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Abstract. Pixel synthesis is a promising research paradigm for image
generation, which can well exploit pixel-wise prior knowledge for genera-
tion. However, existing methods still suffer from excessive memory foot-
print and computation overhead. In this paper, we propose a progres-
sive pixel synthesis network towards efficient image generation, coined
as PixelFolder. Specifically, PixelFolder formulates image generation as
a progressive pixel regression problem and synthesizes images by a multi-
stage paradigm, which can greatly reduce the overhead caused by large
tensor transformations. In addition, we introduce novel pixel folding op-
erations to further improve model efficiency while maintaining pixel-wise
prior knowledge for end-to-end regression. With these innovative designs,
we greatly reduce the expenditure of pixel synthesis, e.g., reducing 89%
computation and 53% parameters compared to the latest pixel synthe-
sis method called CIPS. To validate our approach, we conduct exten-
sive experiments on two benchmark datasets, namely FFHQ and LSUN
Church. The experimental results show that with much less expenditure,
PixelFolder obtains new state-of-the-art (SOTA) performance on two
benchmark datasets, i.e., 3.77 FID and 2.45 FID on FFHQ and LSUN
Church, respectively. Meanwhile, PixelFolder is also more efficient than
the SOTA methods like StyleGAN2, reducing about 72% computation
and 31% parameters, respectively. These results greatly validate the ef-
fectiveness of the proposed PixelFolder. Our source code is available at
https://github.com/BlingHe/PixelFolder.
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1 Introduction

As an important task of computer vision, image generation has made remarkable
progress in recent years, which is supported by a flurry of generative adversarial
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Fig. 1: Comparison of the generated faces by CIPS [2] and PixelFolder on FFHQ.
Compared with CIPS, PixelFolder synthesizes more vivid faces and can also
alleviate local incongruities via its novel network structure.

networks [4,5,7,9,15,18,19,20,25,42]. One of the milestone works is the StyleGAN
series [19,20], which borrows the principle of style transfer [14] to build an effec-
tive generator architecture. Due to the superior performance in image quality,
this style-driven modeling has become the mainstream paradigm of image gen-
eration [19,20], which also greatly influences and promotes the development of
other generative tasks, such as image manipulation [8,21,49,51,55], image-to-
image translation [6,16,17,27,36,54] and text-to-image generation [26,39,41,50].

In addition to the StyleGAN series, pixel synthesis [2,45] is another paradigm
of great potential for image generation. Recently, Anokin et al. [2] propose a novel
Conditionally-Independent Pixel Synthesis (CIPS) network for adversarial image
generation, which directly computes each pixel value based on the random latent
vector and positional embeddings. This end-to-end pixel regression strategy can
well exploit pixel-wise prior knowledge to facilitate the generation of high-quality
images. Meanwhile, it also simplifies the design of generator architecture, e.g.,
only using 1×1 convolutions, and has a higher generation ability with non-trivial
topologies [2]. On multiple benchmarks [19,42], this method exhibits comparable
performance against the StyleGAN series, showing a great potential in image
generation. In this paper, we also follow the principle of pixel synthesis to build
an effective image generation network.

Despite the aforementioned merits, CIPS still has obvious shortcomings in
model efficiency. Firstly, although CIPS is built with a simple network structure,
it still requires excessive memory footprint and computation during inference.
Specifically, this is mainly attributed to its high-resolution pixel tensors for end-
to-end pixel regression, e.g., 256 × 256 × 512, which results in a large compu-
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tational overhead and memory footprint, as shown in Fig. 2a. Meanwhile, the
learnable coordinate embeddings also constitute a large number of parameters,
making CIPS taking about 30% more parameters than StyleGAN2 [20]. These
issues greatly limit the applications of CIPS in high-resolution image synthesis.

To address these issues, we propose a novel progressive pixel synthesis net-
work towards efficient image generation, termed PixelFolder, of which structure
is illustrated in Fig. 2b. Firstly, we transform the pixel synthesis problem to a
progressive one and then compute pixel values via a multi-stage structure. In this
way, the generator can process the pixel tensors of varying scales instead of the
fixed high-resolution ones, thereby reducing memory footprint and computation
greatly. Secondly, we introduce novel pixel folding operations to further improve
model efficiency. In PixelFolder, the large pixel tensors of different stages are
folded into the smaller ones, and then gradually unfolded (expanded) during
feature transformations. These pixel folding (and unfolding) operations can well
preserve the independence of each pixel, while saving model expenditure. These
innovative designs help PixelFolder achieves high-quality image generations with
superior model efficiency, which are also shown to be effective for local imaging
incongruity found in CIPS [2], as shown in Fig. 1.

To validate the proposed PixelFolder, we conduct extensive experiments
on two benchmark datasets of image generation, i.e., FFHQ [19] and LSUN
Church [42]. The experimental results show that PixelFolder not only outper-
forms CIPS in terms of image quality on both benchmarks, but also reduces
parameters and computation by 53% and 89%, respectively. Compared to the
state-of-the-art model, i.e., StyleGAN2 [20], PixelFolder is also very competitive
and obtains new SOTA performance on FFHQ and LSUN Church, i.e., 3.77
FID and 2.45 FID, respectively. Meanwhile, the efficiency of PixelFolder is still
superior, with 31% less parameters and 72% less computation than StyleGAN2.

To sum up, our contribution is two-fold:

1. We propose a progressive pixel synthesis network for efficient image gen-
eration, termed PixelFolder. With the multi-stage structure and innovative
pixel folding operations, PixelFolder greatly reduces the computational and
memory overhead while keeping the property of end-to-end pixel synthesis.

2. Retaining much higher efficiency, the proposed PixelFolder not only has
better performance than the latest pixel synthesis method CIPS, but also
achieves new SOTA performance on FFHQ and LSUN Church.

2 Related Work

Recent years have witnessed the rapid development of image generation sup-
ported by a bunch of generative adversarial network (GAN) [9] based meth-
ods [1,28,30,33,11,38,40,46,48]. Compared with previous approaches [23,47], GAN-
based methods model the domain-specific data distributions better through the
specific adversarial training paradigm, i.e., a discriminator is trained to distin-
guish whether the images are true or false for the optimization of the generator.
To further improve the quality of generations, a flurry of methods [7,42,5,3,10]
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have made great improvements in both GAN structures and objective func-
tions. Recent advances also resort to a progressive structure for high-resolution
image generation. PGGAN [18] proposes a progressive network to generate high-
resolution images, where both generator and discriminator start their training
with low-resolution images and gradually increase the model depth by adding-
up the new layers during training. StyleGAN series [19,20] further borrow the
concept of “style” into the image generation and achieve remarkable progress.
The common characteristic of these progressive methods is to increase the reso-
lution of hidden features by up-sampling or deconvolution operations. Differing
from these methods, our progressive modeling is based on the principle of pixel
synthesis with pixel-wise independence for end-to-end regression.

In addition to being controlled by noise alone, some methods exploit coor-
dinate information for image generation. CoordConv-GAN [32] introduces pixel
coordinates in every convolution based on DCGAN [42], which proves that pixel
coordinates can better establish geometric correlations between the generated
pixels. COCO-GAN [29] divides the image into multiple patches with different
coordinates, which are further synthesized independently. CIPS [2] builds a new
paradigm of using coordinates for image generation, i.e., pixel regression, which
initializes the prior matrix based on pixel coordinates and deploys multiple 1×1
convolutions for pixel transformation. This approach not only greatly simplifies
the structure of generator, but also achieves competitive performance against
existing methods. In this paper, we also follow the principle of pixel regression
to build the proposed PixelFolder.

Our work is also similar to a recently proposed method called INR-GAN [45],
which also adopts a multi-stage structure. In addition to the obvious differences
in network designs and settings, PixelFolder is also different from INR-GAN
in the process of pixel synthesis. In INR-GAN, the embeddings of pixels are
gradually up-sampled via nearest neighbor interpolation, which is more in line
with the progressive models like StyleGAN2 [20] or PGGAN [18]. In contrast,
PixelFolder can well maintain the independence of each pixel during multi-stage
generation, and preserve the property of end-to-end pixel regression via pixel
folding operations.

3 Preliminary

Conditionally-Independent Pixel Synthesis (CIPS) is a novel generative adver-
sarial network proposed by Anokhin et al. [2]. Its main principle is to synthesis
each pixel conditioned on a random vector z ∈ Z and the pixel coordinates
(x, y), which can be defined by

I = {G(x, y; z)|(x, y) ∈ mgrid(H,W )} , (1)

where mgrid(H,W ) = {(x, y)|0 ≤ x ≤ W, 0 ≤ y ≤ H} is the set of integer pixel
coordinates, and G(·) is the generator. Similar to StyleGAN2 [20], z is turned
into a style vector w via a mapping network and then shared by all pixels.
Afterwards, w is injected into the generation process via ModFC layers [2].
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Fig. 2: A comparison of the architectures of CIPS [2] (left) and the proposed Pix-
elFolder (right). PixelFolder follows the pixel synthesis principle of CIPS, but
regards image generation as a multi-stage regression problem, thereby reducing
the cost of large tensor transformations. Meanwhile, novel pixel folding opera-
tions are also applied in PixelFodler to further improve model efficiency.

An important design in CIPS is the positional embeddings of synthesized
pixels, which are consisted of Fourier features and coordinate embeddings. The
Fourier feature of each pixel efo(x, y) ∈ Rd is computed based on the coordi-
nate (x, y) and transformed by a learnable weight matrix Bfo ∈ R2×d and sin
activation. To improve model capacity, Anokhin et al. also adopt the coordinate
embedding eco(x, y) ∈ Rd , which has H ×W learnable vectors in total. After-
wards, the final pixel vector e(x, y) ∈ Rd is initialized by concatenating these
two types of embeddings and then fed to the generator.

Although CIPS has a simple structure and can be processed in parallel [2], its
computational cost and memory footprint are still expensive, mainly due to the
high-resolution pixel tensor for end-to-end generation. In this paper, we follow
the principle of CIPS defined in Eq. 1 to build our model and address the issue
of model efficiency via a progressive regression paradigm.

4 PixelFolder

4.1 Overview

The structure of the proposed PixelFodler is illustrated in Fig.2. To reduce the
high expenditure caused by end-to-end regression for large pixel tensors, we first
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transform pixel synthesis to a multi-stage generation problem, which can be
formulated as

I =

K−1∑
i=0

{Gi(xi, yi; z)|(xi, yi) ∈ mgrid(Hi,Wi)} , (2)

where i denotes the index of generation stages. At each stage, we initialize a
pixel tensor Ei ∈ RHi×Wi×d for generation. The RGB tensors I ′i ∈ RHi×Wi×3

predicted by different stages are then aggregated for the final pixel regression.
This progressive paradigm can avoid the constant use of large pixel tensors to
reduce excessive memory footprint. In literature [18,45,52,53], it is also shown
effective to reduce the difficulty of image generation.

To further reduce the expenditure of each generation stage, we introduce
novel pixel folding operations to PixelFolder. As shown in Fig.2, the large pixel
tensor is first projected onto a lower-dimension space, and their local pixels,
e.g., in 2× 2 patch, are then concatenated to form a new tensor with a smaller

resolution, denoted as Ef
i ∈ R

Hi
k ×Wi

k ×d, where k is the scale of folding. After
passing through the convolution layers, the pixel tensor is decomposed again
(truncated from the feature dimension), and combined back to the original reso-
lution. We term these parameter-free operations as pixel folding (and unfolding).
Folding features is not uncommon in computer vision, which is often used as an
alternative to the operations like down-sampling or pooling [31,34,35,44]. But in
PixelFolder, it not only acts to reduce the tensor resolution, but also serves to
maintain the independence of folded pixels.

To maximize the use of pixel-wise prior knowledge at different scales, we fur-
ther combine the folded tensor Ef

i with the unfolded pixel tensor Eu
i−1 of the pre-

vious stage, as shown in Fig. 2b. With the aforementioned designs, PixelFolder
can significantly reduce memory footprint and computation, while maintaining
the property of pixel synthesis.

4.2 Pixel folding

The illustration of pixel folding is depicted in Fig. 3a, which consists of two
operations, namely folding and unfolding. The folding operation spatially de-
composes the pixel tensor into multiple local patches, and straighten each of
the patches to form a smaller but deeper tensor. On the contrary, the unfolding
operation will truncate the folded pixel vectors from the feature dimension to
recover the tensor resolution.

Particularly, pixel folding can effectively keep the independence and spatial
information of each pixel regardless of the varying resolutions of the hidden
tensors. This also enables the pixel-wise prior knowledge to be fully exploited
for image generation. In addition, when the pixels are folded, they can receive
more interactions via convolutions, which is found to be effective for the issue of
local imagery incongruity caused by insufficient local modeling [2].
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Fig. 3: (a) The illustrations of pixel folding and unfolding operations. These
parameter-free operations can maintain the pixel-wise independence when chang-
ing the tensor resolution. (b) The detailed structure of the generation block in
PixelFolder. The number of parameterized layers in PixelFolder is much smaller
than those of CIPS and StyleGAN2.

4.3 Pixel tensor initialization

Similar to CIPS [2], we also apply Fourier features and coordinate embeddings
to initialize the pixel tensors. Specifically, given the coordinate of a pixel (x, y),
Fourier feature efo(x, y) is obtained by

efo(x, y) = sin
[
Bfo(x

′, y′)
T
]
, (3)

where x′ = 2x
Wi−1 − 1 and y′ = 2y

Hi−1 − 1, and Bfo ∈ R2×d is the projection
weight matrix. The coordinate embedding is a parameterized vector, denoted as
eco(x, y) ∈ Rd. Afterwards, these two types of embeddings are concatenated and
projected to obtain the new pixel tensor, denoted as Ei ∈ RHi×Wi×d.

In principle, Fourier features serve to preserve the spatial information and
capture the relationships between pixels [2,32]. The learnable coordinate em-
beddings can increase model capacity to improve image quality, e.g., to avoid
wave-like artifacts [2]. In PixelFolder, we only apply coordinate embeddings to
the first generation stage to keep model compactness, and we found this trade-off
has little detriment to image quality during experiments.

4.4 Generation blocks

The detailed structure of generation blocks in PixelFolder is given in Fig. 3b.
After folding operations, a modulated convolution (ModConv) layer [20] is de-



8 J. He et al.

ployed for feature transformation. Then unfolding operations are used to recover
the resolution, each followed by another ModConv layer. In practice, we use two
folding and unfolding operations to gradually reduce and recover the tensor res-
olution, respectively, which is to avoid the drastic change of tensor resolution
during feature transformation. The convolution filter is set to 3× 3, considering
the issue of local imaging incongruity. Besides, we also carefully set the resolution
and folded pixels of each generation stage to ensure that the output tensor of
current stage can be integrated into the next stage. Similar to StyleGAN2 [20],
the style vector w is injected into the ModConv layers via modulating their
convolution filter, i.e., being mapped to scale vector s with an affine network.
Finally, the recovered pixel tensors are linearly projected onto RGB space as the
output of each stage, which are then aggregated for the final regression. Due to
our efficient modeling strategy, PixelFolder uses only 12 convolution layers in all
generation stages, thus having much fewer parameters than the SOTA methods
like StyleGAN2 [20] and CIPS [2].

5 Experiments

To validate the proposed PixelFolder, we conduct extensive experiments on two
benchmark datasets1, namely Flickr Faces-HQ [19] and LSUN Church [42], and
compare it with a set of state-of-the-art (SOTA) methods including CIPS [2],
StyleGAN2 [20] and INR-GAN [45].

5.1 Datasets

Flickr Faces-HQ (FFHQ) [19] consistes of 70, 000 high-quality human face
images, which all have a resolution of 1024 × 1024. The images were crawled
from Flickr and automatically aligned and cropped.
LSUN Church is the sub-dataset of Large-scale Scene UNderstanding(LSUN)
benchmark [42]. It contains about 126, 000 images of churches in various archi-
tectural styles, which are collected from natural surroundings.

5.2 Metrics

To validate the proposed PixelFolder, we conduct evaluations from the aspects
of image quality and model efficiency, respectively. The metrics used for im-
age quality include Fréchet Inception Distance (FID) [12] and Precision and
Recall (P&R) [24,43]. FID measures the distance between the real images and
the generated ones from the perspective of mean and covariance matrix. P&R
evaluates the ability of fitting the true data distribution. Specifically, for each
method, we randomly generate 50, 000 images for evaluation. In terms of model
efficiency, we adopt the number of parameters (#Params), Giga Multiply Ac-
cumulate Operations (GMACs) [13], and generation speed (im/s) to measure
model compactness, computation overhead and model inference, respectively.

1 More experiments on other datasets and high-resolution are available in the supple-
mentary material.
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#Parm (M) ↓ GMACs ↓ Speed (im/s) ↑

INR-GAN [45] 107.03 38.76 84.55
CIPS [2] 44.32 223.36 11.005
StyleGAN2 [20] 30.03 83.77 44.133

PixelFolder (ours) 20.84 23.78 77.735

Table 1: Comparison between PixelFolder, StyleGAN2, CIPS and INR-GAN in
terms of parameter size (#Params), computation overhead (GMACs) and in-
ference speed. Here, “M” denotes millions, and “im/s” is image per-second. ↑
denotes that lower is better, while ↓ is vice verse. PixelFolder is much superior
than other methods in both model compactness and efficiency, which well vali-
dates its innovative designs.

5.3 Implementation

In terms of the generation network, we deploy three generation stages for Pix-
elFolder, and their resolutions are set to 16, 64 and 256, respectively. In these
operations, the scale of folding and unfolding k is set to 2, i.e., the size of local
patches is 2× 2. The dimensions of initialized tensors are all 512, except for the
last stage which is set to 128. Then these initialized tensors are all reduced to 32
via linear projections before pixel folding. The recovered pixel tensors after pixel
unfolding are also projected to RGB by linear projections. For the discriminator,
we use a residual convolution network following the settings in StyleGAN2 [20]
and CIPS [2], which has FusedLeakyReLU activation functions and minibatch
standard deviation layers [18].

In terms of training, we use non-saturating logistic GAN loss [20] with R1
penalty [37] to optimize PixelFolder. Adam optimizer [22] is used with a learning
rate of 2 × 10−3, and its hyperparameters β0 and β1 are set to 0 and 0.99,
respectively. The batch size is set to 32 , and the models are trained on 8 NVIDIA
V100 32GB GPUs for about four days.

5.4 Quantitative analysis

Comparison with the state-of-the-arts. We first compare the efficiency of
PixelFolder with CIPS [2], StyleGAN2 [20] and INR-GAN [45] in Tab. 1. From
this table, we can find that the advantages of PixelFolder in terms of parameter
size, computation complexity and inference speed are very obvious. Compared
with CIPS, our method can reduce parameters by 53%, while the reduction in
computation complexity (GMACs) is more distinct, about 89%. The inference
speed is even improved by about 7×. These results strongly confirm the validity
of our progressive modeling paradigm and pixel folding operations applied to
PixelFolder. Meanwhile, compared with StyleGAN2, the efficiency of PixelFolder
is also superior, which reduces 31% parameters and 72% GMACs and speed up
the inference by about 76%. Also as a multi-stage method, INR-GAN is still
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Method
FFHQ, 256×256 LSUN Church, 256×256

FID ↓ Precision ↑ Recall ↑ FID ↓ Precision ↑ Recall ↑

INR-GAN [45] 4.95 0.631 0.465 4.04 0.590 0.465
CIPS [2] 4.38 0.670 0.407 2.92 0.603 0.474
StyleGAN2 [20] 3.83 0.661 0.528 3.86 - -

PixelFolder(Ours) 3.77 0.683 0.526 2.45 0.630 0.542

Table 2: The performance comparison of PixelFolder and the SOTA methods
on FFHQ [20] and LSUN Church [42]. The proposed PixelFolder not only has
better performance than existing pixel synthesis methods, i.e., INR-GAN and
CIPS, but also achieves new SOTA performance on both benchmarks.

Settings #Parm (M) ↓ GMACs ↓ FID ↓ Precision ↑ Recall ↑

Fold+Unfold (base) 20.84 23.78 5.49 0.679 0.514
Fold+DeConv 29.41 86.53 5.60 0.667 0.371
Down-Sampling+DeConv 29.21 89.38 5.53 0.679 0.456

Table 3: Ablation study on FFHQ. The models of all settings are trained with
200k steps for a quick comparison. These results show the obvious advantages
of pixel folding (Fold+Unfold) over down-sampling and DeConv.

inferior to the proposed PixelFolder in terms of parameter size and computation
overhead, i.e., nearly 5× more parameters and 1.6× more GMACs. In terms of
inference, INR-GAN is a bit faster mainly due to its optimized implementation 2.
Conclusively, these results greatly confirm the superior efficiency of PixelFolder
over the compared image generation methods.

We further benchmark these methods on FFHQ and LUSN Church, of which
results are given in Tab. 2. From this table, we can first observe that on all metrics
of two datasets, the proposed PixelFolder greatly outperforms the latest pixel
synthesis network, i.e., CIPS[2] and INR-GAN [45], which strongly validates the
motivations of our method about efficient pixel synthesis. Meanwhile, we can
observe that compared to StyleGAN2, PixelFolder is also very competitive and
obtains new SOTA performance on FFHQ and LSUN Church, i.e., 3.77 FID
and 2.45 FID, respectively. Overall, these results suggest that PixelFolder is a
method of great potential in image generation, especially considering its high
efficiency and low expenditure.

Ablation studies. We further ablates pixel folding operations on FFHQ, of
which results are given in Tab. 3. Specifically, we replace the pixel folding and
unfolding with down-sampling and deconvolution (DeConv.) [20], respectively.

From these results, we can observe that although these operations can also
serve to reduce or recover tensor resolutions, their practical effectiveness is much

2 INR-GAN optimizes the CUDA kernels to speed up inference.
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Settings #Parm (M) ↓ GMACs ↓ FID ↓ Precision ↑ Recall ↑

PixelFolder 20.84 23.78 4.78 0.602 0.517
w/o coordinate embeddings 20.32 23.64 4.95 0.598 0.500
w/o multi-stage connection 20.84 23.78 5.46 0.532 0.441

Table 4: Ablation study on LSUN Church. The models of all settings are trained
with 200k steps for a quick comparison. “w/o design” is not cumulative and only
represents the performance of PixelFolder without this design/setting.

C
IPS

PixelFolder

C
IPS

PixelFolder

Fig. 4: Comparison of the image interpolations by CIPS [2] and PixelFolder. The
interpolation is computed by z = αz1 + (1− α)z2, where z1 and z2 refer to the
left-most and right-most samples, respectively.

inferior than our pixel folding operations, e.g. 5.49 FID (fold+unfold) v.s. 8.36
FID (down-sampling+DeConv). These results greatly confirm the merit of pixel
folding in preserving pixel-wise independence, which can help the model exploit
pixel-wise prior knowledge. In Tab. 4, we examine the initialization of pixel
tensor and the impact of multi-stage connection. From this table, we can see
that only using Fourier features without coordinate embeddings slightly reduces
model performance, but this impact is smaller than that in CIPS [2]. This result
also subsequently suggests that PixelFolder do not rely on large parameterized
tensors to store pixel-wise prior knowledge, leading to better model compactness.
Meanwhile, we also notice that without the multi-stage connection, the perfor-
mance drops significantly, suggesting the importance of joint multi-scale pixel
regression, as discussed in Sec. 4.1. Overall, these ablation results well confirm
the effectiveness of the designs of PixelFolder.

5.5 Qualitative analysis

To obtain deep insight into the proposed PixelFolder, we further visualize its
synthesized images as well as the ones of other SOTA methods.

Comparison with CIPS. We first compare the image interpolations of Pix-
elFolder and CIPS on two benchmarks, i.e., FFHQ and LSUN Church, as shown
in Fig. 4. It can be obviously seen that the interpolations by PixelFolder are more
natural and reasonable than those of CIPS, especially in terms of local imaging.
We further present more images synthesized by two methods in Fig. 1 and Fig.
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Fig. 5: Comparison of the generated images by CIPS [2] and PixelFolder on
FFHQ and LSUN Church. The overall quality of images generated by PixelFolder
is better than that of CIPS. Meanwhile, PixelFolder can better handle the local
imagery incongruity, confirming the effectiveness of its designs.

5. From these examples, a quick observation is that the overall image quality
of PixelFolder is better than CIPS. The synthesized faces by PixelFolder look
more natural and vivid, which also avoid obvious deformations. Meanwhile, the
surroundings and backgrounds of the generated church images by PixelFolder
are more realistic and reasonable, as shown in Fig. 5c-5d. In terms of local imag-
ing, the merit of PixelFolder becomes more obvious. As discussed in this paper,
CIPS is easy to produce local pixel incongruities due to its relatively indepen-
dent pixel modeling strategy [2]. This problem is reflected in its face generations,
especially the hair details. In contrast, PixelFolder well excels in local imaging,
such as the synthesis of accessories and hat details, as shown in Fig. 5a-5b.
Meanwhile, CIPS is also prone to wavy textures and distortions in the church
images, while these issues are greatly alleviated by PixelFolder. Conclusively,
these findings well validate the motivations of PixelFolder for image generation.

Comparison of stage-wise visualizations. We also compare PixelFolder
with CIPS, StyleGAN2 and INR-GAN by visualizing their stage-wise results, as
shown in Fig. 6. From these examples, we can first observe that the intermediate
results of other progressive methods, i.e., StyleGAN2 and INR-GAN, are too
blurry to recognize. In contrast, PixelFolder and CIPS can depict the outline of
generated faces in the initial and intermediate stages. This case suggests that
PixelFolder and CIPS can well exploit the high-frequency information provided
by Fourier features [2], verifying the merits of end-to-end pixel regression. We
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(a) CIPS (b) StyleGAN2

(c) INR-GAN (d) PixelFolder(Ours)

Fig. 6: Comparison of the stage-wise synthesis by the SOTA methods and Pix-
elFolder. The color spaces of the first two hidden images are uniformly adjusted
for better observation. We chose the hidden images of all methods from the same
number of convolution layers. Pixel-synthesis based methods, such as CIPS [2]
and PixelFolder, present more interpretable results in initial steps, where Pix-
elFolder can also provide better outline details.

can also see that PixelFolder can learn more details than CIPS in the inter-
mediate features, which also suggests the superior efficiency of PixelFolder in
face generation. Meanwhile, the progressive refinement (from left to right) also
makes PixelFolder more efficient than CIPS in computation overhead and mem-
ory footprint. We attribute these advantages to the pixel folding operations and
the multi-stage paradigm of PixelFolder, which can help the model exploit prior
knowledge in different generation stages.

Comparison of pixel folding and its alternatives. In Fig. 7, we visualize
the generations of PixelFolder with pixel folding operations and the alterna-
tives mentioned in Tab. 3. From these examples, we can find that although
down-sampling and DeConv. can also serve to change the resolution of hidden
pixel tensors, their practical effectiveness is still much inferior than that of pixel
folding. We attribute these results to the unique property of pixel folding in pre-
serving pixel-wise prior knowledge for end-to-end pixel regression. Meanwhile,
we also note that when using these alternatives, there is still the problem of
local image incongruity, which however can be largely avoided by pixel fold-
ings. These results greatly validate the motivation and effectiveness of the pixel
folding operations.
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(a) folding+unfolding (b) folding+DeConv (c) downsample+DeConv

Fig. 7: Comparisons of PixelFolder with pixel folding operations (fold-
ing+unfolding) and the alternatives (i.e., folding+DeConv. and down-
sampling+DeConv). Compared with these alternatives, pixel folding operations
can well preserve pixel-wise prior knowledge for generation, leading to much
better image quality. Meanwhile, pixel folding can also well tackle with local
imagery incongruities.

6 Conclusions

In this paper, we propose a novel pixel synthesis network towards efficient image
generation, termed PixelFolder. Specifically, PixelFolder considers the pixel syn-
thesis as a problem of progressive pixel regression, which can greatly reduce the
excessive overhead caused by large tensor transformations. Meanwhile, we also
apply novel pixel folding operations to further improve model efficiency while
preserving the property of end-to-end pixel regression. With these novel designs,
PixelFolder requires much less computational and memory overhead than the lat-
est pixel synthesis methods, such as CIPS and INR-GAN. Meanwhile, compared
with the state-of-the-art method StyleGAN2, PixelFolder is also more efficient.
With much higher efficiency, the proposed PixelFolder exhibits new SOTA per-
formance on FFHQ and LSUN Church benchmarks, i.e., 3.77 FID and 2.45 FID,
respectively, yielding a great potential in image generation.
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