backbones. However, ϕ3D is affected by the mis-
alignment of adjacent frames and fails to extract precise representations.

To alleviate this problem, 2D solutions abandon contextual interaction in
spatial clues modeling and adopt a divide-and-conquer strategy:

fT = ψ(ϕ2D(I1), · · · , ϕ2D(IN )), (4)

where ϕ2D denotes 2D CNNs to extract representation for each frame. The 3D
representation learning in Eq. 3 is divided into a spatial modeling module ϕ2D
and a temporal modeling module ψ. But the performance of ψ is limited, since
there is no temporal interaction in ϕ2D.

Considering the aforementioned dilemmas of 2D & 3D solutions, we model
the sequence representation problem as a contextual alignment task, i.e.,

f((It|(I1, · · · , IN )) = f(It|It−1). (5)

Inspired by Markov chains [28], we focus on the dependencies between the
current frame and the previous frame and propose an contextual alignment
module A. It models contextual interaction between xt and xt−1. The spatio-
temporal joint modeling task can be formulated as follows:

fT = ϕ3D(I1, · · · , IN )

= ϕ2D(I1) + · · ·+ ϕ2D(A(IN |IN−1))

= ϕ2D(I1) +

N∑
t=2

ϕ2D(A(It|It−1)). (6)
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According to Eq. 6, CAViT transfers the spatio-temporal joint modeling task
to a contextual alignment problem. The 3D representation learning task of Eq. 3
can be reduced to a 2D representation learning task. The dilemmas between the
contextual interaction modeling and the misalignment robustness are also be
alleviated.

3.3 Contextual Alignment Vision Transformer
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Fig. 3: Framework of CAViT. In the multi-shape patch embedding mod-
ule, the input pedestrian sequence is divided into multi-shape patches with
multi-shape windows and linear-projected to embeddings. The residual po-
sition embedding and the learnable 1D spatial position embedding are added
to the patch embedding. The temporal shift attention module is applied to
align the adjacent frames for joint spatio-temporal modeling.

Contextual Alignment Vision Transformer (CAViT) provides a feasible solu-
tion for spatio-temporal joint learning. An overview of the CAViT is presented
in Fig. 3. The main pipeline of CAViT can be formulated as:

xt0 = MPE(It) +R+ P
x̂tl = [xtl ;x

t−1
l ]

ytl = xtl +TSA(LN(xtl),LN(x̂tl))

xtl+1 = ytl + FFN(LN(ytl )). (7)

Given a pedestrian sequence{I1, · · · , IN}, the multi-shape patch embedding
module MPE embeds the frame to multi-shape embedding vectors with different
shaped windows. Then, a learnable 1D vector P and the residual position em-
bedding R are added to the patch embeddings. The former position embedding
denotes the spatial position in the current frame, while the latter indicates the
temporal variation of the current frame. After these steps, we get the patch em-
bedding xt0, which is the input of temporal shift attention layers TSA in CAViT.
TSA is the alignment module A in Eq. 6 used to align current frame It and the
previous frame It−1. The attention mechanism of CAViT is built by stacking
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TSA. FFN and LN are the feed-forward network and Layer normalization of
transformer attention block, respectively.

Residual Position Embedding (RPE). ViT is insensitive to the input or-
der and treats each frame of the input sequence equally. Thus, attention power
is wasted by redundant information in consecutive frames. To address this prob-
lem, we propose a residual position embedding to guide the model in focusing
the temporal saliency information, as follows:

Rsi(I
t) = Fsi(SoftMax(It − It−1)), (8)

where Fsi is the linear projection of the shape si. It encodes the residual of the i-
th frame and the previous (i−1)-th frame as the position embedding. Softmax is
used to normalize the residuals signal, suppress signals with small variations and
amplify those with large variations caused by viewpoint changing, scale changing,
and occlusions. Benefiting from MPE, CAViT extracts diversity information and
learns robust representations.

Multi-shape Patch Embedding (MPE). The 16x16 patch is not scaleable
enough in the origin ViT model. To perceive objects at different scales, we pro-
pose a multi-shape patch embedding module as follows:

xt0 = Fsi(I
t) + Psi +Rsi(I

t), (9)

where Fsi is the linear projection module of the i-th shape. Psi is the spatial
position embedding. We adopt the learnable position embedding method as [9],
allotting a learnable 1D vector Psi for each patch at the si shape. Rsi(I

t) is the
temporal position embedding as Eq. 8.

Temporal Shift Attention. For a sequence, pti is the i-th patch of It, the
t-th frame in the pedestrian sequence.

qti = pti ∗Wq

kti = pti ∗Wk

qti = pti ∗Wv, (10)

where Wq, Wk, and Wv are the linear function. qti , k
t
i and vti are the inputs of

the attention machine, respectively. The temporal shift attention (TSA) can be
modeled as:

TSA(pti) = Softmax(qti ×K)× V
K = [kt1, . . . , k

t
N , k

t−1
1 . . . , kt−1

N ]T

V = [vt1, . . . , v
t
N , v

t−1
1 , . . . , vt−1

N ]. (11)
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Suppose the normalization factor of SoftMax is γ, TSA can be formulated
as:

TSA(pti) =
1

γ
[qti ∗ kt1

T
, . . . , qti ∗ kt−1

N

T
)]× [vt1, . . . , v

t−1
N ]

=
qti ∗ kt1

T

γ
∗ vt1 + · · ·+

qti ∗ k
t−1
N

T

γ
∗ vt−1

N

=

k=kt
N ,v=vt

N∑
k=kt−1

1 ,v=vt−1
1

qti ∗ kT

γ
∗ v, (12)

where KT concatenate all the patches of It−1 and It. qti ∗ kT computes the
similarity the patch pti and all patches of adjacent frames. The similarity of
patch pti and I

t is the intra-frame self-attention, while the similarity of patch pti
and It−1 is the inter-frame interaction. Specifically, if pti belongs to an occluder
which appears suddenly at It and cannot align to It−1, the response of the
occluder pti will be weakened. On the contrary, if pti aligns to it’s previous frame,
the response will be enhanced. For this reason, TSA is more robust to the ID
switch noise in the video object reID.

4 Experiments

4.1 Experiment Implement

Datasets. We evaluate the proposed method on five video person reID
datasets and a video vehicle reID dataset, i.e., MARS [53], MARS DL [37],
LSVID [25], PRID-2011 [18], iLIDS-VID [42] and VVeRI-901-trial [23]. The
details of these datasets are summarized in Tab. 1. The bounding boxes are
detected with DPM detector [12], and tracked using the GMMCP tracker [8].
The misalignment caused by the DPM detector and ID switch by the GMMCP
tracker leads to confusion of video reID models. Liu et al. [37] clean MARS as
MARS DL. They re-detect the pedestrian bounding boxes with YOLOV4 [3]
and correct the ID switch with IDE [53] model. VVeRI-901 [23] only releases a
trial version VVeRI-901-trial. We validate and compare the video object reID
approaches on this trial version.

Evaluation Metric. We adopt the mean Average Precision (mAP) and the
Cumulative Matching Characteristics (CMC) to evaluate the performance. The
evaluation protocol is followed to BiCnet-TKS[19].

Training Details. For our implementation, we randomly choose 16 iden-
tities, and sample 4 sequences for each identity. For each sequence, we follow
the restricted random sampling strategy [27], which divides each sequence into
8 chunks and randomly chooses one frame from each chunk. All video frames
are resized to 256×128 after random data-augmentation (i.e., random horizon-
tal flipping, padding, random cropping and random erasing [15]). As for the
optimizer, the SGD optimizer is employed and the learning rate is initialized
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Table 1: The statistics of video object reID datasets.
Dataset # ID # Boxes # Tracks # Cams #Frames

MARS 1,261 10,675,516 20,715 6 2∼920
MARS DL 1,266 1,019,880 16,360 6 2∼920
PRID2011 178 38,466 354 2 5∼675
LSVID 3,772 2,982,685 14,943 15 60∼2533
iLIDS-VID 300 43,800 600 2 23∼192
VVeRI-901-trial 95 52,951 257 11 51∼462

as 0.01 with cosine learning rate decay. The total training epoch is set to 30.
We set 3 shapes for multi-shape patch embedding to obtain diversity semantic
representation: (1) 16×16, (2) 16×32, (3) 32×16.

4.2 Results on Video Person reID

In Tab. 2, we compare CAViT with state-of-the-arts on MARS and LSVID.
CAViT achieves the best performance on all evaluation criteria. Tab. 2 shows
the comparison on the two largest datasets (MARS and LS-VID) and Tab. 3
shows the comparison on the two small datasets (PRID-2011 and iLIDS-VID).
In order to make a comparison with temporal shift based methods, we reproduce
TSM with a ResNet50 backbone in video reID datasets. The Token shift module
is reproduced by ourselves in video reID datasets. For a fair comparison, the
token shift method is reproduced with the same pre-trained model (ViT Base
with 16x16 patch shape) and the same hyperparameters as CAViT.

CAViT vs. ViT baseline. We implement a strong video reID baseline
model, which adapts ViT Base [9] as the backbone, extracting features of all
frames and compute the average feature for pedestrian retrieval. (1) CAViT
improves ViT baseline over all six datasets. Particularly on LS-VID, CAViT
obviously outperforms ViT baseline by 2.8%/3.9% mAP/rank-1. This is because
that the misaligned problem in LS-VID is more seriousness than other datasets.
(2) We also note that CAViT only achieves a 0.4% rank1 improvement on MARS.
This is because that MARS has a lot of ID switch noise, which is caused by
the tracking and detection algorithms. As shown in Tab. 4, after re-detection,
CAViT achieves a 1.0% improvement on MARS DL, even though ViT baseline
has achieved high performance (94.6% rank1).

CAViT vs. 3D solutions. Existing joint learning solutions use 3D CNNs
to jointly model the spatio-temporal clues. Compared with pure 3D CNN based
methods, CAViT outperforms P3D [40] with 4.2%/2.2% mAP/rank-1 on MARS.
Compared with temporal feature alignment method BiCnet-TKS, CAViT out-
performs it by 1.2%/0.6% mAP/rank-1 on MARS, 4.1%/4.6% mAP/rank-1 on
LSVID. Compared with temporal feature reconstructing method AP3D [13],
CAViT outperforms it by 2.5%/1.2% mAP/rank-1 on MARS and 4.6% rank1
on iLIDS-VID. We argue that this is because 3D CNN is limited by the local
receptor field of the convolutional network. Neither temporal alignment meth-
ods nor temporal reconstruction methods can solve the case of misalignment
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Table 2: Comparison with state-of-the-arts on MARS [53], LS-VID [25] datasets.
The methods are separated into two groups, the 2D neural network solutions
(2D), and 3D neural network based solutions (3D).

Methods Proc.
MARS LS-VID

mAP R-1 mAP R-1

MG-RAFA [50] CVPR 20 85.9 88.8 - -
PhD [51] CVPR 20 86.2 88.9 - -
AGRL [45] TIP 20 81.9 89.5 - -
STGCN [47] CVPR 20 83.7 90.0 - -

2D MGH [46] CVPR 20 85.8 90.0 - -
RGTR [29] AAA 21 84.0 89.4 - -
CTL [34] CVPR 21 86.7 91.4 - -
GRL [35] CVPR 21 84.8 91.0 - -
STRF [1] ICCV 21 86.1 90.3 - -
PSTA [43] ICCV 21 85.8 91.5 - -
DI [17] ICCV 21 87.0 90.8 - -
STMN [10] ICCV 21 84.5 90.5 69.2 82.1
RFCnet [22] PAMI 21 86.3 90.7 - -

I3D [5] CVPR 17 83.0 88.6 33.9 51.0
P3D [40] ICCV 17 83.2 88.9 35.0 53.4
IAUNet [21] TNNLS 20 85.0 90.2 - -

3D M3D [26] TPMAI 20 79.5 88.6 - -
TCLNet [20] ECCV 20 85.1 89.8 - -
AP3D [13] ECCV 20 85.1 90.1 - -
AFA [7] ECCV 20 82.9 90.2 - -
STRF [1] ICCV 21 86.1 90.3 - -
BiCnet-TKS [19] CVPR 21 86.0 90.2 75.1 84.6

TSM(R50) [32] ICCV 19 81.8 88.6 66.0 78.3
2D Token shift [7] MM 21 86.6 90.2 68.7 80.4

ViT baseline[9] ARXIV 20 86.4 89.7 76.4 85.3

2D CAViT Our work 87.2 90.8 79.2 89.2

between frames well. Different with them, CAViT implements alignment of the
entire frames, thus solving the misalignment well.

CAViT vs. 2D solutions. 2D solutions often apply 2D CNNs to model
spatial clues and then use a temporal aggregation module(i.e., LSTM, RNN,
GCN, transformer) to merge the spatial representations. As we can see, DI is
lower than CAViT by 0.2% on mAP in MARS and 1.3% rank1 in iLIDS-VID,
while PSTA is lower than CAViT by 1.8% mAP on MARS and 1.8% rank1 on
iLDS-VID. This is because lacking consideration of spatio-temporal interactions,
they cannot take full advantage of the complementarity of adjacent frames.

CAViT vs. Temporal Shift Methods. TSM [32], token shift [49] and
our CAViT use the temporal shift strategy for jointly modeling spatio-temporal
clues with a 2D model. In Tab. 2, the performance gap is significant among these
two methods and our CAViT. Specifically, on iLIDS-VID, CAViT outperforms
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Table 3: Comparison with state-of-the-arts on PRID2011 [18], and iLIDS-
VID [42] datasets. The methods are separated into two groups, the 2D neural
network solutions (2D), and 3D neural network based solutions (3D).

Methods Proc.
PRID-2011 iLIDS-VID

R-1 R-5 R-1 R-5

MG-RAFA [50] CVPR 20 95.9 99.7 88.6 98.0
PhD [51] CVPR 20 96.6 97.8 - -
AGRL [45] TIP 20 94.6 99.1 84.5 96.7
ADFD [52] CVPR 19 93.9 99.5 86.3 97.4
GLTR [25] ICCV 19 95.5 100.0 86.0 98.0

2D MGH [46] CVPR 20 94.8 99.3 85.6 97.1
RGTR [29] AAAI 21 93.7 99.0 86.0 98.0
GRL [35] CVPR 21 96.2 99.7 90.4 98.3
PSTA [43] ICCV 21 95.6 98.9 91.5 98.1
DI [17] ICCV 21 - - 92.0 98.0

STRF [1] ICCV 21 - - 89.3 -
M3D [26] TPMAI 20 96.6 100.0 86.7 98.0

3D TCLNet [20] ECCV 20 - - 86.6 -
AP3D [13] ECCV 20 - - 88.7 -
AFA [7] ECCV 20 - - 88.5 96.8

TSM [32] ICCV 19 87.6 93.5 69.3 81.3
2D Token shift [7] MM 21 91.1 95.5 86.0 98.0

ViT baseline[9] ARXIV 20 92.4 96.8 90.2 93.7

2D CAViT Our work 95.5 98.9 93.3 98.0

TSM by 30.0% rank1 and outperforms the token shift method by 7.3% rank1.
We argue that TSM directly shifts the feature channel, which may aggravate
the spatial misalignment among pedestrians. The performance of Token shift is
close to CAViT on almost all datasets, except LSVID, where CAViT outperforms
Token shift by 10.5% mAP and 8.8% rank1. This is because the misalignment
is much more serious and the CLS token worsens this misalignment, making the
performance of Token shift even worse than origin ViT model.

CAViT vs. Transformer-based Methods. Both of DI (Dense Interac-
tion) [17] and our CAViT belong to the transformer based video reID methods.
The difference is that DI applies the ResNet50 to extract spatial features and
uses the transformer for temporal modeling, which is essentially a divide-and-
conquer method instead of our joint modeling strategy. The proposed joint mod-
eling method CAViT outperforms DI by 0.2% mAP on MARS and 1.3% rank1
on iLIDS-VID.

4.3 Results on Video Vehicle reID

We validate the proposed CAViT on the VVeRI-901-trial dataset. For a fair
comparison, we also reproduce some widely used video representation learning
methods(e.g., AP3D, 3D Non-local and strong baseline of object reID) on the
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Table 4: Comparison with state-of-the-arts on the MARS DL dataset.

Methods Proc.
MARS DL

mAP R-1

TCLNet [20] ECCV 20 85.4 91.0
3D AP3D [13] ECCV 20 86.5 91.3

P3D-C [40] ICCV 17 85.0 91.0
C2D [24] CVPR 19 86.2 91.4

Non-Local [33] ARXIV 19 85.8 90.8
FT-WFT [39] AAAI20 83.8 91.0

2D DL+CF-AAN [37] ARXIV 21 86.5 91.3
TSM+ResNet [32] ICCV 19 86.0 93.6
Token Shift [49] ACMM 21 90.1 94.9
ViT baseline [9] ARXIV 20 89.4 94.6

2D CAViT Our work 90.5 95.6

Table 5: Comparison with state-of-the-arts on the VVeRI-901-trial dataset.

Method Proc.
VVeRI-901

mAP R-1 R-5

C2D [24] CVPR 19 57.3 50.2 72.5
NL3D [33] ARXIV 19 60.5 55.0 77.5

3D AP3D [13] ECCV 20 61.2 52.5 75.0
AP3D+NL3D [13] ECCV 20 60.2 50.0 80.0
BiCnet-TKS [19] CVPR 21 50.8 41.3 70.4

TSM [32] ICCV 19 55.1 45.0 72.5
2D BOT[38] CVPRW 19 61.6 55.3 77.5

SBS[15] ARXIV 21 62.4 57.5 75.1
ViT baseline[9] ARXIV 20 62.7 52.5 84.0
Token shift [49] ICCV 19 67.4 57.5 80.0

2D CAViT Our work 65.6 60.0 84.8

VVeRI-901-trial dataset in Tab. 5. Compared with 3D solutions, CAViT out-
performs AP3D by 4.4% mAP. Compared with similar temporal shift based
methods, CAViT outperforms token shift by 4.8% rank-5 and outperforms TSM
15.0% on rank1.

4.4 Ablations Studies

Ablation of the Backbones & Multi-shape patch Embedding (MPE).
In Tab. 6, to compare the performance of several popular backbones, we use
different backbones of extracting spatial representations and apply an average
pooling module for temporal aggregation. We can observe that, 2D backbones
perform better than 3D backbones (i.e., Timeformer, Swin base 3D ), since 3D
backbones are troubled with misalignment. In addition, according to rank1 in
Tab. 6, we can observe that: ViT Base + MPE > ResNeSt101 = ViT Base >
ResNet101 > ResNeSt200 > Swin base > ResNet50. Although the 32×16 patch
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Table 6: The ablation study of Backbones & Multi-shape Patch Embedding.

Backbone
Patch shape MARS

16×16 16×32 32×16 mAP R-1

ResNet50 [14] 83.7 87.6
ResNet101 [14] 84.0 89.9
ResNeSt101 [48] 84.3 90.1
ResNeSt200 [48] 83.2 89.1

Swin base [36] 83.6 88.4
Swin base 3D [37] 68.3 81.4
ViT Base 3D [2] 81.9 87.5

ViT Base [9] ✓ 86.4 89.7
ViT Base [9] ✓ 82.9 88.6
ViT Base [9] ✓ 83.0 87.8
ViT Base [9] ✓ ✓ ✓ 86.8 90.6

and the 16×32 patch are worse than 16×16 patch, the MPE which ensembles
these three shapes achieves the best performance. This is because patches of
different shapes focus on information of different granularity and directions.

Table 7: The ablation study of the different module in CAViT.
MARS DL PRID-2011

mAP R-1 R-1 R-5

ViT baseline 89.4 94.6 92.4 96.8
+ MPE 90.0 94.8 93.8 97.7
+ TSA 90.2 95.3 94.6 98.0
+ RPE 90.5 95.6 95.5 98.9

Ablation of TSA & RPE. To denote the effectiveness of Temporal Shift
Attention (TSA) moudle and Residual Position Embedding (RPE) moudle, we
implement ablation experiments on MARS-DL and PRID-2011 in Tab. 7. Com-
pared with the ViT model with multi-shape patch embedding, TSA achieves
0.2%/0.5% mAP/rank1 increment on MARS DL. With RPE, TSA improves
0.5%/0.8% mAP/rank1 on MARS DL and improves 1.7%/1.2% rank1/rank5 on
PRID-2011. This indicates that TSA notices temporal saliency clues, under the
guidance of RPE.

Attention map visualization. The normalized attention maps of MPE are
visualized in Fig. 4. (1) For spatial clues, according to this figure, different shape
of MPE has different attention regions. MPE helps CAViT pay attention to a
variety of granularity and directions and obtain more diverse spatial representa-
tions. (2) For temporal clues, the deeper the network layer, the more attention
pays on adjacent frames. It also indicates that CAViT learns spatial clues in
shallow layers and implements temporal alignment in deep layers.
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Fig. 4: Attention map visualization for MPE. (1)the first row belongs to the
16x16 patch, while the second and the third rows belong to the 16x32 patch
and the 32x16 patch, respectively. (2) For each sub-figure, the left half part is
the attention weight of the intra-frame, while the right part is the attention
weight of the adjacent frame. (3) Different columns represent the attention map
at different layers.

5 Conclusion

This paper proposes a contextual alignment vision transformer (CAViT) for
the video object re-identification, which contains a multi-shape patch embed-
ding module (MPE) and a Temporal Shift Attention (TSA) module. The former
obtains diversity semantic embedding for spatial alignment in the pedestrian
matching process, while the latter applies a 2D solution for jointly modeling
spatio-temporal clues. We also introduce a residual position embedding (RPE)
to guide the temporal shift attention in focusing on temporal saliency clues. Ex-
perimental results on five video pedestrian reID datasets and one video vehicle
reID dataset demonstrate the superiority of the proposed CAViT over state-of-
the-art methods.
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