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1 Quality-Degrading Transformations

As described in Section 4.3 in the main text, to simulate the complex scenes,
we transform the query images via different quality-degrading transformations,
including: (1) adding Gaussian noise to mimic camera quality differences; (2)
cropping the image to simulate pedestrians are partially out of the camera’s field
of view; (3) adding motion blur to mimic fast-moving pedestrians; (4) adding
fog to imitate complex weather. Here, we detail these transformations.

Adding Gaussian noise. For an image tensor, i.e., x, we generate a noise
tensor ϵ that is sampled from Gaussian distribution N (0, I), i.e., ϵ ∼ N (0, I).
Then, we pollute a query sample by x← x+ ηϵ with a probability of p. In the
experiments in the main text, we set p = 0.5 and η = 1.0. Fig. 1 shows
some images with Gaussian noise added. It can be seen that with the increase
of noise strength η, the quality of the image decreases.

Original image 𝜂𝜂 = 0.1 𝜂𝜂 = 0.3 𝜂𝜂 = 0.5 𝜂𝜂 = 0.7 𝜂𝜂 = 0.9 𝜂𝜂 = 1.0

𝜉𝜉 = 0.9 𝜉𝜉 = 0.8 𝜉𝜉 = 0.7 𝜉𝜉 = 0.6 𝜉𝜉 = 0.5 𝜉𝜉 = 0.4Original image

Fig. 1: Images with Gaussian noise added. When we increase the noise strength
η, the quality of the image decreases.

Cropping image. For an image tensor x, suppose the spatial size of it
is (h,w), where h and w are the height and width, respectively. Then, with a
probability of p, we crop x along the height (from top to bottom) to generate
the new image tensor x′ whose size is (ξ ∗ h,w), where ξ ∈ [0, 1]. Finally, x′ will
be resized to (h,w). In the experiments of the main text, we set p = 0.8
and ξ = 0.5. Fig. 2 shows some cropped images. It can be seen that with the
decrease of the crop ration ξ, the discriminative information contained by the
image decreases.Original image 𝜂𝜂 = 0.1 𝜂𝜂 = 0.3 𝜂𝜂 = 0.5 𝜂𝜂 = 0.7 𝜂𝜂 = 0.9 𝜂𝜂 = 1.0

𝜉𝜉 = 0.9 𝜉𝜉 = 0.8 𝜉𝜉 = 0.7 𝜉𝜉 = 0.6 𝜉𝜉 = 0.5 𝜉𝜉 = 0.4Original image

Fig. 2: Cropped images. With the decrease of the crop ratio ξ, the discriminative
information contained by the image decreases.

Adding motion blur. We generate the kernel matrix of the motion blur to
pollute the image with a probability of p. In the experiments of the main
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text, we set p = 0.5. The corresponding python code is shown in Listing 1.1.
There are two main parameters when adding motion blur to the image, i.e.,
“degree” and “angle”. The “degree” and “angle” control the strength and the
direction of the motion, respectively. In the experiments of the main text,
we set them as 30 and 10, respectively. Fig. 3 shows some motion-blurred
images when varying the parameter “degree”. It can be seen that with the in-
crease of the strength of the motion blur, the quality of the image decreases.

Listing 1.1: The python code of adding motion blur

import numpy as np
import cv2
from PIL import Image

def Addmotionblur(image , degree =30, angle =10):
"""
image: PIL image
degree: the strength of the motion blur
angle: the angle of the motion blur
"""
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
image = np.array(image)

M = cv2.getRotationMatrix2D (( degree / 2, degree / 2), angle , 1)
motion_blur_kernel = np.diag(np.ones(degree ))

motion_blur_kernel = cv2.warpAffine(motion_blur_kernel ,M,(degree , degree ))
motion_blur_kernel = motion_blur_kernel / degree

blurred = cv2.filter2D(image , -1, motion_blur_kernel)
cv2.normalize(blurred , blurred , 0, 255, cv2.NORM_MINMAX)

blurred = np.array(blurred , dtype=np.uint8)
blurred = Image.fromarray(cv2.cvtColor(blurred , cv2.COLOR_BGR2RGB ))
return blurred

Original image 𝜂𝜂 = 0.1 𝜂𝜂 = 0.3 𝜂𝜂 = 0.5 𝜂𝜂 = 0.7 𝜂𝜂 = 0.9 𝜂𝜂 = 1.0

𝜉𝜉 = 0.9 𝜉𝜉 = 0.8 𝜉𝜉 = 0.7 𝜉𝜉 = 0.6 𝜉𝜉 = 0.5 𝜉𝜉 = 0.4Original image

Original image degree=5    degree=10    degree=15    degree=20    degree=25    degree=30

Original image beta=0.1      beta=0.15     beta=0.2     beta=0.25      beta=0.3       beta=0.4

Fig. 3: Motion-blurred images when varying the strength of the motion blur, i.e.,
“degree”. The parameter “angle” is fixed to 10. Note that with the increase of
the strength of the motion blur, the quality of the images decreases.

Adding fog. The corresponding python code of adding fog is shown in List-
ing 1.2. There are two main parameters when adding fog to the image, i.e.,
“beta” and “fog size”. The “beta” controls the concentration of the fog. The
“fog size” controls the scope of the fog. In the experiments of the main
text, they are set as 0.3 and 10, respectively. An image will be added fog
with a probability of p. We set p = 0.5 in the experiments of the main pa-
per. Fig. 4 shows some images with fog added when vary the parameter “beta”
and fix the parameter “fog size”. It can be seen that with the increase of the
concentration of the fog, the image contains more ambiguous information.
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Listing 1.2: The python code of adding fog

import numpy as np
import cv2
from PIL import Image

def Addfog(img , beta =0.1, fog_size =8):
"""
input: PIL image , the size will be resized as (128, 256)
beta: the concentration of the fog
fog_size: the scope of the fog
"""
img = img.resize ((128, 256))

img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
img = np.array(img)
img_f = img / 255.0
(row , col , chs) = img.shape

A = 1.0
center = (row // 40, col // 2)
for j in range(row):

for l in range(col):
d= -0.04* math.sqrt((j-center [0])**2 + (l-center [1])**2) + fog_size
d = d if d > 0 else 0
td = math.exp(-beta * d)
img_f[j][l][:] = img_f[j][l][:] * td + A * (1 - td)

img_f = np.array(img_f * 255, dtype=np.uint8)
img_f = Image.fromarray(cv2.cvtColor(img_f , cv2.COLOR_BGR2RGB ))
return img_f

Original image 𝜂𝜂 = 0.1 𝜂𝜂 = 0.3 𝜂𝜂 = 0.5 𝜂𝜂 = 0.7 𝜂𝜂 = 0.9 𝜂𝜂 = 1.0

𝜉𝜉 = 0.9 𝜉𝜉 = 0.8 𝜉𝜉 = 0.7 𝜉𝜉 = 0.6 𝜉𝜉 = 0.5 𝜉𝜉 = 0.4Original image

Original image degree=5    degree=10    degree=15    degree=20    degree=25    degree=30

Original image beta=0.1      beta=0.15     beta=0.2     beta=0.25      beta=0.3       beta=0.4

Fig. 4: Images with fog added. We vary the parameter “beta” that controls con-
centration of the fog. The parameter “fog size” that controls the scope of the
fog is fixed as 10. Note that with the increase of the concentration of the fog,
the image contains more ambiguous information.

2 Extensive Results on Multi-Query Settings

2.1 Multi-Query Settings on Noisy Samples

As described in Section 4.3 in the main paper, we reconstruct the test set of
Market-1501 [3] to validate the effectiveness of our method on multi-query set-
tings. We collect the images belonging to the same personal identity and same
camera identity from the query set and gallery set. Then, we randomly select half
of these images to be allocated to the reorganized query set and the other half
to the reorganized gallery set. Simultaneously, to simulate the complex scenes
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in reality, we add Gaussian noise to images in the query set. Specifically, for an
image tensor, i.e., x, we generate a noise tensor ϵ that is sampled from Gaussian
distribution N (0, I). Then we pollute a query sample by x← x+ηϵ with a prob-
ability of 0.5. Here, we vary the noise strength η to observe how the performance
of our method changes.

As described in Section 4.3 in the main paper, the reliability score of the i-th
query is calculated by wi =

midi∑n
j=1 mjdj

. When we only use the data uncertainty

to calculate the reliability score, the m∗ is set to 1. When we only use the model
uncertainty to calculate the reliability score, the d∗ is set to 1.

Table 1: Results of the multi-query settings on noisy samples when varying the
noise strength η. “w/ R” (“w/o R”) means we use (don’t use) the reliability
score to adjust the weights for different queries.

Method
Uncertainty

Noise strength η
η = 0.3 η = 0.5 η = 0.7 η = 1.0

Data Model
Market Market Market Market
R1 mAP R1 mAP R1 mAP R1 mAP

Ours (w/o R) × × 94.1 87.1 81.3 73.3 67.2 61.4 55.0 33.1

Ours (w/ R)
✓ × 94.3 87.4 83.1 76.5 75.3 69.6 71.4 66.7
× ✓ 94.1 87.3 82.9 76.4 75.3 69.6 70.7 66.5
✓ ✓ 94.3 87.4 83.9 77.5 77.7 72.1 76.7 71.4

Results are shown in Table 1. From the results, we can make several observa-
tions. First, when varying the noise strength η, our method “Ours (w/ R)” sta-
bly outperforms the vanilla method “Ours (w/o R)”, which shows the proposed
reliability assessment is credible and our method is effective for the multi-query
settings. Second, when combing the data uncertainty and model uncertainty, the
performance is higher than using data uncertainty alone or model uncertainty
alone. This shows these two types of uncertainty can provide complementary
information to suppress the negative influence of unreliable predictions. Third,
with the increase of η, the margin between our method and the vanilla method
grows. This shows that our method has greater advantages in complex scenes.

2.2 Multi-Query Settings on Partial Samples

We also verify our method on the partial samples. As described in Sec. 1, we
generate the partial images through cropping the original images. We vary the
crop ration ξ to observe how the performance of our changes. Results are shown
in Table 2. From the results, we can draw similar conclusions to the experiments
on noisy samples. Especially, with the decrease of the crop ratio ξ, the discrim-
inative information contained by the image decreases, and the margin between
our method “Ours (w/ R)” and the vanilla method “Ours (w/o R)” grows. This
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further shows the proposed reliability assessment is credible and our method is
more effective in more complex scenes.

Table 2: Results of the multi-query settings on partial samples when varying the
crop ratio ξ. “w/ R” (“w/o R”) means we use (don’t use) the reliability score
to adjust the weights for different queries.

Method
Uncertainty

Crop ratio ξ
ξ = 0.9 ξ = 0.7 ξ = 0.5 ξ = 0.3

Data Model
Market Market Market Market
R1 mAP R1 mAP R1 mAP R1 mAP

Ours (w/o R) × × 96.7 90.9 86.0 76.8 37.2 35.7 25.6 23.7

Ours (w/ R)
✓ × 96.8 90.9 86.6 77.4 43.0 41.0 35.0 31.9
× ✓ 96.8 90.8 86.2 77.3 44.1 42.1 37.3 33.6
✓ ✓ 96.9 91.0 87.0 77.9 46.3 44.4 41.4 37.8

2.3 Multi-Query Settings on Motion-Blurred Samples

We further verify our method on the motion-blurred samples. The details of gen-
erating the motion-blurred images are described in Sec. 1. We vary the strength
of the motion blur (“degree”) to observe how the performance of our changes.
Results are shown in Table 3. From the results, we can draw similar conclusions
to the experiments on noisy samples. Especially, with the increase of the strength
of motion blur, the quality of the image decreases, and the margin between our
method “Ours (w/ R)” and the vanilla method “Ours (w/o R)” grows. This
further shows the proposed reliability assessment is credible and our method is
more effective in more complex scenes.

Table 3: Results of the multi-query settings on motion-blurred samples when
varying the strength of the motion blur. “w/ R” (“w/o R”) means we use
(don’t use) the reliability score to adjust the weights for different queries.

Method
Uncertainty

strength of motion blur: “degree”
“degree”= 20 “degree”= 30 “degree”= 40 “degree”= 50

Data Model
Market Market Market Market

R1 mAP R1 mAP R1 mAP R1 mAP

Ours (w/o R) × × 74.9 68.1 69.7 63.4 67.9 61.2 66.1 60.0

Ours (w/ R)
✓ × 75.5 69.7 73.2 67.2 71.5 66.2 70.8 65.6
× ✓ 79.1 73.1 76.8 70.6 75.4 69.6 75.2 69.2
✓ ✓ 79.0 73.3 77.4 71.4 76.4 70.8 76.1 70.6
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2.4 Multi-Query Settings on Samples with Fog

Finally, we verify our method on the samples with fog. The details of adding fog
to the images are described in Sec. 1. We vary the strength of the concerntration
of the fog (“beta”) to observe how the performance of our changes. Results
are shown in Table 4. From the results, we can draw similar conclusions to the
experiments on noisy samples. Especially, with the increase of the concentration
of the fog, the quality of the image decreases, and the margin between our
method “Ours (w/ R)” and the vanilla method “Ours (w/o R)” grows. This
further shows the proposed reliability assessment is credible and our method is
more effective in more complex scenes.

Last but not least, the experiments on noisy samples, partial samples, motion-
blurred samples, and fogged samples all reflect the effectiveness of our method.
This shows the robustness of our method in the complex scenes.

Table 4: Results of the multi-query settings on images with fog when varying
the concentration of the fog. “w/ R” (“w/o R”) means we use (don’t use) the
reliability score to adjust the weights for different queries.

Method
Uncertainty

Concentration of the fog: “beta”
“beta”= 0.1 “beta”= 0.2 “beta”= 0.3 “beta”= 0.4

Data Model
Market Market Market Market

R1 mAP R1 mAP R1 mAP R1 mAP

Ours (w/o R) × × 78.9 72.2 69.4 63.7 65.1 60.3 61.9 58.2

Ours (w/ R)
✓ × 79.5 72.9 74.9 69.4 75.1 69.4 74.4 68.9
× ✓ 79.0 73.1 74.1 68.9 74.8 69.1 74.2 68.7
✓ ✓ 79.7 73.5 75.8 71.0 77.1 71.9 77.0 71.8

2.5 Ablation Study of τmin and τmax

As described in the Section 3.4 in the main paper, when applying the proposed
reliability assessment to the multi-query settings, to combine the data uncer-
tainty and model uncertainty without being affected by their numerical scale,
we project the data (model) uncertainty into the interval [τmin, τmax]. The final
similarity between multiple query images X = {x1, . . . ,xn} and the gallery im-
age y is calculated by s =

∑n
i=1 wisi, where wi =

midi∑n
j=1 mjdj

, di ∈ [τmin, τmax]

(mj ∈ [τmin, τmax]) is the mapped data (model) uncertainty of xi and si is the
similarity between xi and y. As the reliability score of each query image, i.e.,
wi, is normalized, the final similarity is related to the relative size of τmin and
τmax. Here, we fixed the τmax at 1.0 and varying the value of τmin from 0.1 to 0.9
to see the performance of our method on the synthetic partial dataset (cropped
Market-1501 [3], described in Sec. 1). Results are shown in Table 5. From the
results, we can see that, for small ξ (e.g., 0.3, 0.4, 0.5), our method shows higher
performance when adopting small τmin (e.g., 0.1). For large ξ (eg, 1.0, 0.9, 0.8),
our method shows higher performance when adopting large τmin (e.g., 0.9, 0.7,
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Table 5: Ablation study of τmin under the multi-query settings. τmax is fixed at
1.0. Results are conducted on cropped Market-1501 [3] (partial dataset). “w/ R”
(“w/o R”) means we use (don’t use) the reliability score to adjust the weights
for different queries.

Method τmin

Crop Ratio ξ
ξ = 1.0 ξ = 0.9 ξ = 0.8 ξ = 0.7 ξ = 0.6 ξ = 0.5 ξ = 0.4 ξ = 0.3
R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP

Ours (w/o R) – 97.0 92.2 96.7 91.0 93.8 86.8 86.0 76.8 63.0 56.4 37.2 35.7 29.3 27.6 25.6 23.7

Ours(w/ R)

0.1 96.0 90.3 95.4 89.0 93.0 85.2 84.5 75.8 64.6 59.5 47.5 46.1 45.6 42.6 44.3 40.9
0.3 96.5 91.5 96.3 90.3 93.7 86.3 85.8 76.9 65.0 59.8 47.1 45.6 44.8 41.8 43.0 39.9
0.5 97.2 92.1 96.9 91.0 94.0 87.0 86.7 77.5 65.5 59.6 46.3 44.4 43.1 40.0 41.4 37.8
0.7 97.0 92.2 96.8 91.0 94.0 87.2 86.3 77.6 65.2 59.0 43.9 41.9 39.2 36.3 36.8 33.4
0.9 97.1 92.3 96.5 91.0 94.1 87.2 86.4 77.2 63.9 57.5 40.0 38.1 32.6 30.7 29.1 27.0

0.5). This is because that, when ξ is small, a certain percentage of query images
are severely cropped and they may provide ambiguous information to degrade
the final ranking. Our method will generate large data uncertainty and model un-
certainty to these severely cropped images. At this time, a small τmin means that
these severely cropped images are assigned small weights, which effectively sup-
presses the impact of them and make the final similarity more dependent on the
relatively complete query images, thus shows better performance. However, when
ξ is large, a certain percentage of query images are slightly cropped and they
can also provide discriminative information for ranking. If we adopt a too small
τmin, these images will be assigned small weights, which may waste the useful in-
formation provided by them and obtain fallen performance. At this time, a large
τmin can maintain the discriminative information from these slightly cropped
images and results in better performance. In conclusion, for unconstrained com-
plex where the query images have large quality and visibility variation, a small
τmin is more suitable. For constrained simple scenes where the query samples
have small quality and visibility variation, a large τmin is more appropriate.

3 Visualization

3.1 Visualization of the Quality-Degraded Images and Uncertainty

Here, we visualize the quality-degraded images and their corresponding data
uncertainty and model uncertainty. Results are shown in Fig. 5, Fig. 6, Fig. 7
and Fig. 8. We can see that, for different quality-degrading transformations,
with the quality of the images degrades, the corresponding data uncertainty and
model uncertainty grow. That is, when the discriminative information provided
by an image decreases, our method will assign a lower reliability score to the
prediction of this sample.
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𝜂𝜂 = 0.0 𝜂𝜂 = 0.3 𝜂𝜂 = 0.5 𝜂𝜂 = 0.7 𝜂𝜂 = 1.0

Model uncertainty (× 10−6)

Data uncertainty 0.8100

3.3890

Noise strength

Images

4.0746

0.8131

5.1533

0.8290

6.9717

0.8573

9.2480

0.8693

Fig. 5: Visualization of images polluted by Gaussian noise when varying the noise
strength η, as well as corresponding model uncertainty and data uncertainty.

𝜉𝜉 = 1.0 𝜉𝜉 = 0.9 𝜉𝜉 = 0.7 𝜉𝜉 = 0.5 𝜉𝜉 = 0.4

Model uncertainty (× 10−6)

Data uncertainty 0.8100

3.3890

Crop ratio

Images

3.6961

0.8120

5.2148

0.8209

5.6303

0.8214

6.1325

0.8216

Fig. 6: Visualization of cropped images when varying the crop ration ξ, as well
as corresponding model uncertainty and data uncertainty.

degree = 0 degree = 10

Model uncertainty (× 10−6)

Data uncertainty 0.8100

3.3890

“degree” of motion blur

Images

5.7457

0.8153

8.2438

0.8239

9.6785

0.8285

10.2341

0.8322

degree = 15 degree = 20 degree = 25

Fig. 7: Visualization of cropped motion-blurred images when varying the “de-
gree” of the motion blur, as well as corresponding model uncertainty and data
uncertainty.

beta = 0 beta = 0.1

Model uncertainty (× 10−6)

Data uncertainty 0.8100

3.3890

“beta” of fog

Images

4.3682

0.8127

5.1344

0.8289

6.1897

0.8553

6.6359

0.8661

beta = 0.2 beta = 0.3 beta = 0.4

Fig. 8: Visualization of samples with fog when varying the concentration of the
fog (“beta”), as well as corresponding model uncertainty and data uncertainty.
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3.2 Visualization of Retrieval Results

In this part, we visualize some retrieval results under the multi-query settings.
Results are shown in Fig. 9, Fig. 10, Fig. 11 and Fig. 12. In Fig. 9, some query
samples are polluted by the Gaussian noise. In Fig. 10, some query images are
cropped to imitate the partial ReID scenarios. In Fig. 11, some query samples
are motion-blurred. In Fig. 12, some query samples are added with fog. Each
query set contains the images from the same personal identity and same camera
identity. We display the top-8 ranking results. We report the results of “Ours
(w/ R)” against the vanilla method “Ours (w/o R)”. We can see that “Ours
(w/ R)” shows better performance, which stems from the effective reliability
assessment. Specifically, our method suppresses the negative impact of noisy
query images, severely partial query images, motion-blurred images and fogged
images by assigning them large data uncertainty and model uncertainty (low
reliability score), and simultaneously emphasizes the influence of high-quality
and relatively complete query images.

Ours (w/o R)

Ours (w/ R)

Multi-query settings on noisy samples

Multiple query images True match False match

Ours (w/o R)

Ours (w/ R)

Ours (w/o R)

Ours (w/ R)

Fig. 9: Visualization of the retrieved results under the multi-query settings. Some
query images are polluted by Gaussian noise. Comparing “Ours (w/o R)” and
“Ours (w/ R)”, it can be seen that when we use the reliability to adjust the
weights of different queries, the results are more accurate and reliable.
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Multi-query settings on partial samples

Multiple query images True match False match

Ours (w/o R)

Ours (w/ R)

Ours (w/o R)

Ours (w/ R)

Ours (w/o R)

Ours (w/ R)

Fig. 10: Visualization of retrieval results under the multi-query settings. Some
query images are partial. Comparing “Ours (w/o R)” and “Ours (w/ R)”, it
can be seen that when we use the reliability to adjust the weights of different
queries, the results are more accurate and reliable.

Multi-query settings on motion-blurred samples

Multiple query images True match False match

Ours (w/o R)

Ours (w/ R)

Ours (w/o R)

Ours (w/ R)

Ours (w/o R)

Ours (w/ R)

Fig. 11: Visualization of retrieval results under the multi-query settings. Some
query images are motion-blurred. Comparing “Ours (w/o R)” and “Ours
(w/ R)”, it can be seen that when we use the reliability to adjust the weights
of different queries, the results are more accurate and reliable.
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Multi-query settings on samples with fog

Multiple query images True match False match

Ours (w/o R)

Ours (w/ R)

Ours (w/o R)

Ours (w/ R)

Ours (w/o R)

Ours (w/ R)

Fig. 12: Visualization of retrieval results under the multi-query settings. Some
query images are added fog. Comparing “Ours (w/o R)” and “Ours (w/ R)”,
it can be seen that when we use the reliability to adjust the weights of different
queries, the results are more accurate and reliable.

4 Architectures of Modules ϕ, φµ and φσ

As described in the Section 3.3 in the main paper, modules ϕ, φµ and φσ are all
light weighted. Here, we show their architecture in Tabel 6. “Conv(1× 1, 2048,
1024)” represents a convolutional layer whose kernel size is 1×1, input channel is
2048 and output channel is 1024. “BN” represents the batch normalization layer.
“ReLU” represents the rectified linear unit function. “Bayesian Conv” means
that the parameters of the convolutional layer follow a Bernoulli distribution,
i.e., θij = πij ∗zij , where zij ∼ Bernoulli(ρ). In our experiments, we empirically
set ρ as 0.7.

5 Derivation Details of Data Uncertainty Loss (Eq.(5))

In this part, we show the derivation details of Equation (5) in the main paper.
For a sample x, we project it into a Gaussian distribution N (µ, σ2I) in the latent
space. Assuming a sample x is from the i-th class, the posterior of x belonging
to i-th class is formulated by,

p(x|y = i) ∝ 1

(2πσ2)
d
2

exp (−∥µ−wi∥2

2σ2
) (1)
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Table 6: Architectures of ϕ, φµ and φσ on different backbones. Conv: convolu-
tional layer. BN: batch normalization layer. ReLU: rectified linear unit function.
Bayesian Conv: convolutional layer whose the parameters follow Bernoulli dis-
tribution.

Backbone Module Architecture Backbone Module Architecture

ResNet50 [1]

ϕ

Bayesian Conv(1× 1, 2048, 1024)

HRNet-W32 [2]

ϕ

Bayesian Conv(1× 1, 1024, 512)
→ BN()→ ReLU() → BN()→ ReLU()
→ Bayesian Conv(1× 1, 1024, 512) → Bayesian Conv(1× 1, 512, 512)
→ BN() → ReLU() → BN() → ReLU()
→ Bayesian Conv(1× 1, 512, 2048) → Bayesian Conv(1× 1, 512, 1024)

φµ

Conv(1× 1, 2048, 1024)

φµ

Conv(1× 1, 1024, 512)
→ BN() → ReLU() → BN() → ReLU()
→ Conv(1× 1, 1024, 512) → Conv(1× 1, 512, 512)
→ BN() → ReLU() → BN() → ReLU()
→ Conv(1× 1, 512, 2048) → Conv(1× 1, 512, 1024)

φσ

Conv(1× 1, 2048, 1024)
φσ

Conv(1× 1, 1024, 256)
→ BN() → ReLU() → BN() → ReLU()
→ Conv(1× 1, 1024, 2048) → Conv(1× 1, 256, 1024)

where wi is the weight vector of i-th class in the classifier and d is the feature
dimension. Assuming each class has the equal prior probability, the posterior of
x belonging to the class i is,

p(y = i|x) =
exp (−∥µ−wi∥2

2σ2 )∑
j exp(−

∥µ−wj∥2

2σ2 )
=

exp ( 1
σ2w

T
i µ)∑

j exp (
1
σ2wT

j µ)
(2)

Where µ and w∗ are l2-normalized. p(y|x) can be regarded as a Boltzmann
distribution. The magnitude of σ2 controls the entropy of this distribution. The
larger the σ2, the larger the entropy. Thus σ2 can be regarded as the data
uncertainty of sample x. Assuming the class label of the sample x is i, the loss
function is formulated by,

Ld(µ, σ
2) = − log p(y = i|x)

= − 1

σ2
w⊤

i µ+ log
∑

j
exp(

1

σ2
w⊤

j µ)

= − 1

σ2
w⊤

i µ+
1

σ2
log

∑
j
exp (w⊤

j µ)

− 1

σ2
log

∑
j
exp (w⊤

j µ) + log
∑

j
exp (

1

σ2
w⊤

j µ)

= − 1

σ2
log

exp (w⊤
i µ)∑

j exp (w
⊤
j µ)

+ log

∑
j exp(

1
σ2w

⊤
j µ)(∑

j exp (w
⊤
j µ)

) 1
σ2

≈ 1

σ2
L(µ) + log σ2

(3)

where L(µ) = − log
exp (w⊤

i µ)∑
j exp (w⊤

j µ)
is the cross entropy loss. In the approximation,

we assume that σ2 → 1, then
∑

j exp (
1
σ2w

⊤
j µ) ≈ σ2

(∑
j exp (w

⊤
j µ)

) 1
σ2

. Note
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that this assumption is reasonable as it prevents the model from predicting too
small data uncertainty.

6 Derivation of the Bayesian Framework

In the Bayesian framework, as the true posterior p(θ|D) is typically intractable,
an approximate distribution qπ(θ) parameterized by π is defined. qπ(θ) is aimed
to be as similar as possible to p(θ|D), which is measured by the Kullback-Leibler
divergence. The optimal parameters π∗ is defined as,

π∗ = argmin
π

KL[qπ(θ)∥p(θ|D)] (4)

According the Bayesian theorem: p(θ|D) = p(D|θ)p(θ)
p(D) . Then KL[qπ(θ)∥p(θ|D)]

can be rewritten as:

KL[qπ(θ)∥p(θ|D)] =
∫

qπ(θ) log
qπ(θ)

p(θ|D)
dθ

=

∫
qπ(θ) log

qπ(θ)p(D)
p(θ)p(D|θ)

dθ

=

∫
qπ(θ) log

qπ(θ)

p(θ)
dθ −

∫
qπ(θ) log p(D|θ)dθ

+

∫
qπ(θ) log p(D)dθ

= KL[qπ(θ)∥p(θ)]− Eqπ(θ)[log p(D|θ)] + log p(D)

(5)

Thus, Eq. 4 can be transferred as:

π∗ = argmin
π

KL[qπ(θ)∥p(θ)]− Eqπ(θ)[log p(D|θ)] (6)

where log p(D) is dropped because it is independent of the parameters π.
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