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Abstract. Numerous attempts have been made to the task of person-
agnostic face swapping given its wide applications. While existing meth-
ods mostly rely on tedious network and loss designs, they still struggle
in the information balancing between the source and target faces, and
tend to produce visible artifacts. In this work, we introduce a concise and
effective framework named StyleSwap. Our core idea is to leverage a
style-based generator to empower high-fidelity and robust face swapping,
thus the generator’s advantage can be adopted for optimizing identity
similarity. We identify that with only minimal modifications, a Style-
GAN?2 architecture can successfully handle the desired information from
both source and target. Additionally, inspired by the ToRGB layers, a
Swapping-Driven Mask Branch is further devised to improve informa-
tion blending. Furthermore, the advantage of StyleGAN inversion can
be adopted. Particularly, a Swapping-Guided ID Inversion strategy is
proposed to optimize identity similarity. Extensive experiments validate
that our framework generates high-quality face swapping results that out-
perform state-of-the-art methods both qualitatively and quantitatively.
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1 Introduction

The task of face swapping has drawn great attention [5,4,22,32,27,28,23 47 49)
due to its wide applications in the fields of entertainment, film making, virtual
human creation, privacy protection, etc. It aims at transferring the facial identity
from a source person to a target frame or video while preserving attributes
information including pose, expressions, lighting condition, and background [27].

With the development of deep learning, generative models have been lever-
aged to boost face swapping quality [22,20,28,23,47,50]. However, the task is still
challenging, particularly under the identity-agnostic setting where only a single
frame is provided as the source image but targeting different sorts of scenarios.

* Equal contribution.
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Fig.1: Qualitative results on 512 x 512 resolution. Our method is robust
under complicated conditions and achieves high-fidelity face swapping results

The key challenges lie in two essential parts: how to explicitly capture the iden-
tity information; and how to blend the swapped face into the target seamlessly
while preserving the implicit attributes unchanged.

To tackle the above problems, previous studies take two different paths. 1)
Graphics-based methods [5,4] have involved the strong prior knowledge of in-
termediate structural representations such as landmarks and 3D models [11]
into face swapping long ago. Recent researchers combine this information with
generative adversarial networks (GANs) [13] for identity and expression ex-
traction [29,28,50,47]. However, the inaccuracy of structural information would
greatly influence the stableness and coherence of generated results, particularly
in videos. 2) Other methods explore pure learning-based pipelines [23,7,12,54].
Most of them rely on tedious loss and network structure designs [23,7,12] for
balancing the information between source and target images. Such designs make
training difficult and fail in expressing desired information, which leads to non-
similar or non-robust results with visible artifacts.

Recently, StyleGAN architectures [18,19,17] and their variants have been ver-
ified effective on various facial generative tasks, including face attributes edit-
ing [1,2,36,37], face enhancement [46,51], and even face reenactment [6,52]. It is
owing to style-based generator’s strong expressibility and its advantages in la-
tent space manipulation. But the exploration of such architectures in face swap-
ping [54,48] is still insufficient. Specifically, the lighting conditions are greatly
condemned in Zhu et al. [54] due to the limited distribution covered by the fixed
generator. The structure of their feature blending procedure is also designed
in a hand-crafted and layer-specific manner, which requires complicated human
tuning. Concurrently, Xu et al. [18] aggregate the StyleGAN2 features with an-
other designed encoder and decoder. Thus, a natural question arises: can we
avoid tedious layer-by-layer structure design by adopting a versatile style-based
generator [18,19] with only minimal modifications?
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To this end, we propose StyleSwap, a concise and effective pipeline that
empowers face swapping by a style-based generator. It produces results with
higher fidelity, identity similarity and is more robust (i.e avoids visible artifacts
creation) under different scenarios compared with previous methods. Moreover,
it is easy to implement and friendly for training. The key is to adapt StyleGAN2
architecture to face swapping data flows through simple modifications, and adopt
the generator’s advantage for identity optimization. Detailedly, we first achieve
the restoration of the target image’s attributes with a simple layer-fusion strat-
egy. The same idea has been proven to maintain the original StyleGAN’s capabil-
ity [51]. Then we argue that the identity information can be injected by mapping
extracted identity features to the W space. In this way, the identity information
can be implicitly blended into the attributes in the convolution operations. Ad-
ditionally, we propose a Swapping-Driven Mask Branch which is identical to the
ToRGB branch. It naturally enforces the network to focus less on the target’s
high-level information and benefits final image blending.

We further illustrate the advantages of this architecture by involving a simple
optimization strategy for improving identity similarity. As the identity feature is
mapped to the W space, a natural inspiration from recent StyleGAN inversion
studies [1,2] is to optimize a powerful W space through self-reconstruction. To
avoid mode collapse, we introduce a novel Swapping-Guided ID Inversion strat-
egy by iteratively performing feature optimization and face swapping. Armed
with these tools, we show that our StyleSwap generates high-fidelity results with
simple video training paradigms. It is particularly robust and can be supported
with enhanced data for generating high-resolution results.

We summarize our contributions as follows: (1) We present the StyleSwap
framework, which adopts a style-based generator into the person-agnostic face
swapping task by simple modifications and the design of a Swapping-Driven
Mask Branch. Tt is easy to implement and train. (2) By taking the advantage of
the StyleGAN model, we design the novel Swapping-Guided ID Inversion strat-
egy to improve the identity similarity. (3) Extensive experiments demonstrate
that our method outperforms the state of the arts on person-agnostic face swap-
ping. Particularly, it demonstrates great robustness and has the capability of
generating high-quality results.

2 Related Work

2.1 Face Swapping

Structural Prior-Guided Face Swapping. The task of face swapping has
long been a research interest for both the computer graphics and computer vision
community. Structural information such as 3D models and landmarks provide
strong prior knowledge. Blanz et al. [5] leverage 3DMM, and Bitouk et al. use 3D
lighting basis to design adjustment-based methods. Both of them rely on manual
interaction, and can hardly change the source’s expressions. Nirkin et al. [29]
involve 3DMM with learned masks, but they render unrealistic results. Recent



4 Z. Xu et al.

studies [28,15,50,17] combine structural information with GANs for identity-
agnostic face swapping. Xu et al. and Wang et al. both inject the parameters
of 3DMM into self-designed architectures. Though high-fidelity results can be
generated, the inaccuracy of 3D models and the need for inpainting greatly
harm the temporal coherence and robustness of these methods under the video
face swapping setting.

Reconstruction-Based Face Swapping. On the other hand, pure reconstruc-
tion based methods with GANs have also shown success. Korshunova et al. [22]
train a network for swapping paired identities. The popular Deepfakes and Deep-
FaceLab [32] share the same setting. However, these methods cannot generalize
to arbitrary identities, which limits their practical usage.

As for person-agnostic face swapping, Li et al. [23] build the Faceshifter net-
work. SimSwap [7] improves the expression consistency. However, they generate
low-quality results with visible artifacts under certain circumstances. Recently,
InfoSwap [12] creates high quality results by building a pipeline that relies on
careful loss designs. It involves multi-stage of finetuning on various datasets. Dif-
ferent from these methods, we would like to ease the network design procedure
with a style-based generator.

Specifically, Wang et al. [15] firstly leverage a pretrained StyleGAN genera-
tor for high resolution face swapping. However, in order to adapt to the latent
spaces of a pretrained StyleGAN generator, the authors design layer-specific fu-
sion strategies, which involves a large number of hyper-parameters and ablative
studies. Moreover, their method cannot keep the lighting conditions of the target
frames. In our work, we retrain the style-based generator with simple modifica-
tions that preserve the attribute information better.

2.2 Facial Editing with Style-based Generator

The strong ability of StyleGAN [18,19,17] has been shown in various facial edit-
ing tasks including facial attributes editing [1,2,36,37,41,33], blind face restora-
tion [46,51], face reenactment [6,52,24], hairstyle editing [53], and so on [53,41,3,40].
StyleGAN Inversion. Most face attribute editing framework [36,37] fix the
pretrained generator unchanged and perform StyleGAN inversion. Abdal et
al. [1,2] expand the original W latent space to the W space during inversion and
achieve better image reconstruction results. Recent studies invert images with
StyleGAN specific encoders [411,3,33] for fast inversion. In our work, we take the
inspiration of StyleGAN inversion and expand our identity feature to W space
for boosting identity similarity. The usage of the StyleGAN specific encoders is
left as a future work.

Face Reenactment with Style-based Generator. Face reenactment is very
similar to face swapping and even serves as part of the face swapping procedure
in certain methods [28,32,38]. The difference is that it aims at keeping the source
image’s identity and background. Burkov et al. [6] encode identity and expression
information into the W space and re-train the generator in a simple pipeline.
Later studies [52,24] then expand this pipeline to the audio-driven setting.
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Fig.2: Our StyleSwap framework. The building blocks in Blue indicate the
original structure of StyleGAN2 The source I, is encoded to f3; by E;q (Red).
The attribute feature maps Fa . are encoded from I; by Eq4 and concatenated to
the StyleGAN2 generator blocks (Yellow). Specifically, we devise a Swapping-
Driven Mask Branch (Green) to predict a mask M, by leveraging the same
structure of ToORGB layers

3 Owur Approach

Framework Overview. The goal of person-agnostic face swapping is to swap
the identity information from a source image I; onto a target frame [; while
preserving I;’s attribute information unchanged.

In this section, we present our StyleSwap framework (illustrated in Fig. 2)
which empowers face swapping by slightly modifying a style-based generator.
In Section 3.1 we introduce how to adapt a style-based generator to the face
swapping task. Section 3.2 illustrates the simple training paradigm. Importantly,
in Section 3.3, we propose the Swapping-Guided ID Inversion which specifically
takes the advantage of GAN inversion for optimizing identity similarity.

3.1 Adapting Style-Based Generator to Face Swapping

Revisiting StyleGAN2. We first recap the general setting of StyleGAN2 [19].
The original generator takes a constant feature map at the lowest resolution,
then a latent vector z is sampled and mapped to a feature vector w (lies in
the W space). Afterwards, w is sent into each layer of the 2L-layer generator
by affine transformations as the “style” to modulate the convolutional kernels’
weights. At each resolution, a ToORGB layer is designed to render a three-channel
RGB image progressively. The rough structures are depicted on Fig. 2 in blue.
The attribute disentanglement ability in StyleGAN2 is implicitly achieved
in the W or the expanded W+ space (if feeding different w features to differ-
ent layers). As a result, operations on existing faces require inverting faces to
latent vectors, which harms the preservation of spatial information. In our face
swapping task, the problem lies in how to modify the generator so that the
information of the target frame and identity can be sufficiently used.



6 7. Xu et al.

Infusing Attribute Information. We propose to infuse the spatial informa-
tion of the target frame as feature maps, rather than feature vectors, to preserve
attribute information. A recent face restoration work [51] verifies two important
properties of StyleGAN2. Firstly, concatenating a noise map to each layer of
the generator would not affect the network’s generative ability. Secondly, such
noise maps can be replaced by encoded spatial feature maps so that both the
generative prior of StyleGAN2 model and the structural information of the input
image can be kept.

Inspired by this observation, we apply a similar modification. Specifically, we
leverage a simple encoder E;; that encodes I; to different scales of spatial feature
maps F!,, = {Fétt(l)ﬂ € [1,L]}. They are then infused into the StyleGAN2
architecture at each 2I-th layer of the generator by concatenation following [51].
Injecting Identity Feature. In order to adapt to different target views, it
is natural to encode the identity information into feature vectors. Here we use
a pretrained identity encoder provided by ArcFace [10] to encode the identity
feature f, = E;q(Is).

As the attributes on the face are already fused, we identify that modulated
convolutions in StyleGAN2 are naturally suitable for the blending and shape-
shifting of facial organs. Thus we directly map f7, to w, in the W space (ws =
FCw(f$;)) through fully connected layers FC,.

So far, a swapping result ;7" = G(F!,,, w,) from the source to the target

frame can already be rendered by the generator.
Swapping-Driven Mask Branch. We then identify that learning a rough
one-channel facial mask would benefit the whole face swapping step from two
perspectives. 1) With a mask in the image domain, the areas that do not require
modifications such as the background and hair can be directly kept unchanged.
2) If the mask can be progressively and implicitly learned along with the gener-
ator, coarse masks at lower resolutions can help balance attribute and identity
information in a similar way as [23]. We thus propose an additional modification
by devising a Swapping-Driven Mask Branch which takes the advantage of the
StyleGAN2 model. Its structure is directly borrowed from the “ToRGB” branch,
and denoted as “ToMask”. Here we leverage a soft mask with values between 0
and 1. The details of the mask branch are illustrated in Fig. 3 (a).

Let M (; W denote the one-channel output of the I-th ToMask network, which
has the same resolution with the output of the I-th TORGB layer and the (I+1)-
th F.,,. The non-normalized mask Mg(l) at the [-th layer of the mask branch is
the combination of the (I — 1)-th layer’s result and M;(l).

My = upsample(Myq_1y) + M;(l), (1)

where the bilinear upsample is used. The softmasks we used are the normal-
ized results My ;) = Sigmoid(Mg(;y). M1y is the normalized output of the first
ToMask network, and M, is the final predicted mask. The face swapping result

can be updated as:

f.g%t = Mg * I;%t + (1= My) = I, (2)
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where the * denotes element-wise multiplication with broadcasting and 1 is the
tensor with all ones. The mask repeats itself channel-wise three times to match
the RGB channels.

Masking Attribute Information. Our design above infuses facial attribute
information into all layers. However, spatial information provided at mid- and
low-level layers might influence facial structures. Though we expect the network
to automatically perform information balancing, we identify that this proce-
dure can be eased by blocking the attribute information relying on an implicitly
learned mask. Thus we multiply our learned mask My at each resolution with

the next layer’s attribute feature map F;tt(lﬂ) to an updated version:

Frivarn) = Fanaan) * (1= Mygy). (3)

Note that Mgy and Fétt(lﬂ
masking operation on F; (1) which provides the initial facial attributes. In this
way, as My progressively grows to reach the ground truth mask, it also implic-
itly prevents the attribute information from influencing the identity similarity.

) share the same spatial resolution, and there is no

3.2 Training Paradigm

With our StyleSwap architecture, person-agnostic face swapping results can be
learned in a simple end-to-end training paradigm. Particularly, we propose to
involve certain video data for training a more robust swapping model.

Given a source image I, and a target video {Ip|T € {t(1)...t(K)}}, we gen-
erate the following frames: (1) The face swapping results from the source to any
target frame: 137" = G(Fy,;, ws), where Fy,; = Eq(Iy) and w, = FCy(f5) =
FCw(E;a(Is)). (2) The self-reconstruction results on the source frame itself:
;7% = G(Fj, ws). (3) Particularly, we sample two target frames I;(q), Iy(s)
ta)=t(b) _ G pt®) )

from a same video of a same person, and generate I att » Wi(a)
Wi = FOw (fi5").

The training objectives consist of mainly four parts: the identity loss, feature
matching loss, adversarial loss applied to all generated results, and the recon-
struction loss applied to self- and cross-view reconstruction results.

Identity Loss. The identity loss is built upon the cosine distances Deos(fa, fo) =

”ffl"‘:% between extracted identity features from E;4. Given any sampled data
I;,I; where i,j € {s,T}:

Lid =1- Dcos( ZdaEld(I;A)j)) (4)

Note that in order to disentangle identity information with illuminations, all
images are augmented with color jittering when sent to the identity encoder.
Adversarial Loss and Feature Matching Loss. We directly adopt the orig-
inal discriminator D and adversarial loss functions of StyleGAN2 [18]. For any
Ig_’j (2,7 € {s,T}), I; is provided as the real image when applying the adversarial
training. We denote this loss function as £,4, and omit the details.
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Similar to [7], we leverage a weak feature matching loss from the feature
maps of the discriminator.

Np
Lev = Y (IDm(I577) = DinlL)]1), (5)

m=np

where D,, denotes the m-th layer’s output of the discriminator, and np is the
layer that starts computing the feature matching loss. This loss accounts for
preserving the expression and certain low-level attribute information.

Reconstruction Loss. The reconstruction loss consists of the L; loss and the

VGG perceptual loss [44,30] when the pixel-level supervision can be provided.
Noygg

Lree = 1177 = Lilli+ Y (IVGG(I577) = VGG (1)1, (6)
m=1

where VGG,,, denotes the m-th layer’s output of a pre-trained VGG19 network.
When applying the reconstruction loss, we set 4,j = s or i, € {T}. The re-
construction training provides supervision in the pixel space and has proven to
be crucial in previous studies. Particularly, cross-view reconstruction is widely
used in face reenactment training [20,6,52]. It benefits the attribute informa-
tion’s preservation by providing samples with different expressions on the source
and target, and forces the network to learn with strong supervision.

Mask Loss. We leverage a pretrained facial mask predictor [39] to predict only
a rough facial mask for each image in the training set. For each generated image
I ;Hj = G(F?,,,w;), it is supervised with the binary mask of the target frame
M;. The supervision can be written as:

Limask = BCELoss(My, M;), (7)

where BCELoss denotes the point-wise binary cross entropy loss.

It is worth mentioning that the mask branch is a plug-in module that re-
quires fine-tuning. When the Masking Attribute Information in Sec. 3.1 is
activated, all generated images are updated to f;_*j as illustrated in Eq. 2 and
all F 4 are updated according to Eq. 3.

Overall Loss Function. The overall loss function for training the StyleSwap
framework is the combination of the losses introduced above. It can be repre-
sented as:

Ltotal - Ladv + Aidﬁid + )\FMLFM + )\rechec + )\maskLmaska (8)

where the As are balancing coefficients.

3.3 Swapping-Guided ID Inversion

Inspired by StyleGAN inversion, we illustrate one interesting property of our W
space design: the identity similarity can be optimized in a GAN inversion manner
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Fig.3: (a) The details of the generator blocks and the Swapping-Guided Mask
Branch. The figures show the block with visualized masks when [ = 4 and
the final outputs. wW(g;) = Wy2141) = W, when the w, is not optimized. (b)
The procedure for Swapping-Guided ID Inversion. At each iteration, a different
random I}[n} is selected. The first and the n-th iterations are shown. w, is taken
as initialization and updated to the W+ space

through a Swapping-Guided ID Inversion strategy, where the generator is fixed.
As the encoded w, feature from the source lies in the W space, it can naturally
be served as a good initialization. We expect to optimize W or expanded W+
space for a specific person’s identity. The optimization procedure on W+ space
is depicted in Fig. 3 (b). The reconstruction loss L. and ID loss £;4 are used.

Challenges. We first take W space optimization as an example, and expand it
to the WT space. An intuitive operation is to directly optimize wy (to any
ws + Awg) using gradient descent at each self-reconstruction step ;7% =
G(F.,;, ws + Aw,). However, such practice would easily lead to mode collapse,
i.e., direct reconstruction by ignoring the wy information. To tackle this prob-
lem, an alternative way is to perform face swapping before the optimization
step (as shown in the optimization iteration 1 in Fig. 3). A randomly sam-
pled face I, of arbitrary identity is used to build I;7* which is later sent to
the attribute encoder as the target frame. However, this way of restricting
5777 = G(Ig_)ﬂws) still relies on one fixed input image, which also leads
to mode collapse during implementation.
Iterative Identity Optimization and Swapping. The key to our method is
to feed a different face to the source image at each iteration of the optimization
procedure. Specifically, at each iteration n, we randomly sample any I;{"} to up-
date the identity information on the source frame, so that the network perceives
different identities.

Moreover, a unique advantage of Style-based generator is to optimize the set
of 2L different style features W;L = [Ws(1), -+ W(2r)] as performed in StyleGAN
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inversion studies [1,2]. At each iteration, it is updated to Wj{"}. After optimiz-
ing Wj, it can be directly leveraged by the generator to create face swapping
result: I3 = G(FL,,, WT). Such operation can hardly be performed on tradi-
tional face swapping pipelines, and has never been explored before. More details
about the optimization algorithm are shown in the Supplementary Materials.

4 Experiments

Datasets. We train our model on the VGGFace [31] and a small part of Vox-
Celeb2 [8]. Due to the limitation of data quality, the original data from both
datasets only supports 256 x 256 resolution training. To show our capability of
handling higher resolutions, we enhance the datasets with GPEN [51] and train
a 512 x 512 model. Part of the evaluation is conducted on FaceForensics+-+
(FF++) dataset [34] which contains 1,000 Internet face videos and 1,000 Deep-
fakes [9] and 1000 official FaceShifter results. Evaluations on high-quality images
leverage CelebA-HQ [16,25].

Implementation Details. Our model is trained with batch size 64 on one
NVIDIA Tesla A100 GPU for 256 x 256 resolution and batch size 12 for 512 x 512
resolution. We use the ADAM optimizer [21] with learning rate fixed at 1x 1074,
The \;q is set at 10, ;.. and Agp; are set at 100. The other coefficients do not
affect the generation results much thus empirically set at 1.

A total of 2L = 14 layers are used on 256 x 256 resolution images, and 2L = 16
layers on 512 x 512 resolution. We leverage the modified ResNet50 provided by
Arcface [10] as the identity encoder and fix it through out the experiments. The
number of iterations required for optimizing the W and W+ for one identity is
set empirically at 50. Please refer to supplementary materials for more details.
Competing Methods. We compare our methods with previous state-of-the-
arts reconstruction-based face swapping methods. They are Faceshifter [23] and
SimSwap [7] which leverage self-designed network structures; InfoSwap [12]
that relies on tedious training procedure for high-resolution results; MegaF'S [54]
which borrows a fixed StyleGAN2 pretrained model; and Deepfakes [9] which
is a famous open-sourced tool. We use the official Deepfakes and FaceShifter
results from the FF+4++4 dataset and the officially released codes and models
for producing swapped results of other methods. We refer our results without
identity optimization as StyleSwap and depict the optimized one separately as
StyleSwap w/ W+.

4.1 Quantitative Evaluation

Evaluation Metrics. The quantitative experiments are carried out on the
FF++ dataset [34]. Following [23], 10 frames are uniformly sampled from the
1000 videos to get 10K faces for evaluation. We leverage five popularly used
metrics. The ID cosine similarity and ID retrieval scores are measured between
swapped results and the source using another pretrained identity-recognition
network [43]. Particularly, the calculation process of the ID retrieval score is the
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Table 1: Quantitative Results. We report the percentage of successfully re-
trieved images on the ID Retrieval metric. For the ID correlated metrics the
higher the better, and it is the lower the better for other metrics

Method \ Metric ID Retrieval T | ID Cosine 1 | Pose error] | Exp. error | | FID |
Deepfakes [9] 86.43% 0.438 3.96 8.98 4.07
FaceShiter [23] 90.04% 0.510 2.19 6.77 3.50
SimSwap [7] 93.07% 0.578 1.36 5.07 3.04
MegaF$ [51] 89.12% 0.497 3.69 10.12 4.62
InfoSwap [12] 95.82% 0.635 2.54 6.99 4.74
StyleSwap (Ours) 97.05% 0.677 1.56 5.28 2.72
StyleSwap w/ W+ 97.87% 0.706 1.51 5.27 2.58
same as [23]. The pose error is evaluated on the poses’ Ly distances produced
by a pose estimator [35]. The expression error is the Lo distance between the

results’ and targets’ expression embedding extracted from a facial expression
extraction model [12].

Quantitative Results. We list the results in Table 1. As can be seen that our
StyleSwap model directly achieves state-of-the-art results on ID-related metrics
and FID compared to previous ones, which shows the high similarity and im-
age quality of our method. The Swapping-Driven ID Inversion strategy further
improves ID similarity. Meanwhile, we achieve comparable pose and expression
errors with SimSwap [7] and outperform the others. The qualitative results fur-
ther prove that we preserve the attribute information at a robust level.

4.2 Qualitative Evaluation

Subjective evaluation plays an important role in face swapping. Note that for
fair comparisons, we do not perform W space optimization. We provide image-
based comparisons below. Demo videos and resources are available at https:
//hangz-nju-cuhk.github.io/projects/StyleSwap.

Qualitative Results on 256 x 256 Resolution. Here we show the image-based
comparisons on 256 x 256 resolution in Fig. 4. The source and target figures are
selected from FF++ [34]. Tt can be seen that MegaF$S [54] keeps the lighting
conditions and texture badly, and InfoSwap [12] also fails to preserve accurate
information. Though for some cases, SimSwap renders the best expression (the
first row), it sometimes produces visible artifacts. Our method generates robust
results with the highest similarity and competitive attribute preservation.
Qualitative Results on 512 x 512 Resolution. Particularly, we are able to
generate high-resolution results with 512x 512 resolution. Some results are shown
in Fig. 1. We compare our results with MegaF$S [51] and InfoSwap [12] which
are also able to produce high-resolution results. As shown in Fig. 5, MegaFS
generates a false skin tune of the target person and InfoSwap generates visible
artifacts. Our method clearly outperforms theirs on high-resolution results.
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Source Target | Deepfakes ~ FaceShifter ~ SimSwap MegaFS InfoSwap

Fig.4: Qualitative results on FF++4 with 256 x 256 resolution. Please
pay attention to the identity information at the red arrows, and the attribute
information at the yellow arrows

Table 2: User Study’s Ranking Scores. Larger is higher, with the maximum
value to be 5.
Perspective\ Method Faceshiter [23] SimSwap [7] MegaFS [54] InfoSwap [12] Ours

ID Similarity 3.05 2.59 2.80 2.89 3.68
Att. Preservation 3.16 2.94 2.21 3.36 3.82
Naturalness 2.95 2.62 2.43 3.11 3.88

User Study. We further conduct a user study for subjective evaluations. A total
of 30 users are involved to discriminate 20 different samples from the FF++
dataset. The users are asked to rank the quality of the fake images from the
following perspectives: 1) Id similarity with the source image; 2) Attribute
(Att) Preservation including expressions and backgrounds referring to the
target; and 3) Naturalness. Whether there are visible artifacts on the face
and does the figure look like a real person. Detailed instructions and training
are provided. As Deepfakes cannot produce plausible results, we only conduct
the user study on the other 4 methods and our StyleSwap. Thus we define the
highest score to be 5 and the lowest score to be 1 for each case.

The results are shown in Table 2. All ranks are given corresponding scores
with 5 being the highest. It can be seen that our method performs the best on
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Source

Fig. 5: Qualitative results on CelebA-HQ with 512 x 512 resolution

Table 3: Quantitative Ablation Study. The StyleSwap model with W space
optimization achieves the best results on all metrics

Method \ Metric ‘ ID Retrieval 1 ‘ ID Cosine 1 ‘ Pose error ‘ Exp. error | ‘ FID |
StyleSwap (vector) 96.68% 0.668 2.81 8.44 4.54
StyleSwap w/o Mask 95.56% 0.653 1.80 5.78 3.18
StyleSwap 97.05% 0.677 1.56 5.28 2.72
StyleSwap w/ W 97.54% 0.693 1.52 5.28 2.60
StyleSwap w/ W+ 97.87% 0.706 1.51 5.27 2.58

given all metrics. Specifically, the low score of SimSwap with respect to attribute
preservation is led by their artifacts.

4.3 Further Analysis

Ablation Studies. We conduct ablation studies on several important designs
of our network. (1) The effectiveness of the W+ space optimization and its com-
parison with the W space optimization StyleSwap w/ W; (2) Our StyleSwap
without the Mask Branch StyleSwap w/o Mask. (3) Our design of concate-
nating the target’s spatial feature maps into the style-based generator. An al-
ternative way is to map both source and target information into the W as per-
formed in [6,52]. This model is denoted as StyleSwap (vector). The cross-
reconstruction training paradigm does not affect numerical results and visual-
ization in most cases, thus the comparison will be given.

We show the quantitative ablation results in Table 3 under the same evalu-
ation protocols on FF++, and the qualitative ablation results on Fig. 6 which
is generated on CelebA-HQ [16]. It can be seen that without the spatial feature
maps, StyleSwap (vector) cannot preserve the attribute information correctly
and thus loses details. Moreover, the identity similarity improves along with the
addition of the Mask Branch, the W and W™ space optimization.
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Fig.6: Qualitative Ablation Study on CelebA-HQ.

Effectiveness on Face Forgery Detection. Importantly, our method can
contribute to the face forgery detection community [34,27,14]. We conduct ex-
periments under the standard face forgery detection pipeline and additionally
provide the same amount of generated data by our method and FaceShifter [23].
The evaluation results on 4 different datasets validate that our method assists
the forgery detection better. The details can be found in the Supplementary
Materials.

5 Conclusion and Discussion

Conclusion. In this paper, we propose StyleSwap, a concise and effective
framework that adapts a style-based generator for high-fidelity face swapping.
We emphasize several key properties of our method: 1) With only minor mod-
ifications to the StyleGAN2 generator, our method is easy to implement and
friendly to train, which saves a lot of human labor. 2) With the strong capabil-
ity of the style-based generator and the simple design of the Swapping-Guided
Mask Branch, our results are not only with high quality, similarity but enjoy
high robustness. 3) Our method can take the advantage of GAN inversion and
optimize the Wt space for improving identity similarity. 4) Our method can
benefit face forgery detection by providing realistic fake results.

Broader Impact. Face swapping technique could create deepfake results for
malicious purposes. We also take this issue into serious consideration and show
the effectiveness of our method in the face forgery detection community. We will
strictly limit the usage of this work for research purposes only.
Acknowledgements. This work is supported by NTU NAP, MOE AcRF Tier 1
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