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Abstract. Current person image retrieval methods have achieved great
improvements in accuracy metrics. However, they rarely describe the reli-
ability of the prediction. In this paper, we propose an Uncertainty-Aware
Learning (UAL) method to remedy this issue. UAL aims at providing
reliability-aware predictions by considering data uncertainty and model
uncertainty simultaneously. Data uncertainty captures the “noise” in-
herent in the sample, while model uncertainty depicts the model’s con-
fidence in the sample’s prediction. Specifically, in UAL, (1) we propose
a sampling-free data uncertainty learning method to adaptively assign
weights to different samples during training, down-weighting the low-
quality ambiguous samples. (2) we leverage the Bayesian framework to
model the model uncertainty by assuming the parameters of the network
follow a Bernoulli distribution. (3) the data uncertainty and the model
uncertainty are jointly learned in a unified network, and they serve as
two fundamental criteria for the reliability assessment: if a probe is high-
quality (low data uncertainty) and the model is confident in the pre-
diction of the probe (low model uncertainty), the final ranking will be
assessed as reliable. Experiments under the risk-controlled settings and
the multi-query settings show the proposed reliability assessment is effec-
tive. Our method also shows superior performance on three challenging
benchmarks under the vanilla single query settings. The code is available
at: https://github.com/dcpl5/UAL
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1 Introduction

Person image retrieval, also known as person re-identification (ReID), aims at
associating a target person across non-overlapping camera views [45,48, 62]. Al-
though current methods [21,17, 32,29, 44, 15, 4, 20] have achieved promising per-
formance on public benchmarks, they are reliability-agnostic, i.e., the prediction
of a probe can be generated anyway, but they rarely describe whether the pre-
diction is reliable. However, when people are identifying pedestrians, they not
only give the judgment result but also the reliability associated with it. Such a
reliability assessment mechanism is important in human decision-making [9] and
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Fig. 1. Observation and Motivation. (a) In the multi-query setting, low-quality query
images contain more ambiguous information. Reliability scores are required to down-
weight the weights of these queries. (b) The reliability score is related to two factors:
the quality of the sample and the model’s confidence in the prediction of the sample.

also essential in the RelD task. For example, in real scenarios, we often face the
problem of searching for a person through his/her multiple images (i.e., multi-
query settings), as a pedestrian is usually captured by several cameras and one
camera may capture a series of observations of the person. More generally, we
can add the retrieved positive ones into the query set for further comprehensive
retrieval. The quality of these query images varies, especially in complex scenes.
As shown in Fig. 1(a), low-quality query images contain more ambiguous infor-
mation. If we treat these query images equally, performance will degrade. At this
time, reliability scores are required to down-weight the low-quality query images.
However, current methods rarely consider the reliability assessment problem.
To remedy this issue, we propose a novel Uncertainty-Aware Learning (UAL)
method for the RelD task. UAL aims at not only giving an accurate prediction for
a sample but also providing a reliability score associated with it. The reliability
score is related to two factors, i.e., the quality of the sample and the confidence
of the model in the prediction of the sample. These two factors are measured
by considering two types of uncertainty, i.e., data uncertainty and model uncer-
tainty. Data uncertainty captures the “noise” inherent in the observation and it
can describe the quality of the sample. Model uncertainty represents the model’s
“ignorance” and it can reflect the model’s confidence in its prediction [24, 7].
In this paper, we propose a unified network to learn the data uncertainty
and the model uncertainty simultaneously. Specifically, first, we project a sam-
ple into a Gaussian distribution in the latent space, the mean of the distribution
represents the feature, and the variance represents the data uncertainty. Dif-
ferent from [1,52,41] sampling feature vector from the Gaussian distribution,
we propose a sampling-free method to learn the data uncertainty and adaptively
down-weight low-quality ambiguous samples during training. Second, we leverage
the Bayesian framework to learn the model uncertainty, in which the parameters
of the network are assumed to follow the Bernoulli distribution. The model un-
certainty is defined as the dispersion degree of the feature vectors caused by the
distribution of the network parameter. Third, the data uncertainty and model
uncertainty are jointly learned in a unified network, and they serve as two cri-
teria to assess whether the result is reliable: as shown in Fig. 1(b), if a query
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image is high-quality (low data uncertainty) and the model is confident in its
prediction of the query image (low model uncertainty), the final result will be
assessed as reliable. Experiments under risk-controlled settings and multi-query
settings show the proposed reliability assessment is effective.

The major contributions are summarized as: (1) We propose an uncertainty-
aware learning (UAL) method that can provide reliability-aware predictions
for the RelD task. (2) We introduce a sampling-free data uncertainty learning
method, which can improve the representation by explicitly inhibiting the neg-
ative impact of low-quality samples during training without any external clues.
(8) We propose a unified network to jointly learn data uncertainty and model
uncertainty. As far as we know, this is the first work to apply data uncertainty
and model uncertainty to the ReID task simultaneously. (4) Experiments under
risk-controlled settings and multi-query settings show the reliability assessment
is effective. Our method also shows superior performance in single query settings.

2 Related Work

Person RelD. Person RelD aims to associate a target person across different
camera views. Existing methods can be broadly divided into two categories:
hand-craft methods [33,51] and deep learning methods [30, 18, 20,4, 15, 52]. The
key challenge is the large appearance variation caused by imperfect detection,
different camera views, poses, and occlusions. To remedy these issues, several
works [12, 13, 35,47, 8,62, 14,32, 21] are proposed to learn local features to cope
with the appearance variation. Although these methods have played a certain
role, they are reliability-agnostic. That is, the model can output a prediction for
a probe anyway, but it does not describe the reliability of the prediction.
Uncertainty in person RelID. There are mainly two types of uncertainty:
data uncertainty and model uncertainty [7, 23,40, 24]. Many tasks have consid-
ered the uncertainty to improve the robustness and interpretability of models,
such as face recognition [41, 25, 1], semantic segmentation [19, 24] and Multi-view
learning [10]. In the RelD task, prior arts [52, 55, 43, 22] consider data uncertainty
to alleviate the problem of label noise or data outliers. D-Net [52] maps each
person image as a Gaussian distribution in the latent space with the variance
indicating the data uncertainty. PUCNN [43] extends the data uncertainty in
D-Net into the part-level feature. UNRN [55] incorporates the uncertainty into
a teacher-student framework to evaluate the reliability of the predicted pseudo
labels for unsupervised domain adaptive (UDA) person RelD. The uncertainty is
estimated as the inconsistency of these two models in terms of their predicted soft
multi-labels. UMTS [22] designs an uncertainty-aware knowledge distillation loss
to transfer the knowledge of the multi-shots model into the single-shot model.
Among these methods, the most relevant method to ours is D-Net [52]. Com-
pared to D-Net, our data uncertainty learning method is sampling-free, which
can explicitly suppress the ambiguous information contained in low-quality sam-
ples. We jointly learns the data uncertainty and the model uncertainty, which
can utilize the complementary information provided by them during training.
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3 Methodology

The reliability score is related to two factors: the quality of the sample and the
confidence of the model in its prediction, which are measured by data uncertainty
(Sec. 3.1) and model uncertainty (Sec. 3.2), respectively. They are incorporated
into a unified network (Sec. 3.3) for joint learning. Two settings (risk-controlled
and multi-query settings) are proposed to verify the effectiveness in Sec. 3.4.

3.1 Learning Data Uncertainty

Data uncertainty captures the “noise” inherent in the observation. It can reflect
the quality of the sample, which is an essential factor in the reliability assessment.

Prior method. Prior art D-Net [52] considers the data uncertainty by map-
ping a sample x as a Gaussian distribution in the latent space,

p(zlx) = N(z; 1, 0°T) (1)

where 1 and o2 are the mean and variance vectors. p is the feature vector and
o? refers to the data uncertainty of &. Then, they sample features from p(z|x)
by re-parameterization trick [27]: 2’ = p + eo,e ~ N(0,I). The sampled 2’
are utilized for vanilla cross-entropy loss L... To prevent the trivial solution of
variance decreasing to zero, a regularization term Ly, is added to constrain the
entropy of N'(u, a?I) to be larger than a constant. The final loss function is,

L="Lee+ sy (2)

where A is the hyper-parameter to balance L.. and Ly¢,. Although this method
can capture the data uncertainty, there are two limitations: (1) it is sampling-
based, i.e., the feature is sampled from the Gaussian distribution during training,
which makes the optimization more difficult because each iteration optimizes
only one point in the distribution, rather than entire distribution. (2) the ob-
jective does not explicitly distinguish samples with different data uncertainty. It
is unclear how data uncertainty affects feature learning. To mitigate these two
issues, we propose a sampling-free method to learn the data uncertainty and
explicitly adjust the attention to the samples according to their quality.

Our sampling-free data uncertainty learning method. We project a
sample x into a Gaussian distribution N (u,o%I) in the latent space. Then the
likelihood of x belonging to class 7 is formulated by,

_ w2

, 1
p(xly =) o oo %P (— 572

(270?)
where w; is the weight vector of i-th class in the classifier and d is the feature
dimension. Assuming each class has the equal prior probability, the posterior of
x belonging to the class i is,

exp(-lomlh) e (Gwlp)

ply =ilz) = Zj exp(*lmgiwzjlp) - Zj exp(%w]rﬂ) w

loa
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Where p and w, are lp-normalized. p(y|x) can be regarded as a Boltzmann
distribution. The magnitude of 2 controls the entropy of this distribution. The
larger the o2, the larger the entropy. Thus o? can be regarded as the data
uncertainty of sample . Assuming the class label of the sample x is ¢, the loss
function is formulated by,

, 1
La(p, o) = —logp(y = ilz) ~ — L(p) +log o (5)

exp (w] 1)
>, exp (w] )
tary materials for derivation details.

Discussion (difference to D-Net [52]). Compared to sampling-based
method D-Net [52], our method shows several superior qualities: (1) Eq. 5 does
not need to sample the representation from the Gaussian distribution. It con-
tains entire information of the representation distribution. (2) Low-quality sam-
ples with larger data uncertainty will contribute less to learning the latent space.
L(p) is weighted by 2, and thus it will drive the weight vector w in the clas-
sifier to be closer to high-quality samples with small o2. This can suppress the
ambiguous information contained in low-quality samples during feature learning,
which is verified in Sec. 4.4. (3) The 2 can not be too large or too small. If o2 is
too small (large), the first (last) term Z3£(p) (log o?) becomes too large. Unlike
the term Ly, in Eq. 2, we maintain the o2 in a unified formulation.

where L(u) = —log is the cross entropy loss. Please see supplemen-

3.2 Learning Model Uncertainty

Model uncertainty plays an important role in the reliability assessment as it re-
flects the confidence of the model in its prediction of a sample. Bayesian network
is often used to capture the model uncertainty [24]. Suppose we have a dataset
D = (X,Y), we define fg to be a neural network such that fo : X — Y and
0 corresponds to the weight of the network. To capture model uncertainty, we
assume a prior distribution on the weight, i.e., p(6). We need to obtain the pos-
terior p(@|D). Since p(0|D) is typically intractable, an approximate distribution
¢ (0) parameterized by 7 is defined. ¢, (0) is aimed to be as similar as possible
to p(0|D), which is measured by the Kullback-Leibler divergence. The optimal
parameters 7* is,

" = arg min KLgr (6)[|p(8[D)] = arg min KLgx () [p(6)] — Ey. (6)[log p(D]0)]
(6)

Please see supplementary materials for derivation details. Similar to [6], we as-
sume the prior distribution p(@) as the Bernoulli distribution and perform Monte
Carlo integration to the second term. Then the objective loss can be written
as L, = —7 Zthl[logp(Dwt)], where 6, is sampled from ¢.(0). In ¢-(0),
0;; = m;j * z;;, where z;; ~ Bernoulli(p). p is the hyper-parameters and 7 is the
set of parameters to be optimized. For a sample x, we denote the extracted fea-
ture is p, = fo, () when the weight of network is 6;. The model uncertainty is
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Fig. 2. Overview of the proposed method. An image is fed into the backbone (CNN)
to obtain the feature maps F'. F' is further input into the Bayesian module ¢ whose
parameter is 8; to obtain F';. Then F'; is input to two deterministic modules ¢,, and
o to predict the feature fi,, p, and the data uncertainty o2, respectively. The model
uncertainty is the variance of {1, }—;, and the data uncertainty is the mean of {o?}1_; .

defined by the variance of the features over the network parameter distribution,
1z
0% = = > (- ) 7)

t=1

where 1 = % Z?:l p, and squaring operations in Eq. 7 are element-wise.

3.3 Jointly Learning Data and Model Uncertainty

To avoid the additional overhead caused by separately learning the data uncer-
tainty and the model uncertainty, and at the same time leverage the comple-
mentary information provided by them for representation learning, we integrate
them into a unified network for joint learning. As shown in Fig. 2, given a sample
x, we first feed it into a CNN backbone to get the feature maps F € Rhxwxe,
where h, w, ¢ are height, weight and channel, respectively. F' is further fed into
a Bayesian module ¢ to obtain F; = ¢g, (F'), where 0; ~ g-(0) corresponds to
the parameters of ¢. Then we input F; into two deterministic modules ¢, and
¢, to obtain the embedding f1, = ¢, (F;) and data uncertainty o7 = . (Fy),
respectively. Here, Fy, fi,, 02 have the same shape as F.. We further regularize
i, by quality-aware pooling: pu, = GAP(f1, © 0?) € R¢, where © represents the
element-wise division and GAP refers to the global average pooling. Thus, for
the sample x, we get its feature distribution N (p,,o?I), where o7 is the mean
of o? across all elements. During training, the loss function is,

Liotal = La(pty, Ut2) + Lori(py) (8)

where L is defined in Eq. 5 and Ly,i(p,) is the triplet loss [16] on .

In inference, for a sample @, we can sample T times from ¢, (6) and obtain
{3y, {m, 2, and {o?}]_,. The data uncertainty is formulated by o2 =
T EZ;I 02. Then o2, is estimated as the variance of {f1,}1_; according to Eq. 7
and the model uncertainty o2, is defined as the mean of o2, across all elements.
The final representation is calculated by p = % 23:1 ey
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Note that o? is the data uncertainty of & under the parameter 6;. In practice,
we train the network to predict s;, and o? := log(1 + exp(s;)). This is because
that it is more numerically stable than directly predicting the o2, as it ensures
that each element of o2 is greater than zero. ¢, ¢ and @, are all light weighted
modules and their architectures are detailed in supplementary materials.

3.4 Reliability Assessment

Based on the risk-controlled settings and the multi-query settings, we introduce
how to leverage the learned data and model uncertainty for reliability assessment.

Risk-controlled settings. When facing complex application scenarios, to
control the cost of errors, we would expect the model to reject input images
(probes) if it can not deal with them. We show the proposed uncertainty mech-
anism can be naturally utilized as such a “risk indicator”. Given a probe x, we
can obtain its data uncertainty 03 and model uncertainty o2,. The probe will
be assessed as safety (the prediction is reliable) only if 0—12 > 4 and é > Y,

where v4 and 7, are two thresholds that can be set based on the risk tolerance.

Multi-query settings. In real scenarios, how to utilize multiple query im-
ages from the same identity to search this person is an essential issue as an inter-
ested pedestrian is usually captured by several cameras. Our method is naturally
suitable for such settings because it can suppress the negative impact of ambigu-
ous queries according to the reliability score. Considering X = {x1,...,x,} are
query images from the same identity and y is an image in the gallery set. The
key issue is how to measure the similarity between X and y. Let 0371- (Ufw.) be
the data (model) uncertainty of x;. To combine the data uncertainty and model
uncertainty without being affected by their numerical scale, we project the data
(model) uncertainty into the interval [Tinin, Tmax]- Specifically, aii is projected

U(Zi.i_gtzl,min

to di = BiTmin + (1 — Bi)Tmax, Where 3; = —*—23"— and aimax (ag,min) is the

d,max _ “d,min
maximum (minimum) value in {o;}7- . The model uncertainty o7, ; is mapped
to m; in the similar way. The reliability score of x; is w; = 2:17%(1 The
similarity between X and y is calculated by s = >, w;s;, where s; is the simi-
larity between x; and y. The similarity s considers the reliability of each element
in X. If an element has larger reliability score, it plays a more important role.

4 Experiments

4.1 Datasets and Evaluation Metrics

The datasets we use include Market-1501 [56], MSMT17 [49], CUHKO03 [31,
59], Occluded-Duke [36], Occluded-REID [63] and Partial-REID [57]. Market-
1501 has 12,936 training, 3,368 query and 19,732 gallery images. CUHKO03
contains 13,164 images of 1,467 identities. We adopt the new testing protocol
proposed in [59]. MSMT17 is the largest image dataset for person RelD. Tt
contains 126,441 images of 4,101 identities. Occluded-Duke is reconstructed



8 7. Dou et al.

from DukeMTMC-reID [38] by selecting occluded images as query set. It has
15,618 training images, 2,210 query and 17,661 gallery images. Occluded-REID
contains 2,000 images belonging to 200 identities. FEach identity has five occluded
person images and five-full-body images. Partial-REID contains 600 images
from 60 person, with five partial images and five full-body images per person.

Evaluation metrics. We use the Cumulative Matching Characteristic (CMC)
curve and mean average precision (mAP) as the evaluation metric.

4.2 Implementation Details

Input images are resized to 256 x 128. During training, images are augmented by
random cropping, random horizontal flipping, and random erasing [60]. Follow-
ing [45], we adopt ResNet50 [11] pre-trained on ImageNet as the backbone. For a
fair comparison with methods employing more complex backbone networks, fol-
lowing ISP [62], we also employ HRNet-W32 [42] as our backbone. There are 64
images from 16 identities in a mini-batch. The initial learning rate is 3.5 x 1074,
For MSMT17 [49] (other datasets), we train our model 160 (120) epochs, and the
learning rate is decreased to its 0.1 and 0.01 at the 70" (40'") and 110*" (70th)
epochs, respectively. Each epoch has 200 iterations. The optimizer is Adam [26].
The p of Bernoulli distribution in the Bayesian module ¢ is empirically set as 0.7.
The Tin and Tmax in the multi-query settings are set as 0.5 and 1.0, respectively.

During testing, we first obtain the parameters {8;}Z_; of the Bayesian module
¢ by sampling T times from ¢, (). For each 8¢, we use it to handle all samples.
This ensures that the features of different samples are extracted by the same
network, which makes it possible to employ our method with a small T. As
the Bayesian module ¢ is at the back of the entire network, we only need to
repeatedly input it into ¢, ¢, and ¢, for 1" times, rather than entire network,
which saves a lot of expenditure (related results are shown in Table 5).

4.3 Experiments on the Reliability Assessment

Risk-controlled settings. Here, we design experiments to verify whether the
proposed uncertainty can serves as the “risk indicator” as described in Sec. 3.4.
Specifically, we allow the model to filter out some queries it is diffident to main-
tain higher performance. Here, we consider four criteria for filtering, i.e., (1)
UNIQUE [53]: unified no-reference image quality and uncertainty evaluator; (2)
BIQI [37]: blind image quality indices; (3) RE: the reciprocal of the entropy
of the predicted category distribution; (4) Ours: the reciprocal of the proposed
uncertainty as described in Sec. 3.4. (M: model uncertainty alone; D: data uncer-
tainty alone; M& D: combing model uncertainty and data uncertainty). For each
criterion, we first calculate its maximum and minimum on all queries, denoted
as Ymax and ymin. Then we setting the threshold as v = aYmax + (1 — @)Ymin-
For M&D, a query will be kept only if aig > Yd,o and % > Ym,a, Where 03 and
o2, are the data uncertainty and the model uncertainty, and Yd,o and Y, are
their thresholds at parameter a. We report the mAP score against the « under
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Fig. 3. Comparison of the risk-controlled settings. Filtering out a proportion of query
images according to the thresholds of different criteria. D: data uncertainty; M: model
uncertainty; M&D: model uncertainty and data uncertainty; BIQI [37]: blind image
quality indices. RE: the reciprocal of the entropy of the predicted category distribution.
UNIQUE [53]: unified no-reference image quality and uncertainty evaluator.
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Fig. 4. Visualization of different quality-degrading transformations.

different settings. Fig. 3(a-b) shows the results on MSMT17 and Market-1501.
In Fig. 3(c-d), we add Gaussian noise to the images in the query set with a
probability of 0.5. From the results, we can make several observations. First, for
our methods (M, D, and M&D), as « increasing, the mAP score of the remained
queries increases. This shows that the proposed uncertainty mechanism help fil-
ter out queries whose prediction is unreliable (the model can not deal with) while
retaining queries the model is capable of. Second, under different settings, model
uncertainty or data uncertainty alone already outperforms UNIQUE, BIQI and
RE. When they are combined, the mAP score of retained queries is higher. This
shows the proposed uncertainty mechanism is a better indicator of the reliability
of the prediction, and thus helps for making risk-controlled decisions.
Multi-query settings. We find that there are few images with the same
personal identity and same camera identity in the query set of existing datasets.
Thus, we reconstruct the test sets of Market-1501, Occluded-Duke and MSMT17
to evaluate the proposed reliability assessment under multi-query settings. Specif-
ically, for each dataset, we first collect the images belonging to the same personal
identity and same camera identity from the query set and gallery set. Then, we
randomly select half of these images to be allocated to the reorganized query
set and the other half to the reorganized gallery set. Simultaneously, to simulate
the complex scenes in reality, we transform images in the reorganized query set
with a certain probability. The transformation includes: (1) add Gaussian noise
to mimic camera quality differences; (2) crop the image to simulate pedestrians
are partially out of the camera’s field of view; (3) add motion blur to mimic fast-
moving pedestrians; (4) add fog to imitate complex weather. Please refer to the
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Table 1. Results of the multi-query settings on Market-1501 [56] and MSMT17 [49] and
Occluded-Duke [36]. To simulate the complex scenes, we transform the query images
via different quality-degrading transformations. MT17—Market: the model is trained
on MSMT17 and directly tested on Market-1501. “w/ R” (“w/o R”) means we use
(don’t use) the reliability score to adjust the weights for different queries.

Market-1501| MSMT17 |Occlu-Duke MT17— Market
R1 mAP | R1 mAP| Rl mAP| Rl mAP
D-Net[52] |54.5 52.6 [39.8 26.5|43.8 35.9 |25.0 12.9
Gaussian Noise|Ours (w/o R)|55.0 53.1 [49.9 34.5|51.3 43.7 |32.2 183
Ours (w/ R)|76.7 71.4 [62.9 45.4|61.5 53.8 (36.8 20.6
D-Net[52] |36.5 33.6 |52.6 33.7[23.8 20.3 |22.5 12.7
Random Crop |Ours (w/o R)|[37.4 36.0 |58.4 38.6(27.0 23.4 |28.6 164
Ours (w/ R)[46.3 44.4 [63.1 42.8|35.1 31.3 (32.7 18.8
D-Net[52] [66.9 59.3 [55.9 38.0(60.0 50.2 |25.5 14.2
Motion Blur |Ours (w/o R)|[69.7 63.4 |66.7 47.162.0 53.3 |35.5 20.8
Ours (w/ R)|77.4 71.4 |75.3 54.9|66.4 58.5 (46.3 26.3
D-Net[52] |62.1 56.6 |[50.9 33.7|50.3 42.1 |29.0 15.7
Adding fog |Ours (w/0 R)|65.1 60.3 |58.3 40.2|55.9 475 (374  21.9
Ours (w/ R)|77.1 71.9 |72.0 52.0|64.1 56.6 [47.0 26.9

Complex scenes Method

Table 2. Results of multi-query settings on Occluded-REID [63], Occluded-Duke [36]
and Partial-REID [57]. The query images are not transformed to degrade the quality.

Method Occluded-Duke|Occluded-REID |Partial-REID
R1 mAP R1 mAP R1  mAP
D-Net[52] 75.9 67.0 82.0 72.3 80.0 7T4.4
Ours (w/0 R)|76.6 68.3 80.0 72.2 85.0 77.1
Ours (w/ R)|78.0 70.5 [83.0 73.5 [88.3 80.0

supplementary materials for the transformation details. Fig. 4 shows some ex-
amples of these transformations. In inference, the images belonging to the same
personal identity and same camera identity in the query set are regarded as a
set of templates that need to be associated. We report the performance of our
method against the D-Net [52] in Table. 1. “w/ R” (“w/0o R”) means we use
(don’t use) the reliability score to adjust the weights for different queries. From
the results, we can make several observations. First, for different complex scenes
and different datasets, our method (“w/o R”) already outperforms D-Net [52].
This shows that our method learns better embedding space, in which the fea-
tures are more discriminative. When we additionally use the reliability score to
adjust the weights for different queries, the performance is further improved.
This shows that the proposed reliability score is credible, which can help mine
more valuable queries and suppress distractions from low-quality ones.
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liability assessment. The model is trained
with the training set of the Market-1501.
The learned model uncertainty is propor-
tional to the degree of deviation between

adjust the weights for different queries. test set domain and training set domain.

We also evaluate our method on Occluded-REID [63], Occluded-Duke [36]
and Partial-REID [57]. As query images in these three datasets are occluded or
partial, we directly test on them without any quality degradation transformation.
Results are shown in Table 2. We can draw the same conclusions as in Table 1.

4.4 Analysis of the Reliability Assessment.

Is the reliability score reasonable? Here, we analyze the reasonableness of
the reliability score based on the multi-query settings. For each identity in the
test set of Market-1501, we randomly select 10 images to form multiple queries,
in which 5 images are downgraded in quality by adding motion blur. Fig. 5 (a)
shows the distributions of reliability scores for normal images and motion-blurred
images. We can see that, on average, the reliability score of normal images is
greater than that of motion-blurred images, showing the reliability score is cred-
ible. The retrieval example in Fig. 5 (b) shows that when we adjust the weights
of different queries according to the reliability scores, the ambiguous information
from the low-quality query is suppressed, resulting in a better performance.
The role of model uncertainty in reliability assessment. We design
experiments to verify whether the proposed model uncertainty can describe the
confidence of the model in its prediction of the sample. We use the training set
of Market-1501 to train the model. Then we estimate the model uncertainty of
samples from the training set of Market-1501, the gallery set of Market-1501, the
gallery set of CUHKO03 and the test set of Car197 [28], respectively. Fig. 6 shows
the results. On average, with the increase of the domain deviation, the model
uncertainty gradually grows. This shows that the estimated model uncertainty
is related to the model’s prediction confidence. For out-of-distribution inputs,
the model is diffident about the predictions, and the model uncertainty is large.
The role of data uncertainty in reliability assessment. We design
experiments to verify whether the estimated data uncertainty can capture the
“noise” inherent in the data. We first regard samples in the gallery set of Market-
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Fig. 8. The role of data uncertainty in the

training process. It can be seen that sam-
ples with lower quality (larger noise) cause
less model change in the training process.

ability assessment. It can be seen that sam-
ples with lower quality (larger noise) have
larger data uncertainty.

1501 [56] as clean data, and then add noise to pollute them to generate the noisy
(low-quality) ones. Specifically, for an image tensor, i.e., x, we generate a noise
tensor €, where € ~ N(0,I). Then we pollute the origin data by & + = + 7e,
where 1 control the strength of the pollution. We gradually vary the size of 1 to
see how data uncertainty changes. The Gaussian kernel density estimation [39]
of the estimated data uncertainty are shown in Fig. 7. When 7 increases, the
data uncertainty of noisy samples grows correspondingly. This shows that the
proposed data uncertainty can capture the quality of the sample.

The role of data uncertainty in the training process. We regard the
samples in the training set of Market-1501 as clean samples and then pollute
them to generate the noisy ones. We investigate how the clean and noisy samples
affect model learning. Specifically, for each sample, we use it to individually train
the model for 10 iterations, and count the model change. The model change is
defined as the mean of the absolute difference of the model parameters before
and after training. This can reflect the impact of the sample on the learning
process. As shown in Fig. 8, when 7 increases, the model change caused by noisy
samples reduces, showing the proposed sampling-free data uncertainty learning
method can suppress the contribution of low-quality samples during training.

4.5 Comparison with State-of-the Art Methods

We also compare our method with state-of-the-art methods under the single-
query settings. As shown in Table 3, the compared methods are divided into two
categories. One category employs ResNet50 [11] or slightly modifies ResNet50
without changing the main structure of the network. The other category em-
ploys more powerful backbones than ResNet50, such as HRNet-W32 [42] and
Transformer [46]. For fair comparisons, we adopt ResNet50 and HRNet-W32 as
our backbone, respectively. From the results, we can make several observations.
(1) Whether using ResNet50 or HRNet-W32 as the backbone, our method con-
sistently achieves comparable or superior performance on these datasets. Specif-
ically, when HRNet-W32 is used as the backbone, our method outperforms the
previous state-of-the-art methods by +4.5% and +4.0% in terms of mAP scores
on MSMT17 and CUHKO03-NP (detected), respectively. (2) Our method and
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Table 3. Comparison with state-of-the-art methods under the single-query settings.

CUHKO03-NP

Methods Backbone Market | MSMT17 labeled | detected

R1 mAP| R1 mAP| R1 mAP| R1 mAP
PCB+RPP [45]| ResNet50 [93.8 81.6 | — - |63.7 57.5| — -
MGN [48] ResNet50 (95.7 86.9| — — |68.0 67.4|66.8 66.0
CAMA [50] ResNet50 [94.7 84.5| — — |70.1 66.5|66.6 64.2
MHN-6 [2] ResNet50 [95.1 85.0| — — |77.2 72.4|71.7 654
FPR [14] ResNet50 |95.4 86.6 | — - |76.1 72.3| — —
HOReID [47] ResNet50 [94.2 84.9 | — - — - — -
DGNet [58] ResNet50 [94.8 86.0 [77.2 52.3 | — - - -

UAL(Ours) ResNet50 |95.2 87.0(|80.0 56.5(78.2 75.6|76.1 72.0

RGA-SC [54] R50-RGA |96.1 88.480.3 57.5(81.1 77.4|79.6 74.5
ABD-Net [3] ABD-Net |95.6 88.3(82.3 60.8| —
BAT-net [5] BAT-net [95.1 87.4|79.5 56.8 |78.6 76.1|76.2 73.2

OSNet [61] OSNet 94.8 84.9|78.7 52.9| - - |72.3 67.8
ISP [62] HRNet 95.3 88.6| — — |76.5 74.1(75.2 T71.4
PAT [32] Transformer|95.4 88.0| — - - - - -

UAL(Ours) HRNet 95.7 89.5(84.7 65.3|83.7 81.0(81.0 78.5

ISP [62] have the same backbone and our method is much more effective. Espe-
cially, on CUHKO03-NP (detected), our method outperforms ISP by +7.1% mAP
score. (3) Compared with semantic-based methods, e.g., FPR [14] and HOR-
eID [47], our method does not need any additional external cues. Compared
with methods that use more complex network structures, such as PAT [32] using
the transformer [46], our method still shows promising performance.

4.6 Ablation Study

In this part, we conduct ablation studies to show the effectiveness of each com-
ponent of the proposed method.

The effectiveness of data uncertainty and model uncertainty. Be-
sides based on the backbones ResNet50 and HRNet-W32 implemented by ours,
we also conduct the experiments based on the more in-data baseline in fast-reid,
i.e., BOT [34], with different backbones including ResNet50 (R50), a variant
with IBN layers (R50-ibn) and ResNeSt (S50). Experiments are conducted on
MSMT17 [49] dataset. As shown in Table 4, both learning data uncertainty and
learning model uncertainty improve the performance, and learning data uncer-
tainty provides a larger improvement. The results show these two uncertainties
can provide complementary information for learning discriminative latent space.

Impact of hyper-parameter 7. During testing, for a sample x, we need
to sample T times from ¢, (8) to obtain the 1 and o2, (as described in Sec. 3.3).
Here, we show how T affects the performance on CUHKO03-NP [31] and Market-
1501 [56]. The results are shown in Table 5. We also report the time cost of the
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Table 4. Effectiveness of data uncertainty and model uncertainty. Experiments are con-
ducted on MSMT17 [49]. T indicates the experiments are conducted on the backbones
in publicly available repository fast-reid: https://github.com/JDAI-CV /fast-reid

Uncertainty| ResNet50 | TBOT(R50) [[BOT(R50-ibn)[ TBOT(S50) [HRNet-W32
Data Model|Rank-1 mAP|Rank-1 mAP|Rank-1 mAP |Rank-1 mAP|Rank-1 mAP
x | 76,5 52.0] 73.9 499 79.1 554 | 81.0 59.4| 81.6 59.6
x | 777 53.1| 771 51.4| 804  56.0 | 81.9 59.5| 834 622
v | 767 523] 76.6 51.2| 80.8 569 | 82.6 60.8| 81.9 60.0
v | 80.0 56.5| 78.7 53.6| 82.4 59.1 | 84.1 62.1| 84.7 65.3

N X N X

Table 5. Impact of the hyper-parameter 7. We use the AMD EPYC 7742 CPU and
GeForce RTX 3090 GPU. The backbone is ResNet50.

CUHKO03 (Labeled)| Market-1501

T Time R1 mAP [Time R1 mAP
HOReID [47]] — - — [236s 942 849
PGFA [35] - - - 193 s 91.2 76.8

Ours (T'=5) |17s 784 75,5 |66s 95.0 86.9
Ours (T=10)| 24 s 78.6 75.6 |87 s 95.2 87.0
Ours (T'=20)|39s 783 75.6 (138 s 95.1 87.0

entire testing process, from extracting features to calculating the Rank-1 scores.
As we can see, our method can work well with a small T. Further, our method
outperforms HOReID [47] and PGFA [35] by a large margin while the time cost
is much smaller, which shows the effectiveness and efficiency of our method.

5 Conclusions

In this paper, we propose an Uncertainty-Aware Learning (UAL) method for the
RelD task to provide reliability-aware predictions, which is achieved by consid-
ering two types of uncertainty: data uncertainty and model uncertainty. These
two types of uncertainty are integrated into a unified network for joint learning
without any external clues. Comprehensive experiments under the risk-controlled
settings and the multi-query settings verify that the proposed reliability assess-
ment is effective. Our method also shows superior performance under the single
query settings. Meanwhile, we also provide quantitative analyses of the learned
data uncertainty and model uncertainty. We expect that our method will provide
new insights and attract more interest in the reliability issue in person RelD.
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