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Abstract. Image translation and manipulation have gain increasing
attention along with the rapid development of deep generative mod-
els. Although existing approaches have brought impressive results, they
mainly operated in 2D space. In light of recent advances in NeRF-
based 3D-aware generative models, we introduce a new task, Semantic-
to-NeRF translation, that aims to reconstruct a 3D scene modelled by
NeRF, conditioned on one single-view semantic mask as input. To kick-
off this novel task, we propose the Sem2NeRF framework. In particular,
Sem2NeRF addresses the highly challenging task by encoding the seman-
tic mask into the latent code that controls the 3D scene representation
of a pre-trained decoder. To further improve the accuracy of the map-
ping, we integrate a new region-aware learning strategy into the design
of both the encoder and the decoder. We verify the efficacy of the pro-
posed Sem2NeRF and demonstrate that it outperforms several strong
baselines on two benchmark datasets. Code and video are available at
https://donydchen.github.io/sem2nerf/.

Keywords: NeRF-based generation, conditional generative model, 3D
deep learning, neural radiance fields, image-to-image translation

1 Introduction

Controllable image generation, translation, and manipulation have seen rapid
advances in the last few years along with the emergence of Generative Adversar-
ial Networks (GANs) [12]. Current systems are able to freely change the image
appearance through referenced images [19,68,18], modify scene content via se-
mantic masks [51,38,27], and even accurately manipulate various attributes in
feature space [22,54,55]. Despite impressive performance and wide applicability,
these systems are mainly focused on 2D images, without directly considering the
3D nature of the world and the objects within.

Concurrently, significant progress has been made for 3D generation by us-
ing deep generative networks [12,24]. Methods were developed for different 3D
shape representations, including voxels [52], point clouds [34], and meshes [11].
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Fig. 1. Illustration of the Semantic-to-NeRF translation task, which aims to achieve
free-viewpoint image generation by taking only a single-view semantic mask as input

More recently, Neural Radiance Fields (NeRF) [36] has been a new paradigm
for 3D representation, providing accurate 3D shape and view-dependent appear-
ance simultaneously. Based on this new representation, seminal 3D generation
approaches [44,37,3,13,2] have been proposed that aim to generate photorealis-
tic images from a given distribution in a 3D-aware and view-consistent manner.
However, these techniques are primarily developed purely for high-quality 3D
generation, leaving controllable 3D manipulation and editing unsolved.

It would be a dramatic enhancement if we can freely manipulate and edit an
object’s content and appearance in 3D space, while only leveraging easily obtained
2D input information. In this paper, we take an initial step toward this grand
goal by introducing a new task, termed Semantic-to-NeRF translation, anal-
ogous to a 2D Semantic-to-Image translation task but operating on 3D space.
Specifically, Semantic-to-NeRF translation (see Fig. 1) takes as input a single-
view 2D semantic mask, yet output a NeRF-based 3D representation that can
be used to render photorealistic images in a 3D-aware view-consistent manner.
More importantly, it allows free editing of the object’s content and appearance
in 3D space, by modifying the content only via a single-view 2D semantic mask.

However, generating 3D structure from a single 2D image is already an ill-
posed problem, and it will be even more so from a single 2D semantic mask.
There are also two other major issues in this novel task:

1. Large information gap between 3D structure and 2D semantics. A single-
view 2D semantic mask neither holds any 3D shape or surface information,
nor provides much guidance for plausible appearances, making it tough to
generate a neural radiance field with comprehensive details.

2. Imbalanced semantic distribution. Since semantic classes tend to be area-
imbalanced within an image, e.g. eyes occupy less than 1% of a face while
hair can take up larger than 40%, existing CNN-based networks may over-
attend to larger semantic regions, while discounting smaller semantic regions
that may be perceptually more salient. This will result in poor controllable
editing in 3D space when we alter small semantic regions.

To mitigate these issues, we propose a novel framework, Sem2NeRF, that
builds on NeRF [36] for 3D representation, by augmenting it with a seman-
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tic translation branch that conditionally generates high-quality 3D-consistent
images. In particular, the framework is based on an encoder-decoder architec-
ture that converts a singe-view 2D semantic mask to an embedded code, and
then transfers it to a NeRF representation for rendering 3D-consistent images.

Our broad idea here is that, instead of directly learning to predict 3D struc-
ture from degenerate single-view 2D semantic masks, the network can alterna-
tively learn the 3D shape and appearance representation from large numbers of
unstructured 2D RGB images. This has achieved significant advances in NeRF-
based generator [44,37,3,13,2], which transforms a random vector to a NeRF
representation. In short, our scenario is thus: we have a well-trained 3D genera-
tor, but we aim to further control the generated content and appearance easily.
The main idea is then to learn a good mapping network (like current methods for
2D GAN inversion [42,47]) that can encode the semantic mask into the somewhat
smaller latent space domain for 3D controllable translation and manipulation.
As for the second issue, we intriguingly discover that a region-aware learning
strategy is of vital importance. We therefore aim to tame an encoder that is
sensitive to image patches, and adopt a region-based sampling pattern for the
decoder. Furthermore, augmenting the input semantic masks with extracted con-
tours and distance field representations [5] also considerably helps to highlight
the intended semantic changes, making them more easily perceptible.

Following the above analysis, we build our Sem2NeRF framework upon the
Swin Transformer encoder [31] and the pre-trained π-GAN decoder [3]. To kick
off the single-view Semantic-to-NeRF translation task, we pinpoint two suitable
yet challenging datasets, including CelebAMask-HQ [25] and CatMask, where
the latter contains cat faces rendered using π-GAN and labelled with 6-class
semantic masks using DatasetGAN [63]. We showcase the superiority of our
model over several strong baselines by considering SofGAN [4], pix2pixHD [51]
with GAN-inversion [23], and pSp [42]. Our contributions are three-fold:

– We introduce a novel and challenging task, Semantic-to-NeRF translation,
which converts a single-view 2D semantic mask to a 3D scene modelled by
neural radiance fields.

– With the insight of needing a region-aware learning strategy, we propose
a novel framework, Sem2NeRF, which is capable of achieving 3D-consistent
free viewpoint image generation, semantic editing and multi-model synthesis,
by taking as input only one single-view semantic mask of a specific category,
e.g., human face, cat face.

– We validate our insight regarding our region-aware learning strategy and the
efficacy of Sem2NeRF via extensive ablation studies, and demonstrate that
Sem2NeRF outperforms strong baselines on two challenging datasets.

2 Related Work

NeRF and Generative NeRF. Starting as an approach focused on mod-
elling a single static scene, NeRF [36] had seen rapid development in different
aspects. Several approaches managed to reduce the training [48] and inference



4 Y. Chen et al.

time [29,33], while others improved visual quality [1]. Besides, it had also been
extended in other ways, e.g., dynamic scene [41], compositional scene [53], pose
estimation [58], portrait generation [30], semantic segmentation [66].

Follow-up works that integrated NeRF with generative models were most
relevant to ours. Schwarz et al. [44] proposed to learn a NeRF distribution by
conditioning the input point positions with a sampled random vector. Niemeyer
et al. [37] enabled multi-object generation by representing the whole scenes as a
composition of different components. To improve the visual quality, π-GAN [3]
adopted a SIREN-based [46] network structure with FiLM [40] conditioning.
StyleNeRF [13] turned to embedding the volume rendering technique into Style-
GAN [23]. More recently, VolumeGAN [57] relied on separately learning struc-
ture and texture features. MVCGAN [62] leveraged the underlying 3D geometry
information. EG3D [2] proposed an efficient tri-plane hybrid 3D representation.

Our work belongs to the class of generative models, but unlike all existing
methods that aimed to create a random scene, we aim to generate a specific
scene that is conditioned by a given single-view semantic mask. Although there
are concurrent works, e.g., 3D-SGAN [59], FENeRF [49], exploring the similar
condition settings, most of them purely focus on improving the quality of the
generated images, while resort to existing GAN inversion [23] to do the mapping.
In contrast, our work is more focused on improving the mapping from the mask
to the NeRF-based scene.

Image-to-Image Translation is about converting an image from one source
representation, e.g., semantic masks, to another target representation, e.g., pho-
torealistic images. Since its introduction [18], progress has been made with re-
gard to better image quality [51,6], multi-modal outputs [69,64,8], unsupervised
learning [68,28], etc.. More recently, there is a new trend [42,45,56] of tackling
this task by editing the latent space of a pre-trained generator, e.g., StyleGAN.

In contrast to all mentioned work that aimed to map a semantic mask to
an image, ours is focused on mapping to a 3D scene. We also notice that there
are some recent approaches targeted at converting semantic masks to 3D scenes.
Huang et al. [17] introduced rendering novel-view photorealistic images from a
given semantic mask, by first applying semantic-to-image translation [38], then
converting the single-view image to a 3D scene modelled by multiplane images
(MPI) [67]. Hao et al. [14] proposed to learn a mapping from a semantically-
labelled 3D block world to a NeRF-based 3D scene, using a scene-specific setting.
Chen et al. [4] introduced a 3D-aware portrait generator by first mapping the
given latent code to a semantic occupancy field (SOF) [7] for rendering novel
view semantic masks, followed by applying image-to-image translation.

Unlike all mentioned attempts on learning semantic to 3D scene mappings,
ours is the first to introduce the single-view semantic to NeRF translation task.
Our work differs from theirs in: 1) We do not rely on any separate image-to-
image translation stage, resulting in better multi-view consistency; 2) We do not
require multi-view semantic masks for both training and testing phases, easing
the data collection effort; 3) We pinpoint a solution for creating pseudo labels
and demonstrate reasonable results beyond the human face domain.
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Fig. 2. Architecture of the Sem2NeRF framework. It aims to convert a single-view
semantic mask to a 3D scene represented by NeRF. Specifically, a given semantic mask
will be partitioned into patches, which will be further encoded by a patch-based encoder
Eθ into a latent style code (γ, β) of a pre-trained NeRF-based 3D generator Gψ. A region
R will be randomly sampled to enforce awareness of differences among regions. And
an optional latent vector z is included to enable multi-modal synthesis

3 Methodology

As shown in Fig. 1, our main goal is to train a Semantic-to-NeRF translation
network Φs→V , such that when presented with a single-view 2D semantic mask
s, it generates the corresponding NeRF representation V, which can then be
used to render realistic 3D-consistent images. This task is conceptually similar
to the conventional semantic-to-image setting, except that here we opt to go
beyond 2D image translation, and deal with the novel controllable 3D translation.
More importantly, we can freely change the 3D content by simply modifying the
corresponding content in a single-view 2D semantic mask.

In order to learn such a framework without enough supervision for arbitrary
view appearances, we observed that 3D information can be learned from large
image collections [20,3,2]. Therefore, our key motivational insight is this: instead
of directly training Φs→V using single-view semantic-image pairs (s, I) (like cur-
rent methods for 2D semantic-to-image translation [51,38]), we will train it as a
two-stage pipeline shown in Fig. 2. Here, (A) we utilize a pre-trained 3D genera-
tor (lower portion Gψ) that learns 3D shape and appearance information from a
large set of collected images; (B) we pose this challenging task as a 3D inversion
problem, where our main target is to design a front-end encoder (upper portion
Eθ) that maps the semantic mask into the generator latent space accurately.

The two training stages are executed independently and can be separately
implemented with different frameworks. There are at least two unique benefits
of breaking down the entire controllable 3D translation into two-stages: 1) The
training does not require copious views of semantic-image pairs for each instance,
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which are difficult to collect, or even impossible in some scenarios; 2) The com-
partmentalization of the 3D generator and the 2D encoder allows greater agility,
where the 3D information can be previously learned on various tasks with a large
collection of images and then be freely plugged into the 3D inversion pipeline.

3.1 3D Decoder with Region-Aware Ray Sampling

Preliminaries on NeRF. We first provide some preliminaries on NeRF before
discussing how we exploit it for Sem2NeRF. NeRF [36] is one kind of implicit
functions that represents a continuous 3D scene, which has achieved great suc-
cesses in modeling 3D shape and appearance. A NeRF is a neural network that
maps a 3D location x ∈ R3 and a viewing direction d ∈ S2 to a spatially vary-
ing volume density σ and a view-dependent emitted color c = (r, g, b). NeRFs
trained on natural images are able to continuously render realistic images at ar-
bitrary views. In particular, it requires to use the volume rendering [26], which
computes the following integral to obtain the color of a pixel:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt,where T (t) = exp(−
∫ t

tn

σ(r(s))ds), (1)

where r(t) = o + td is the ray casting from the virtual camera located at o,
bounded by near tn and far tf , and T (t) represents the accumulated transmit-
tance of the ray traveling from tn to t. The integral C(r) is further implemented
with a hierarchical volume sampling strategy [26,36], resulting in the optimiza-
tion of a “coarse” network followed by a “fine” network.

NeRF-based Generator. Our work is mainly based on a representative NeRF-
based generator, π-GAN [3], which learns 3D representation using only 2D su-
pervision. Inspired by StyleGAN2 [23], the architecture of π-GAN is mainly
composed of two parts, a mapping network F : Z → W that maps a latent vec-
tor z in the input latent space Z to an intermediate latent vector w → W, and
a SIREN-based [46] synthesis network that maps w to the NeRF representation
V that supports rendering 3D-consistent images from arbitrary camera poses.

Our Sem2NeRF framework can use various NeRF-based generators. Here,
we choose π-GAN as the main decoder in our architecture for two main rea-
sons. Firstly, among all published works related to NeRF-based generators, π-
GAN achieves state-of-the-art performance in terms of rendered image quality
and their underlying 3D consistency. Secondly and more importantly, similar to
StyleGAN, the FiLM [40] conditioning used by π-GAN enables layer-wise control
over the decoder and the mapping network decouples some high-level attributes,
making it easier to perform 3D inversion on top of NeRF, i.e., searching for the
desired latent code w that best reconstructs an ideal target. The similar obser-
vation has been previously explored in the latest 2D GAN inversion [9,23,42].

Region-Aware Ray Sampling. While π-GAN already provides high-quality
view-consistent rendered images, our main goal is to accurately restore the NeRF
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from a single-view semantic mask, and even freely edit the 3D content via such a
map. To achieve this, the network should be sensitive to local small modifications.
However, this is not supported in the original π-GAN, which is trained on each
entire image with a global perception. It stores scene-specific information in a
latent code, which is shared across all points that are bounded by the rendering
volume. As a result, a small change in an original latent code will easily cause
a global modification in generation. This may not impact pure 3D generation,
for which only the quality of global shape and appearance is paramount, but
it has a large negative effect on recreating a 3D representation that accurately
matches the corresponding semantic mask.

To mitigate this issue, we adopt a region-based ray sampling pattern [44,30]
in the π-GAN decoder, that attempts to encourage latent codes to represent local
regions at different scales and locations. Suppose the rendered image I with a
target size h× w, a local region R used for training is randomly sampled as

R(α, (∆h,∆w)) = {(αh+∆h,αw +∆w)} , (2)

where (αh+∆h,αw +∆w) denotes the sampling coordinates of rays, with α ∈
(0, 1] being the scaling factor and (∆h ∈ [0, (1− α)h], ∆w ∈ [0, (1− α)w]) being
the translation factor. To obtain such training pairs between the NeRF rendered
output and the local ground truth, we sample the original whole image using
the same region coordinates R with bilinear interpolation. This strategy leads
to large improvements on conditional generation as shown in the experiments.

3.2 3D Inversion Using Region-Aware 2D Encoder

3D Inversion. To inversely map a semantic mask s into the W latent space of
the 3D generator Gψ by an encoder Eθ, with respective parameters ψ and θ, we
train Eθ to minimize the reconstruction error between ground truth image I and
output Î. Specifically, Semantic-to-NeRF translation represents the mapping

Φs→V(x,d, z; s) = Gψ(x,d, z; Eθ(s)) = V(σ, c) (3)

where x,d denotes point position and ray direction, while the derived density σ
and color c can be used to calculate the corresponding pixel value via volume
rendering as in Eq. (1). For controllable 3D generation, s is the input single-view
semantic mask, embedded into W space to control the generated 3D content,
while we also enable multi-modal synthesis by adding another latent vector z
to model the generated appearance. Note that s only comes in a single view,
which is not necessary the same as the output viewing direction. In short, we
use only single-view semantic-image pairs (s, I) for the Sem2NeRF training, as
the 3D view-consistent information has been captured by the fixed pre-trained
3D generator Gψ. Hence, we focus only on training the encoder network Eθ to
learn the posterior distribution q(w|s) for 3D inversion.

Region-Aware 2D Encoder. A simple way for 3D inversion is to directly ap-
ply an existing 2D GAN inversion framework. However, this straightforward idea
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does not work well as we originally discovered when using the state-of-the-art
pSp encoder [42] in our setting, especially for small but perceptually impor-
tant regions, such as eyes. Our conjecture is that the conventional CNN-based
architecture integrates the neighboring information via overaggressive filtering,
resulting in heavy loss of small details [60].

To mitigate this issue, we also deploy a region-aware learning strategy in
the 2D encoder, which is inspired by the latest patch-based methods [10,65]
that capture information in every patch with equal possibility. In other words,
when we directly extract features from local patches, it will be more sensitive
to the semantic variation within each patch, which can ameliorate the problem
of imbalanced semantic distribution within an image. In particular, we adopt
the Swin Transformer [31] as the encoder architecture. To embed the semantic
mask s into the W latent space of the pre-trained 3D generator, we replace the
final classification output size with the size of the latent vectors w. Besides, to
further stabilize the inversion training, we take inspiration from the truncation
trick [22,42] and set the learned latent codes for the pre-trained decoder as

γ = γ +∆γ, β = β +∆β, (4)

where γ and β represent the embedded vectors for the W latent space, i.e.,
frequency and phase shift of π-GAN, respectively; ∆γ and ∆β are the outputs
of the proposed encoder Eθ, while γ and β are the average latent codes extracted
by the pre-trained π-GAN original mapping network F : Z → W.

Additional Inputs for the 2D Encoder. As mentioned, a semantic mask
contains sparse information, where the changing of small regions may be imper-
ceptible to the network, making the semantic-based controllable 3D editing very
challenging. Considering that editing a semantic mask only effectively alters the
boundaries between different semantic labels, we conjecture that explicitly aug-
menting the semantic input with boundary information will be useful for seman-
tic editing. Therefore, we concatenate the semantic mask input with contours
and distance field representations [5] for the region-aware encoder. These addi-
tional inputs further improve the semantic editing performance considerably as
shown in the experiments. Note that contours and distance field representations
are both directly calculated from the semantic masks (refer to the supplementary
document for more details), which do not involve any extra labels.

3.3 Training Loss Functions

During the training phase, we use the single-view semantic mask s, the cor-
responding viewing direction ds, and the paired ground truth RGB image I.
Similar to Semantic-to-Image translation, we start by applying a pixel-level re-
construction loss,

Lrec(I, s, ds) = ∥I− Gψ(Eθ(s), ds)∥2 , (5)

where Eθ(s) denotes the latent codes mapped from s via the region-aware encoder
Eθ(·), while Gψ(Eθ(s), ds) represents the generated image rendered from direction
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ds via the decoder Gψ(·). Unless otherwise specified, the aforementioned region-
aware sampling strategy is applied to Gψ and I before calculating any losses.

To further enforce the feature-level similarity between the generated image
and the ground truth, the LPIPS loss [61] is leveraged,

LLPIPS(I, s, ds) = ∥F(I)−F(Gψ(Eθ(s), ds)))∥2 , (6)

where F(·) refers to the pre-trained feature extraction network.
Inspired by the truncation trick [22,42], we further encourage the decoder

latent codes γ, β to be close to the average codes γ, β, which is achieved by
regularizing the encoder with

Lreg(s) = ∥Eθ(s)∥2 . (7)

To improve image quality, especially for novel views, we further apply a non-
saturating GAN loss with R1 regularization [35],

LGAN(I, s, d) = f(D(Gψ(Eθ(I), d))) + f(−D(I)) + λR1 |∇D(I)|2 ,
where f(u) = − log(1 + exp(−u)).

(8)

Here D(·) is a patch discriminator [18], aligned with our region-aware learning
strategy for the decoder, and λR1 is a hyperparameter that is set to 10. Note
that here the viewing direction d is not required to be the same as the input
semantic viewing direction ds, and we randomly sample this viewing direction
from a known distribution, i.e. Gaussian, following the settings of π-GAN [3].

Finally, the overall training objective for our framework is a weighted com-
bination of the above loss functions as

LSem2NeRF = λrecLrec + λLPIPSLLPIPS + λregLreg + λGANLGAN. (9)

3.4 Model Inference

For inference, our model takes as input a 2D single-view semantic mask, while
ds is optional, required only when rendering an image with the same viewing di-
rection as the semantic mask. Different from the training phase, during inference
the rays are cast to cover the whole image plane, rather than a local region.
Multi-View Generation. Since the employed decoder is a NeRF-based gener-
ator, Sem2NeRF inherently supports novel view generation. Specifically, given a
semantic mask s, it will first be mapped as an embedded vector in the W latent
space that controls the “content” of the NeRF-based generator, whereupon a
novel view image can then be generated by volume rendering the NeRF from an
arbitrary viewing direction.
Multi-Modal Synthesis. Similar to the diversified mapping in semantic-to-
image [38], ideally a single semantic mask should be translated into multiple
NeRFs consistent to it. Our Sem2NeRF framework inherently supports multi-
modal synthesis in inference due to the usage of FiLM [40] conditioning on
π-GAN, without requiring any special customization in training. In practice, we
additionally pass a random-sampled vector to the pre-trained π-GAN noise map-
ping module to obtain corresponding latent style codes z. Style mixing [42,22]
is then performed between z and Eθ(s) to yield multi-modal outcomes.



10 Y. Chen et al.

4 Experiments

4.1 Settings

Datasets. To achieve Semantic-to-NeRF translation, we assume the training
data to have single-view registered semantic masks and images, with the cor-
responding viewing directions. Two datasets were used for evaluation in our
experiments. CelebAMask-HQ [25] contains images from CelebA-HQ [32,21],
manually-labelled 19-class semantic masks, and head poses. We merged the left-
right labels of symmetric parts, i.e., eyes, eyebrows and ears, into one label per
part. The dataset was randomly partitioned into training set with 28,000 samples
and test set with 2,000 samples. CatMask is built using π-GAN and Dataset-
GAN [63] to further demonstrate the potential of Semantic-to-NeRF task and
Sem2NeRF. Technical details are elaborated in the supplementary document.
Baselines. We identified the following three methods as baselines for com-
parison in our introduced Semantic-to-NeRF task. SofGAN [4] is an image
translation approach. For a given single-view mask, we first apply inversion via
iterative optimizations to find the corresponding latent vector for the preced-
ing SOF [7] network, which can generate novel view semantic masks for further
image-to-image mapping. Note that SofGAN requires training data to have high-
quality multi-view semantic masks, which is not available nor needed in our task.
pix2pixHD [51] is an image translation approach. We adopt it with general
GAN-inversion techniques [3,23]. For a given mask, it is first mapped to a photo-
realistic image via pix2pixHD, which will then be mapped to the corresponding
latent code in π-GAN via GAN-inversion. With the recovered codes, multi-view
images can be directly obtained using π-GAN. pSp [42] is an image translation
approach that is designed for encoding into StyleGAN2 [23]. We adapted it by
using its ResNet [15]-based pSp encoder to replace the π-GAN mapping network,
and we further trained the network with objective functions used by pSp.
Evaluation Metrics. We show qualitative results by rendering images with
different viewing directions and FOV (Field of View). We also report Frechet In-
ception Distance (FID) [16] and Inception Score (IS) [43] using Inception-v3 [50]
over the test sets. Average running time and model sizes are also compared.
Implementation Details. Swin-T is used in all experiments with input resolu-
tion 224×224. For the decoder, the size of local region R is set to 128×128. The
step size of each ray is set to 28. Other miscellaneous settings of the pre-trained
decoder, e.g., ray depth ranges, are kept unchanged. Hyper-parameters in Eq. (9)
are set as λrec=1, λLPIPS=0.8, λreg=0.005, λGAN=0.08. The implementation is
done in PyTorch [39]. More details are provided in the supplementary document.

4.2 Results

Comparisons on CelebAMask-HQ.As shown in Fig. 3, compared to all other
baseline models, Sem2NeRF (1st&5th columns) achieved the best perfor-
mance on both mapping accuracy and multi-view consistency. pSp (2nd&6th
columns) generated images with lower quality compared to ours, especially for
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Fig. 3. Comparisons on CelebAMask. Images at each column are generated by the
corresponding models mentioned at the bottom. Only SofGAN requires generation of
multi-view semantic masks, shown at the top right corners of related images

novel views, mainly because our model is designed with a region-aware learning
strategy and a GAN loss for random-posed images during training. The CNN-
based encoder also failed to capture fine-grained details, e.g., eyebrow shapes
for the left face. Our method and the inversion-based pix2pixHD were better in
matching semantics compared to pSp. pix2pixHD (3rd&7th columns) can
map semantic masks to high quality images in the same viewpoint (top row), but
does not generate novel views well. Basic GAN-inversion is not an efficient or
easy way to find the desired latent codes, since the current 3D generative models
are still quite immature. Even though images with the same viewing direction as
the masks are reasonable, those novel view outputs contain artifacts. SofGAN
(4th&8th columns) generated each single-view image with good quality; how-
ever, its results do not match with the given mask and lacked 3D consistency.
The reason is that it is hard to map the given semantic mask to the desired latent
codes of its semantic generator (SOF Net), whose sampling space is relatively
small due to the lack of training data (only 122 subjects). The recovered mask
did not match well with the given mask (top row). Besides, although the seman-
tic masks show good multi-view consistency (top right corner of each image),
conducting semantic-to-image mapping separately for each viewpoint does not
guarantee that the consistency will be retained, since a semantic mask hardly
contains any texture information and is geometrically ambiguous.

Quantitative results are give in Table 1. It can be seen that our Sem2NeRF
method achieves the best performance, significantly outperforming the two base-
lines in both FID and IS scores. Note that we did not quantitatively compare
single view image quality with SofGAN, considering that SofGAN for Semantic-
to-NeRF is limited by its mask inversion quality and multi-view consistency,
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Table 1. Quantitative comparisons on CelebAMask @ 128×128

FID ↓ IS ↑ Runtime(s) ↓ # Params(M) ↓
pix2pixHD [51] (with inversion) 67.32 1.72 161.59±0.859 ∼184.24
pSp [42] 55.56 1.74 0.25±0.004 ∼138.27
Sem2NeRF(Ours) 41.52 2.03 0.18±0.003 ∼32.01
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Fig. 4. Editing 3D scenes by changing single-view semantic masks. Three viewpoints
are shown for better comparison in each group

both of which cannot be measured by FID or IS scores. We also notice that
scores of all models are lower than expected. The main reason is that π-GAN is
initially trained on CelebA, but due to the requirement of semantic masks, our
task conducted experiments using CelebA-HQ. The domain gap between CelebA
and CelebA-HQ reduced the FID scores dramatically. Besides, our model also
sees advantages in terms of running time and model size.

Mask Editing. As depicted in Fig. 4, our framework supports editing of 3D
scenes by simply changing the given semantic mask, and is applicable to both
labels associated with large regions, e.g., hair, as well as small regions, e.g.,
eyes, nose, mouth. This is not trivial since the semantic mask is not directly
leveraged to control the 3D scene at the pixel level (if even possible), but is
instead encoded into a sparse latent code, which may fail to preserve fine-grain
editing. We address this challenge via the region-aware learning strategy.

Multi-Modal Synthesis. Sem2NeRF supports multi-modal synthesis by sim-
ply changing the last few layers of the style codes. As shown in Fig. 5, we
randomly sampled two style codes, and applied linear blending to continuously
change the general styles of the 3D scenes generated by the given masks.

Ablation Studies. To further evaluate the efficacy of Sem2NeRF, we designed
four ablation models, including 1) without region-aware encoder Φwo RE, where
the Swin-T encoder is replaced by the pSp encoder; 2) without region-aware
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Style Blending

Right
Viewpoint

(FOV=16)

Left
Viewpoint

(FOV=14)

(FOV=12)

Fig. 5. Multi-modal synthesis. Styles are linearly blended from left to right. Three
viewpoints are provided from top to bottom

w/o GAN lossw/o contour augmentationw/o ray sampling for decoderw/o region-aware encoder

not aware of small modifications blurry & not sensitive to changes contains blurry edges contains obvious artifacts

Fig. 6. Results of ablation studies. Each group (two views) is generated by a model
without the component mentioned at the top. Main issues are described at the bottom

decoder Φwo RD, where the region-aware ray sampling strategy is discarded; 3)
without input augmentation Φwo IA, where contours and distance field repre-
sentations are removed from the input; and 4) without random-pose GAN loss
Φwo GAN, where both Eq. (8) and the discriminator are removed.

As shown in Fig. 6, compared to the full model (Fig. 4), Φwo RE (1st group)
is not sensitive to changes in small regions, i.e., eyes, mainly because the CNN-
based encoder tends to ignore small changes. Φwo RD (2nd group) shows similar
pattern (nose region) as the latent codes are not trained to be region-aware. It
also has lower image quality, because the region-aware strategy enables denser
sampling. Φwo IA (3rd group) achieves comparable performance but with blurry
edges for some regions, e.g., mouth. This is because both contour and distance
field representation help highlight the boundary information. Finally, images ob-
tained by Φwo GAN (4th group) have more artifacts in both views, demonstrating
that GAN loss is important for improving the image quality of different poses.

Experiments beyond Human Faces. The introduced task can easily go be-
yond the human face domain by leveraging state-of-the-art weakly supervised
semantic segmentation model to create pseudo labels. In this work, we present
a Cat face example. Experimental results are shown in Fig. 7. Even when train-
ing with noisy pseudo labels, Sem2NeRF is robust enough to generate plausible
results. For a given cat semantic mask, our model can map it to a 3D scene and
render cat faces from arbitrary viewpoints, including different viewing directions
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Fig. 7. Results on CatMask. Left part compares results of changing eyes shape. Right
part showcases results of style linear blending (in zigzag order)

Fig. 8. Challenging cases of Sem2NeRF on Semantic-to-NeRF translation

(left part), and different FOV (right part). It also allows changing the 3D scenes
by editing the single-view semantic masks, e.g., changing the eye shape (left two
rows). Multi-modal synthesis is also supported (right part in zigzag order).
Challenging Cases. Although Sem2NeRF addresses the Semantic-to-NeRF
task in most cases, its advantages rely on an assumption, namely the generative
capability of the pre-trained decoder. We show some challenging cases in Fig. 8.
Accessories may have the wrong geometric shape (glasses in 1st case), or fail to
render (earring in 2nd case), while masks with extreme poses might be converted
to 3D scenes with abnormal texture or distorted contents (last two cases).

5 Conclusions

We have presented an initial step of extending the 2D image-to-image task to the
3D space, and introduced a new task called Semantic-to-NeRF translation. It
aims to reconstruct a NeRF-based 3D scene, by taking as input only one single-
view semantic mask. We further proposed Sem2NeRF model, which addresses
the task via encoding the semantic mask into the latent space of a pre-trained
3D generative model. More importantly, we intriguingly found the importance of
regional awareness for this new task, and tamed Sem2NeRF with a region-aware
learning strategy. We demonstrated the capability of Sem2NeRF regarding free
viewpoint generation, mask editing and multi-modal synthesis on two benchmark
datasets, and showcased the superiority of our framework compared to three
strong baselines. Future work will include adding more scenarios to the new
task, and supporting changing styles for specific regions.
Acknowledgements This research is partially supported by CRC Building 4.0
Project #44.
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