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Abstract. Human relighting is a highly desirable yet challenging task.
Existing works either require expensive one-light-at-a-time (OLAT) cap-
tured data using light stage or cannot freely change the viewpoints of
the rendered body. In this work, we propose a principled framework,
Relighting4D, that enables free-viewpoints relighting from only human
videos under unknown illuminations. Our key insight is that the space-
time varying geometry and reflectance of the human body can be decom-
posed as a set of neural fields of normal, occlusion, diffuse, and specular
maps. These neural fields are further integrated into reflectance-aware
physically based rendering, where each vertex in the neural field absorbs
and reflects the light from the environment. The whole framework can
be learned from videos in a self-supervised manner, with physically in-
formed priors designed for regularization. Extensive experiments on both
real and synthetic datasets demonstrate that our framework is capable of
relighting dynamic human actors with free-viewpoints. Codes are avail-
able at https://github.com/FrozenBurning/Relighting4D.
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1 Introduction

The emergence of metaverse has fueled the demands for photorealistic rendering
of human characters, which benefits applications like digital 3D human and
virtual reality. Among all factors, lighting is the most crucial one for rendering
quality. Recently, remarkable success in relighting humans has been achieved [4,
11,17,25,26,31,45,51,60,62]. However, the impressive quality of these methods
heavily relies on the data captured by Light Stage [8]. The complicated hardware
setup makes relighting systems expensive and only applicable in the constrained
environment. On the other hand, a number of recent works propose to relight
human images from a perspective of inverse rendering [13,15,21,39,47,64]. They
succeed in relighting 2D images, yet fail to relight with novel views. A lack of
underlying 3D representations impedes their flexibility of application.
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Relighting with Free ViewpointsVideos of  Dynamic Humans

Fig. 1. Relighting of dynamic humans with free viewpoints. Relighting4D takes
only videos as input, decomposing them into geometry and reflectance, which enables
relighting of dynamic humans with free viewpoints by a physically based renderer.

In this paper, we focus on the problem of relighting dynamic humans from
only videos, as illustrated in Figure 1. The setting significantly reduces the cost
of a flexible relighting system and broadens its scope of application. It has been
proved [5,6,19,24,28,30,32,34,35,41,42,54,58,63] that a scene can be represented
as neural fields to enable novel view synthesis and relighting. Among above
methods, some [5, 6, 24, 42, 59, 63] deal with relighting static objects but fail to
model dynamic scenes. In sum, none of those methods successfully incorporate
illuminations and scene dynamics simultaneously.

Different from existing methods on novel view synthesis of the human body
that are either non-relightable or require expensive OLAT captured images, we
seek to estimate plausible geometry and reflectance from posed human videos.

To this end, we propose Relighting4D , to relight dynamic humans with
free viewpoints from videos given the 4D coordinates (x, y, z, t) and the desired
illumination. Specifically, our method first aggregates observations from posed
human videos through space and time by a neural field conditioned on a de-
formable human model. Then, we decompose the neural field into geometry and
reflectance counterparts, namely normal, occlusion, diffuse, and specular maps,
which drive a physically based renderer to perform relighting.

We evaluate our approach on both monocular and multi-view videos. Over-
all, Relighting4D outperforms other methods on perceptual quality and physical
correctness. It relights dynamic humans in high fidelity, and generalizes to novel
views. Furthermore, we demonstrate our capability of relighting under novel il-
luminations, especially the challenging OLAT setting, by creating a synthetic
dataset called BlenderHuman for quantitative evaluations.

We summarize our contributions as follows: 1)We present a principled frame-
work, Relighting4D, which is the first to relight dynamic humans with free view-
points using only videos. 2) We propose to disentangle reflectance and geometry
from input videos under unknown illuminations by leveraging multiple phys-



Relighting4D: Neural Relightable Human from Videos 3

ically informed priors in a physically based rendering pipeline. 3) Extensive
experiments on both synthetic and real datasets demonstrate the feasibility and
significant improvements of our approach over prior arts.

2 Related Work

Neural scene representation [14, 18, 20, 28, 34, 35, 36, 40, 41, 43, 46, 49, 56] has
witnessed significant progress in representing a 3D scene with deep neural net-
works. NeRF [28] proposes to model the scene as a 5D radiance field. To model
dynamic humans, Neural Body [34] proposes to attach a set of latent codes to a
deformable human body model (i.e., SMPL [23]). However, these methods im-
plicitly incorporate all color information in the radiance field, which impedes
their application towards relighting a dynamic human.
Inverse rendering aims to disentangle the appearance from observed images
into geometry, material, and lighting condition. Previous works [3, 16, 21, 22,
27, 37, 53, 57] seek to address it by conditioning on physically based priors or
synthetic data. However, they fail in novel view synthesis due to the lack of
underlying 3D representations. Recently, NeRF based methods [5, 6, 42, 59, 63]
propose to learn 3D reflectance fields or light transport fields from input images
to enable free-viewpoint relighting. However, none of them is applicable to relight
dynamic humans with space-time varying features.
Relighting of human face, avatar and body has wide-range applications [31,39,
44,51,64]. As for full-body human relighting, convolutional methods [13,47] fail to
relight from novel viewpoints as there is no underlying 3D representation. Other
methods [11,62] heavily relies on one-light-at-a-time [8] (OLAT) images, which is
neither cheap to capture nor publicly available. Relighting4D differentiates itself
from aforementioned methods in that we achieve free-viewpoint relighting of
dynamic full-body humans without the requirement on expensive capture setup.

3 Our Approach

Given a human video, Relighting4D can synthesize videos with free viewpoints
under novel illuminations. We denote the input video as I = {I1, I2, ..., It}, where
t is the time step. In general, our model learns a physically based renderer from
I. During inference, it takes a 3D position x ∈ R3, a time step t, a camera
view ωo ∈ R3, a desired light probes Li ∈ R16×32×3 as inputs, and outputs the
corresponding outgoing radiance Lo ∈ R3.
Framework overview. We first give an overview of Relighting4D (Figure 2).
It first derives latent features from the video, which is achieved by estimating a
neural field. Based on the latent features, Relighting4D decomposes the human
performer into geometry and reflectance information which drive our physically
based renderer. The space-time varying geometry and reflectance of the full hu-
man body are parameterized by four multilayer perceptrons. Note that, Relight-
ing4D enables relighting of dynamic humans with free viewpoints using only
videos, without training on any captured data (e.g., OLAT or flash images).
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Fig. 2. Overview of Relighting4D . Given the input video frame at time step t,
Relighting4D represents the human as a neural field ψ on latent vectors Z anchored to
a deformable human model. The value of the neural field ψt(x) at any 3D point x and
time t is taken as latent feature and fed into multilayer perceptrons to obtain geometry
and reflectance, which are normal, occlusion, diffuse, and specular maps respectively.
Finally, a physically based renderer is raised to render the human subject to the input
light probe under novel illumination.

3.1 Neural Field as Human Representation

Extracting 4D representations of dynamic human performers is a non-trivial
task. Compared to the static scenes where NeRF [28] fits well, dynamic scenes
in videos have factors like motion, occlusion, non-rigid deformation, and illumi-
nation that vary through space and time which hampers an accurate estimation.

Inspired by the local implicit representations [10, 34], we introduce a 4D
neural field ψ conditioned on a parametric human model (SMPL [23] or SMPL-
X [33]) to represent a dynamic human performer, which maps the position x and
time step t to the latent feature ψt(x). Specifically, at frame It, we obtain the
parameters of human model (i.e. locations of vertices) using this tool [12]. Then,
a set of latent vectors Z ∈ RN×16 is assigned to the vertices of human model,
where N = 6890 for SMPL [23] and N = 10475 for SMPL-X [33]. Then we
query the neural field by the 4D coordinates (x, t), extracting the latent feature
ψt(x) ∈ R256 from Z via trilinear interpolation of its nearby vertices.

NeuralBody [34] employs a similar strategy on human representations. But
it’s not relightable in the way that it fails to disentangle geometry and reflectance
from the latent codes. In contrast, Relighting4D learns a distinct neural field
that can be decomposed into geometry (Section 3.3) and reflectance (Section
3.4), which serves the physically based renderer (Section 3.2) for relighting.

3.2 Physically Based Rendering

While differentiable volume rendering has been used in recent works [28,34,56],
these methods focus on novel view synthesis with radiance fields. In general, to
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enable relighting with neural representations, instead of modeling the human
body as a field of vertices that emit light, we represent the human as a field of
vertices that reflect the light from the environment. Specifically, we leverage a
physically based renderer, which models a reflectance-aware rendering process.
Mathematically, our rendering pipeline is driven by the following equation:

Lo(x,ωo) =

∫
Ω

R(x,ωi,ωo,n(x))Li(x,ωi)(ωi · n(x))dωi, (1)

where Lo(x,ωo) ∈ R3 is the outgoing radiance at point x viewed from ωo.
Li(x,ωi) ∈ R3 is the incident radiance arriving at x from direction ωi. Ω is an
unit sphere that models all possible light directions, and n(x) ∈ R3 is the nor-
mal. R(x,ωi,ωo,n(x))

† is the Bidirectional Reflectance Distribution Function
(BRDF) which defines how the incident light is reflected at the surface, and dωi

is the solid angle of incident light at ωi. We use a discrete set of light samples
to approximate Eqn. 1 in the following way:

Lo(x,ωo) ≈
∑
ωi

R(x,ωi,ωo,n(x))Li(x,ωi)(ωi · n(x))∆ωi, (2)

where ∆ωi is sampled from a light probe that depicts the distribution of light
sources in space. We represent the environment light Li(ωi) as a light probe im-
age in latitude-longitude format with a resolution of 16×32×3, which facilitates
relighting applications by replacing the estimated light probe with an external
one. Figure 3 illustrates our physically based renderer at surface x.

Note that previous work [28,34] implicitly encodes R(·) in the radiance fields
without modeling the reflectance. To enable flexible relighting applications, we
leverage the microfacet model [50] to approximate a differentiable reflectance
function parameterized by the surface normal n(x), the diffuse map A(x) and
the specular roughness γ(x). Due to the limited space, we introduce the imple-
mentation of R(·) in the supplementary.

To encode harsh shadow and occlusion, we mask the incident light Li(x,ωi)
by the occlusion map V (x,ωi) at x:

Li(x,ωi) = V (x,ωi)Li(ωi). (3)

Physical characteristics disentanglement. Driven by Eqn. 2, the renderer
requires physical characteristics, i.e., geometry, reflectance, and light, of a given
human performer, which are disentangled and estimated by Relighting4D from
input videos. The details are introduced in the following two sections.

3.3 Volumetric Geometry

In terms of geometry, our renderer requires a normal map n(x) ∈ R3 and an
occlusion map V (x,ωi) ∈ R as inputs. Moreover, we render on the surface to
keep the computing process tractable, which requires an estimation of surface
position. It can be easily obtained by querying a density field.

†For simplicity, we also use R(·) to denote BRDF when necessary.
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Fig. 3. Illustration of our physically based
rendering pipeline. The environment light is
represented as spherical coordinates in latitude-
longtitude (Lat.-Long.) format. Given the sur-
face location x, the incoming light from ωi with
the area of ∆ωi is scattered by the microfacet
that is parameterized by BRDF R(·), normal
n(x), and cos θ = ωi ·n(x). Then the outgoing
radiance Lo(x,ωo) along the ray r = o − kωo

is calculated according to Eqn. 2, which equals
to the corresponding pixel value.
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Fig. 4. The process of baking ge-
ometry. Note that we perform two
different types of ray marching during
training. The one is marching along
the camera ray r = o − kωo to the
expected depth of termination k to
get the geometry surface x, while the
other is marching from the surface x
to the light coming from direction ωi

to calculate the accumulated trans-
mittance (occlusion map).

We first reconstruct the geometry of the given scene using an auxiliary density
field fσ : (x, ψt(x)) −→ σ(x). It’s derived from the latent feature ψt(x) using an
MLP. As shown in Figure 4, Relighting4D leverages the auxiliary density field
by baking it into surface maps, normal maps and occlusion maps.

Surface map is the 3D coordinates of points at the expected termination
of depth given the camera view ωo. We march the camera ray r from its origin
o along the direction −ωo to the expected termination of depth k to get the
surface x = o− kωo.

Normal map is computed on the surface as the normalized negative gradient
of the density field: ñ(x) = −∇σ(x)/||∇σ(x)||.

Occlusion map denotes the transmittance of surface points from a specific
direction. We compute the occlusion map by marching the ray r(s,x,ωi) =
x + sωi from the surface of the human body to the corresponding light at ωi:
Ṽ (x,ωi) = 1− exp(−

∫ sf
sn
σ(r(s,x,ωi))ds), where sn and sf is the near and far

bounds along the direction of the light. We set sn = 0, sf = 0.5 for all scenes.
In other words, occlusion map considers the visibility at the given surface x by
querying the density fields from sn to sf along the incident light direction ωi.

Unfortunately, directly using the baked geometry causes numerous queries of
fσ(e.g., for occlusion map, we should trace 16 × 32 = 512 rays from all possi-
ble lighting directions for one 3D point), which is not tractable during training
and rendering. Thus, we use an MLP fn : (x, ψt(x)) −→ n(x) to reparame-
terize the surface and latent features to the normal map, and another MLP
fV : (x, ωi, ψt(x)) −→ V (x) to map the surface, light direction and features
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to the occlusion map V . The weights of fV , fn are trained with the geometry
reconstruction loss, intending to recover the baked geometry:

Lgeo = ||V (x)− Ṽ (x)||22 + ||n(x)− ñ(x)||22. (4)

Smoothness regularization. We regularize fV , fn by L1 penalty to keep the
smoothness of their outputs:

τV = |V (x)− V (x+ ϵ)|1 τn = |n(x)− n(x+ ϵ)|1, (5)

where we measure the local smoothness by adding 3D perturbation ϵ to x which
is sampled from a Gaussian distribution with zero mean and standard deviation
0.01. Several works [29, 63] have validated the use of similar smoothness losses
for the aim of shape reconstruction.
Temporal coherence regularization. It is crucial for a 4D representation to
incorporate temporal coherence. Otherwise, the rendered sequence will contain
jitter appearance. Moreover, an accurate geometry is also important for artifact-
free physically based rendering. Therefore, we add the following regularization
term to encourage a temporally smooth geometry:

Ltemp =
1

N

N∑
i=1

|σt(x̂i)− σt+1(x̂i)|1, (6)

where x̂i is the 3D position of i-th vertex of SMPL model. Eqn. 6 explicitly
constrains the temporal coherence of the geometry, and also implicitly regularize
the latent feature ψt(x) which benefits the following reflectance estimation.

3.4 Reflectance

In terms of reflectance, our physically based renderer requires the BRDF R(·)
and the light probe Li(ωi) as inputs. As presented in Section 3.2, our BRDF
estimation consists of a Lambertian RGB diffuse component A(x) ∈ R3 and
a specular component γ(x) ∈ R. We parameterize the diffuse map at x with
latent features ψt(x) as an MLP fA : (x, ψt(x)) −→ A(x), and parameterize the
specular map as another MLP fγ : (x, ψt(x)) −→ γ(x).
Local smoothness prior. The problem that decomposes BRDF from video
frames under unknown illumination is highly ill-posed. As the color information
is entangled, and there is no off-the-shelf supervision on the reflectance. Inspired
by work [3, 6, 37, 59, 63] on intrinsic decomposition which leverages piece-wise
smoothness prior on albedo, we regularize the optimization of fA by L1 penalty:

τA = |A(x)−A(x+ ϵ)|1, (7)

where ϵ is the same type of perturbation as Eqn. 5.
Global sparsity prior. However, given this under-constrained problem, the
local smoothness regularization in Eqn. 7 is not sufficient for a plausible estima-
tion of the diffuse map, as shown in Figure 7. Thus, we further leverage global
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minimum-entropy sparsity prior on diffuse map which has been previously ex-
plored [2, 3, 9, 38] on shadow removal. From a perspective of physically based
rendering, the diffuse map represents the base color, indicating that the palette
should be sparse enough. Intuitively, the diffuse map of clothes should contains a
small number of colors. Thus, we minimize the Shannon entropy of diffuse map,
denoted as HA, to impose this prior on our model. Since the diffuse map A(x)
is a continuous variable whose probability density function (PDF) is unknown,
a naive way to estimate its entropy is using histogram to get PDF. But, it’s
not differentiable. Instead, it’s always possible to use a soft and differentiable
generalization of Shannon entropy (i.e. quadratic entropy [55]). However, it’s
quadratically expensive to the number of sampled camera rays.

This motivates our novel approximation of minimizing HA in a both differen-
tiable and efficient way. The key insight is that the PDF of A(x), p(A(x)), can
be estimated by a Gaussian KDE (Kernel Density Estimator). Given a diffuse
map A(x), we leverage a KDE as its PDF approximation:

p̃(A(x)) =
1

n

n∑
i=1

KG(A(x)−Ai(x)), (8)

where KG is the standard normal density function, n is the number of sampled
rays during training, and Ai(x) is the value of diffuse map at the i-th camera
ray. Then the entropy of A(x) is computed as an expectation:

HA = E[− log(p̃(A(x)))]. (9)

In addition, as the input video is captured under unknown illuminations, we
randomly initialize the light probe Li(ωi) as a trainable parameter, optimizing
it during the training phase to estimate a plausible ambient light of the scene.
It can be replaced by a new HDR map for relighting after training.

3.5 Progressive End-to-End Learning

In the training phase, we randomly sample 1024 camera rays for each input
frame. Besides, we employ a progressive training strategy which allows the reso-
lution of video to gradually increase. In specific, before ray sampling, the input
video is scaled to the resolution of αH×αW where α ∈ (0, 1] is a monotonically
increasing function of the number of iterations.

Furthermore, we embed the surface position x and the light direction ωi using
the positional encoding [28, 48] before concatenating them with latent features
ψt(x). The maximum frequency of set to 210 and 24, respectively. We use four
fully-connected ReLU layers with 256 channels for each MLP.

Our full loss function is a summation:

L = λrgbLrgb + λgeoLgeo + λtempLtemp + λV τV + λnτn + λAτA + λHHA, (10)

where Lrgb is the reconstruction loss against the ground-truth pixel color value.
We train each model for 260k iterations with a Tesla V100 GPU. Details of
training hyperparameters are deferred to the supplementary.
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“Night”
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Fig. 5. Free-viewpoint relighting on the People-Snapshot dataset. Two vari-
ants of NeuralBody [34] (NB+A and NB+LE) fail to incorporate the lighting in a
physical way, thus are unable to reasonably relight the human actor. NB+A learns
the wrong mapping between the target light and the appearance. And NB+LE recon-
struct the input video well yet fails to generalize to novel lightings. NeRFactor [63] and
PhySG [59] seem to model physically correct illuminations but gives blurry results due
to the incapability of modeling dynamics. Relighting4D significantly outperforms com-
parison methods. We show more results in both ambient lighting and OLAT
setting in the supplementary videos.
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4 Experiments

Rendering settings. We render humans in both the ambient lighting and the
OLAT setting. For ambient lighting, we use publicly available† HDRi maps as
light probes. Furthermore, for the OLAT setting, we simulate point lights by
generating one-hot light probes given the incoming light directions.

Real datasets. We validate our method on the People-Snapshot [1] dataset
and ZJU-Mocap [34] dataset qualitatively. People-Snapshot [1] captures monoc-
ular videos with dynamic performers that keep rotating. And ZJU-Mocap [34]
captures dynamic humans with complex motions using a multi-camera system.

Synthetic dataset. To further demonstrate the effectiveness of Relighting4D,
we create a dataset, BlenderHuman, using the Blender engine [7] for quanti-
tative evaluation. Details will be deferred to the supplementary.

Comparison methods. We compare Relighting4D with several competitive
methods. NeRFactor [63] requires a pretrained NeRF as a geometry proxy
and learns a data-driven BRDF to perform relighting, but it fails to represent
dynamic scenes. PhySG [59] adopts a spherical Gaussians reflectance model
which cannot handle high-frequency lights, and its geometry representation can-
not model dynamic scenes. Moreover, to demonstrate the importance of physi-
cally based rendering, we implement two variants on top of NeuralBody (NB) [34]
which succeeds in novel view synthesis of dynamic humans but fails to incorpo-
rate lighting and reflectance. NB+Ambient Light (NB+A) uses a flattened
light probe as the latent code which contributes to the prediction of its color
model, while NB+Learnable Embedding (NB+LE) maps the light probe
into a latent code using an MLP with two layers.

Evaluation metrics. For quantitative analysis, we use Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure [52](SSIM), and Learned
Perceptual Image Patch Similarity [61](LPIPS) as metrics. In addition, we use
the error of degree(◦) to measure the normal map estimations.

4.1 Results on Real Datasets

Performance on relighting with novel views. Figure 5 shows qualitative
results on People-Snapshot dataset. All methods train a separate model for each
human performer and re-render the human given the input light probes. Two
variants of NeuralBody [34], NB+A and NB+LE, are good at reconstructing
appearance but fail to incorporate novel illuminations in a perceptually salient
way. They fail to learn the underlying physics of rendering. For example, NB+A
maps the input light probe to artifacts of texture while NB+LE even seems to
discard the features from lightings. NeRFactor [63] and PhySG [59] give blurry
results, which show that they cannot aggregate space-time varying geometry
and reflectance of dynamic humans, leading to degraded rendering results. In
contrast, our method generates photorealistic relit novel views.

†https://polyhaven.com/

https://polyhaven.com/
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Input

Fig. 6. Relighting of dynamic
humans with complex motions
on ZJU-Mocap dataset. Relight-
ing4D renders high-fidelity human actors
with time-varying poses under novel
illuminations. Please check the sup-
plementary videos for more results.

w/o sparsity prior 𝑯𝑯𝑨𝑨 w/ sparsity prior 𝑯𝑯𝑨𝑨

Fig. 7. Here we visualize how our model
benefits from incorporating minimum-
entropy sparsity prior by minimizing HA.
Without this prior, the estimation of dif-
fuse map would suffer from shadow resid-
uals as shown on the left side.

We also present our qualitative results in the challenging OLAT setting. Since
the point light comes from only one direction, these OLAT illuminations induce
hard cast shadows, effectively revealing rendering artifacts due to inaccurate
geometry and materials. Relighting4D synthesizes shadows cast by limbs and
clothes in a physically correct way. Please refer to the supplementary for details.

We demonstrate that our method is capable of relighting dynamic humans
with complex motions from multi-views videos on the ZJU-Mocap dataset [34].
Figure 6 shows our qualitative results on the ”Twirl” and ”Swing” scenes.

Decomposition of geometry and reflectance. We demonstrate that our
method is able to extract geometry and reflectance representations from the
input videos and disentangle them into surface normals, diffuse maps and occlu-
sion maps, which may facilitate downstream graphics tasks. The visualizations
on People-Snapshot videos are presented in Figure 10, and quantitative results
on the BlenderHuman dataset are shown in Table 1. Note that, we directly take
the albedo generated by NeRFactor [63] and PhySG [59] as their diffuse maps
for comparisons. However, NeRFactor [63] estimates the diffuse map of the dy-
namic human with incorrect base color and facial details, and fails to capture
the accurate geometry of dynamic humans. Though PhySG [59] captures the
correct base color of clothes, due to its incapability of handling dynamic scenes,
the facial details of diffuse map remains artifacts when the viewpoint changes.
With the latent representation of human body, Relighting4D can integrate geom-
etry information through space and time, successfully capturing the fine-grained
details of the normal map and the correct color of diffuse map.
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GT Ours
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NB+A NB+LE

PhySG

“Sunset”

Fig. 8. Visualization of the ”Sunset”
scene in the BlenderHuman dataset.
We customize a synthetic dataset, Blender-
Human, to provide ground truths of relit
videos for quantitative evaluations. Relight-
ing4D outperform other methods, produc-
ing promising results of relighting dynamic
human under novel illuminations.
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Fig. 9. The PSNR v.s. training iter-
ations on People-Snapshot dataset.
Progressive training helps the model re-
construct the scene faster and better.
When trained with a constant spatial res-
olution, the reconstruction error falls into
sub-optimal at the end (PSNR drops from
36.65 to 34.56).

Table 1. Results on the BlenderHuman dataset. The top two techniques for each
metric are highlighted in red and orange respectively. The reported numbers are the
arithmetic averages of 16 different scenes. We relight the human actor with 8 HDR
ambient light probes and 8 OLAT conditions. Relighting4D achieves the best overall
performance across all metrics.

Method
Relighting Normal Map Diffuse Map

PSNR ↑ SSIM ↑ LPIPS ↓ Degree◦ ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NB [34]+A 20.9348 0.8559 0.2368 - - - -
NB [34]+LE 22.7957 0.8721 0.2145 - - - -

NeRFactor [63] 22.8037 0.8830 0.2045 43.7012 27.0585 0.9202 0.1929
PhySG [59] 23.8810 0.8427 0.2959 50.5721 28.0852 0.9350 0.1810

Ours 26.1475 0.9118 0.1639 32.1803 28.9517 0.9279 0.1502

4.2 Results on Synthetic Dataset

We quantitatively evaluate comparison methods on the BlenderHuman dataset.
We show results in this section and defer the visualizations in the supplementary.

Table 1 shows the results on the BlenderHuman dataset. Overall, our model
achieves the best performance. The results indicate that Relighting4D better
handles the dynamics across video frames while feasibly modeling the light trans-
port to relight dynamic humans.

4.3 Ablation Studies

We conduct ablation studies on BlenderHuman dataset, as presented in Table 2.
Impact of the human representation. We train our model without ψt(x)
that is proposed in Section 3.1. In other words, the geometry and reflectance



Relighting4D: Neural Relightable Human from Videos 13

NeRFactor Ours

D
if

fu
se

 M
ap

N
or

m
al

 M
ap

PhySG

Fig. 10. Comparisons of geometry and reflectance decomposition. Relight-
ing4D is able to estimate fine-grained details of geometry and physically correct re-
flectance. We defer the visualization of the occlusion map in the supplementary.

MLPs take only the surface coordinates of the human body as inputs. The result
indicates that incorporating our latent feature ψt(x) is crucial for relighting
dynamic human videos. The incapability of modeling scene dynamics leads to
significant performance drops in terms of relighting quality and inverse rendering
quality, which explains why NeRFactor [63] fails so badly.

Effectiveness of the smoothness regularization is validated in Table 2. We
train our model without τV , τn, which leads to the decreased rendering quality.

Impact of the baked geometry. We train Relighting4D without the super-
vision of the baked geometry. The results indicate that the baked geometry
improves the relighting performance. It reveals that poor renderings are caused
by the inaccurate geometry as the error of normals drops by a large margin.

Effectiveness of the global sparsity prior on diffuse map is validated in Ta-
ble 2. Without minimizing the entropy of the diffuse map, the relighting quality
is perceptually decreased due to the degraded inverse rendering, which induces
shadows in the estimation of diffuse map, as shown in Figure 7.

Impact of progressive training. Without progressive spatial resolutions dur-
ing training, the relighting quality decreases as shown in the last row of Table 2.
We believe the progressive strategy helps the model quickly learn coarse geome-
try in the early training phase, which is even validated on real datasets (Figure
9). We plot the reconstruction error (PSNR) versus iterations on one training
scene in People-Snapshot dataset, discovering that progressive training helps
model reconstruct the given scene faster and better.
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Table 2. Ablation studies on the BlenderHuman dataset. We take the average
metrics on all 16 scenes. The top three techniques for each metric are highlighted in
red , orange, and yellow respectively.

Method
Relighting Normal Map Diffuse Map

PSNR ↑ SSIM ↑ LPIPS ↓ Degree◦ ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Full model 26.1475 0.9118 0.1639 32.1803 28.9517 0.9279 0.1502
w/o ψt(x) 21.1163 0.8407 0.2372 36.5699 25.6806 0.9008 0.1896
w/o τV , τn 25.3504 0.8800 0.2061 32.9243 28.3329 0.9224 0.1660

w/o Ṽ , ñ 22.4221 0.8559 0.2285 57.0452 27.6652 0.9165 0.1425
w/o HA 27.7545 0.9042 0.1717 30.6685 24.0195 0.8950 0.1767

w/o progressive 25.5562 0.9031 0.1742 30.1662 24.2455 0.8958 0.1760

5 Discussion and Conclusion

Limitations. We have demonstrated the capability of Relighting4D on relight-
ing dynamic humans with free viewpoints. Nevertheless, there are a few limita-
tions. First, for tractable training and rendering, we consider only the one-bounce
direct environment light, thus our method cannot relight furry appearances. Sec-
ond, as we leverage a fully physically based renderer, the rendering quality is tied
with the accuracy of geometry. Dense scenes with multiple people, which may
negatively impact the estimation of geometry, will lead to poor performance.
Finally, if the texture patterns are complicated or the lighting is harsh during
training, the decomposition of reflectance and geometry is hard to solve due to
the ambiguity of color scale, causing poor relighting quality. It can be alleviated
by incorporating more information other than self-supervision from videos into
the network (e.g., other supervision signals or data-driven priors).

In this paper, we present a principled rendering scheme called Relighting4D,
a method that enables relighting with free viewpoints from only posed human
videos under unknown illuminations. Our method exploits the physically based
rendering pipeline and decomposes the appearance of humans into geometry
and reflectance. All components are parameterized by MLPs based on the neu-
ral field conditioned on the deformable human model. Extensive experiments on
synthetic and real datasets demonstrate that Relighting4D is capable of high-
quality relighting of dynamic human performers with free viewpoints.
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