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Abstract. Face reenactment and swapping share a similar identity and
attribute manipulating pattern, but most methods treat them separately,
which is redundant and practical-unfriendly. In this paper, we propose an
effective end-to-end unified framework to achieve both tasks. Unlike ex-
isting methods that directly utilize pre-estimated structures and do not
fully exploit their potential similarity, our model sufficiently transfers
identity and attribute based on learned disentangled representations to
generate high-fidelity faces. Specifically, Feature Disentanglement first
disentangles identity and attribute unsupervisedly. Then the proposed
Attribute Transfer (AttrT) employs learned Feature Displacement Fields
to transfer the attribute granularly, and Identity Transfer (IdT) explic-
itly models identity-related feature interaction to adaptively control the
identity fusion. We joint AttrT and IdT according to their intrinsic rela-
tionship to further facilitate each task, i.e., help improve identity consis-
tency in reenactment and attribute preservation in swapping. Extensive
experiments demonstrate the superiority of our method. Code is available
at https://github.com/xc-csc101/UniFace.
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1 Introduction

Recent research has witnessed the development of face reenactment and swap-
ping due to their extensive applications in the metaverse. Face reenactment aims
to transfer the attributes (e.g ., pose and expression) from target to another
source face while keeping the identity of the source face unchanged. Similarly,
face swapping aims to transfer the identity of the source face into the target face
while keeping the attributes of the target face unchanged. Although these two
tasks have the same pattern, i.e., recombining the corresponding identity and at-
tribute from source and target faces, current methods treat them independently

⋆ indicates equal contributions.
† indicates corresponding author.
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Fig. 1. Comparison with SOTA methods. Top part shows the results of chal-
lenging situations in face reenactment, e.g ., large pose, occlusion, and extreme light-
ing. Our method is significantly better than FOMM [34] and PIRenderer [31] with
higher realism and better source identity preservation. Bottom part shows that our
method achieves better performance both on the source identity integration and tar-
get attributes preservation (i.e., especially on mouth and eyes regions) than SOTA
FaceShifter [23] and SimSwap [5] in face swapping. Images are from official attached
results or released codes for fair comparisons. We further present the results of in-the-
wild situations in the right part. Our method could generalize to out-of-domain pairs
and generate high-fidelity faces. Please zoom in for more details.

and design specific networks for each task, which lack universal applicability. In
this paper, we focus on exploiting a unified end-to-end framework for both tasks.

Some previous works have the same spirits as ours. Ngo et al . [26] learn
isolated disentangled representations from input face and its corresponding 2D
landmarks to guide the generation of the transformed face. Other works borrow
help from the 3D information. Peng et al . [29] and Cao et al . [4] incorporate
3DMM [2, 9] to decompose a face into pose, expression, and identity coefficients,
and then recombined factors of the specific task are used to synthesize trans-
formed face. However, there are two continuously critical issues: 1) How
to get rid of pre-trained structure information. Obtaining the landmarks and
3DMM coefficients requires excessive annotation effort and complicated pre-
processing. Besides, as shown in the top part of Fig. 1, when under some chal-
lenging situations, e.g ., occlusion, extreme lighting, and large pose, the structure
representations are ambiguous and would cause degradation problems. 2) How
to sufficiently transfer the identity and attribute representations and facilitate
corresponding tasks in a joint framework. The above methods just recombine dif-
ferent facial parameters for face swapping or reenactment accordingly, ignoring
the intrinsic relationship between two tasks and resulting in poor performance.

In this paper, we are dedicated to solving the above problems. First, instead
of relying on fixed identity and attribute models to extract corresponding embed-
dings, we design a Feature disentanglement module that consists of two embed-
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ders to decouple identity and attributes by imposing a set of reconstruction losses
in face reenactment. Our attribute embedder learns only attributes-related de-
scriptors, and identity embedder encodes face to low-resolution semantic feature
maps with sufficient identity information. Second, to produce more high-fidelity
transformed faces based on disentangled representations, we devise Attribute
Transfer (AttrT) and Identity Transfer (IdT) to process attributes and identity,
respectively. For face reenactment, recent works [26, 44, 3, 28] implicitly extract
attribute information into the latent vector space, which significantly leads to
spatial information loss. Consequently, other works [34, 31, 11] explicitly predict
flow fields to transform the source face spatially, but they are still dependent on
structure information. To align the attributes of the source face with the target
more efficiently, our AttrT learns Feature Displacement Fields (FDF) from at-
tribute representation and applies them to source identity features. A powerful
learned decoder with rich facial prior is followed to eliminate unnatural texture
introduced by the warping operation and generate contents that do not exist in
the source faces end-to-end. For face swapping, to align the identity of the target
face with the source face, mainstream methods [23, 5, 39] employ AdaIN [16] to
transfer the identity information of the source face into the target. However,
lack of semantic interaction makes these methods prone to aggregate inappro-
priate identity cues to the target, leading to low identity consistency. Inspired
by self-attention [45], we design an efficient IdT module that performs identity
interaction more granularly to control the identity-related feature fusion.

More importantly, we joint AttrT and IdT in a unified framework according
to the intrinsic relationship of two tasks, termed Feature Transfer, which could
further tackle the problems of identity inconsistency in isolated face reenactment
and the dilemma of attributes preservation in isolated face swapping. Specifically,
the IdT in face reenactment serves as an identity enhancement module, which
allows the ambiguity warped feature to learn detailed texture information from
the source face, resulting in higher identity consistency between the transformed
and source faces. For face swapping, we apply AttrT on source features to align
their attributes with the target face before sending to IdT. The aligned source
face makes our method preserve the attributes of the target face excellently while
not harming the identity modification performance, as depicted in Fig. 1.

In summary, we make the following three contributions:

– We propose a novel end-to-end unified framework to achieve both face reen-
actment and swapping. Our method does not rely on prior knowledge during
inference stage to disentangle identity and attribute representations.

– We thoroughly exploit the intrinsic relationship between face reenactment
and swapping, and design the novel joint-learned AttrT and IdT that transfer
the attributes and maintain identity consistency for reenactment, simultane-
ously facilitate attributes preservation and integrate identity for swapping.

– Abundant experiments qualitatively and quantitatively demonstrate the su-
periority of our method to generate high-fidelity faces, i.e., more attributes-
alike identity-preserving reenacted faces and identity-consistent attributes-
preserving swapped faces than both SOTA unified and isolated methods.
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2 Related Work

Unsupervised Disentanglement. Unsupervised separation of face attributes
is very common in face manipulation. Zheng et al . [49] disentangle facial seman-
tics from StyleGAN without external supervision. Liu et al . [24] adopt structure-
texture independent network to achieve attribute disentanglement. Some meth-
ods [40, 44] of face reenactment extract structure cues from drive face by impos-
ing reconstruction loss. Similar to these works, we design a feature disentangle-
ment module to decouple identity and attribute features unsupervisedly.

Face Reenactment. Face reenactment aims to animate the source face into
pose and expression of the target face, which could be roughly divided into
two categories: instruction-based and warping-based. Instruction-based methods
animate the source face instructed by the target structure. Works [41, 15, 46,
13, 6] adopt landmarks and segmentation maps to indicate the facial attribute.
Recently, 3DMMs have been proven to be very effective for modeling faces.
Some works [19, 21] fit 3DMMs by pose and expression from the target face, and
identity from the source face to achieve reenactment. Moreover, some AdaIN-
based [16] methods [44, 43] encode target attributes in the latent vector space,
which is later injected into the source face.

However, the above methods could not explicitly indicate the transformations
between the source and target faces. Subsequently, warping-based methods have
grown to be popular. X2Face [40] learns flow fields from the target face, which
are used to warp the embedded source face at the pixel level, but it suffers unnat-
ural head deformations. In the follow-up work, MonkeyNet [33] uses sparse key
points to predict flow fields for source appearance driving. FOMM [34] utilizes
relative key-point locations to further improve identity preservation. Recently,
several image-level warping-based works [31, 48, 11] separate motion estimation
and warped source face refinement into two stages. However, when under extreme
conditions, structural priors are not reliable, leading to identity degradation. Un-
like the above, our method is independent of facial structure, and the identity
transfer further boosts the model’s robustness to extreme conditions.

Face Swapping. Face swapping aims to change the facial identity but keep
other face attributes constant. Early efforts [37, 36] rely on 3D geometrical oper-
ations to transfer identity. However, these approaches fail to produce high-fidelity
images since their performance depends on the accuracy of the non-trainable ex-
ternal 3D models. Recently, with the development of GANs [12], learning-based
methods have made significant progress. IPGAN [1] recombines learned disentan-
gled identity and attribute embeddings to generate swapped faces. But vectorized
representations inevitably bring information loss. Consequently, FaceShifter [23]
integrates the identity and attributes by a carefully designed fusion module.
SimSwap [5] proposes a weak feature matching loss to improve target attributes
preservation. HifiFace [39] uses an extra 3D shape model to pay more atten-
tion to shape change. MegaFS [50] follows the GAN-Inversion [18] paradigm to
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Fig. 2. Overview of the proposed method. Given a source face Is and target face
It, Feature Disentanglement first extracts the disentangled representations, obtaining
accurate Feature Displacement Fields (FDF) generated from attributes vector Zt, and
identity features F s and F t, which are then sent to Feature Transfer. Specifically,
Attribute Transfer (AttrT) uses accurate FDF to puppeteer F s into the aligned F̄ s

with the desired attributes. Identity Transfer (IdT) receives the F t (serve as F r) and
F̄ s (serve as F i) to transfer the identity information from source to the target if in
swapping task, otherwise fed with the F̄ s (serve as F r) and F s (serve as F i) to preserve
the identity details after global transformation in reenactment task. Subsequently, the
reenacted features F̂ s and swapped features F̂ t go through a powerful Generator Ψ
to synthesize ˆIRe and ˆISw, respectively.

generate high-resolution swapped faces. However, the above methods use direct
concatenation, or AdaIN [16], which fails to model identity-related feature in-
teraction and is prone to introduce identity-unrelated cues, resulting in poor
identity consistency and attribute preservation. To alleviate these problems, we
design identity transfer based on self-attention to finely integrate identity infor-
mation and further plug with attribute transfer to help maintain attributes.

3 Method

In this paper, we propose a novel efficient paradigm to complete face reenactment
and swapping in an end-to-end unified framework. As shown in Fig. 2, given a
target face It that provides attribute cues and a source face Is that provides
identity cues, the model learns to animate the source Is guided by the FDF
extracted from It to generate reenacted face ˆIRe, while integrate the identity
information from Is into the target It to generate swapped face ˆISw.

3.1 Architecture

Feature Disentanglement. The previous methods [26, 4, 29] that use iden-
tity and structure priors to extract corresponding disentangled representations,
which are fixed as the information guidance during training. However, such rep-
resentations would be inaccurate under challenging conditions, leading to per-
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formance degradation. Here we introduce Feature Disentanglement module con-
sisting of two embedders to decouple identity and attribute features. Specifically,
Identity Embedder employs an encoder Φid

E that embeds It and Is ∈ R3×H×W

to low-resolution semantic feature maps, obtaining F t and F s ∈ RC×H/8×W/8,
which contain more identity-related spatial details than that in vector space.

F t,F s = Φid
E (It),Φ

id
E (Is). (1)

Attribute Embedder is designed in an Encoder-Decoder architecture, the encoder
Φattr

E embeds It to disentangled attribute vector Zt ∈ R512, which is sent to the
followed Φattr

D to estimate Feature Displacement Fields W fdf ∈ R2×H/4×H/4.

W fdf = Φattr
D (Φattr

E (It)). (2)

To guide these embedders to learn the desired disentangled descriptors, we
impose several reconstruction losses during the reenactment training phase to
achieve disentanglement in a fully unsupervised manner.

Attribute Transfer. Current image-level warping-based methods usually cause
severe artifacts, which require further refinement in the two-stage paradigm. To
align the source face with the desired attributes and preserve visual textures
more efficiently, we employ Attribute Transfer module that adopts the warping
operation on source identity features. Specifically, we first downsample FDF from
the Attribute Embedder to match the resolution of the source features. Such
design is resolution-free for different identity features, and a higher resolution
of FDF contains fine-grained attribute details. As shown in Fig. 2, FDF clearly
displays the approximate location and movement of each facial region, e.g ., eyes,
mouth, left face, and right face, indicating the coordinate offsets specifying which
position in the source feature maps could be sampled to generate the targets.
Then the warped source features F̄ s could be calculated by the equation:

F̄ s = AttrT(F s,RS(W fdf )), (3)

where RS is resize operation, F̄ s is the coarse feature maps with desired pose
and expression like target face while keeping the same identity of the source face.

Identity Transfer. To effectively model the identity-related feature interaction
and finely aggregate identity information between identity and reference faces,
we propose a novel Identity Transfer module, which is well designed based on
the self-attention mechanism. As shown in Fig. 2, given identity features F i and
reference features F r with the same dimensions, the query is extracted by one
convolution from F r, and the key and value are extracted from F i in the same
way, obtaining Qr,Ki,V i ∈ RC/4×H/8×W/8 with reduced channel numbers.
Then Qr and Ki are employed to calculate the correlation matrix M , which
further multiplies V i to obtain F i→r. A zero-initialized learned scale parameter
α is applied on F i→r to control the identity transfer flow when added to the F r:

F i→r = softmax(Qr(Ki)
T )V i = MV i, (4)
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F̂ r = αF i→r + F r. (5)

Benefiting from representing identity with feature maps, IdT is allowed to learn
the explicit correlation between identity and reference faces on identity-related
regions and transfer the identity information to the reference face adaptively.

Generator. To generate authentic faces, we adopt the stylemap resizer along
with the synthesis network of the StyleMapGAN [20] as our Generator Ψ . Specif-
ically, the stylemap resizer is a common decoder with the corresponding feature
size to the encoder Φid

E . We further add a skip connection that brings the texture
details from the Φid

E to keep the facial contents and background. The synthesis
network could learn more sufficient facial prior than the typical decoder, enabling
us to generate more realistic faces. Such a powerful generator with skip connec-
tion successfully embeds the transformed features to the high-fidelity faces:

ˆIRe, ˆISw = Ψ(F̂ s,F
i
s),Ψ(F̂ t,F

i
t), (6)

where i indicates the feature maps of i-th layer in Φid
E .

3.2 Face Reenactment and Swapping

The isolated AttrT is designed for face reenactment and IdT is for face swapping,
we joint two modules in a unified framework, termed Feature Transfer, which
enables each task to capture complementary information from the other. Specifi-
cally, as shown in Fig. 2, for face reenactment, we send It to attribute embedder
and Is to identity embedder, AttrT first spatially transforms source feature F s

by FDF. Subsequently, the warped source feature F̄ s is in the same pose and
expression as the target face. A followed IdT borrows the source identity cues
from F s (serve as F i in Sec. 3.1) to F̄ s (serve as F r) for better identity preser-
vation. For face swapping, the Identity Embedder is given It and Is. AttrT first
aligns the F s with the attributes of It, obtaining F̄ s (serve as F i), which along
with F t (serve as F r) are sent into IdT for identity transfer. The aligned source
features help preserve the attributes when performing identity-related feature
interaction. By fully exploiting the intrinsic relationship of two tasks, the joint
AttrT and IdT effectively achieve both tasks, while solving the challenges of
identity inconsistency in reenactment and attribute preservation in swapping.

3.3 Objective Functions

We use several loss terms to train our unified framework: reconstruction loss
Lrec, perceptual loss Lp, and adversarial loss Ladv for face reenactment. Based
on these three losses, identity loss Lid and contextual loss Lctx are adopted for
face swapping. Thus, the total loss for two tasks are defined as follow:

LRe
all = λadvLadv + λrecLrec + λpLp,

LSw
all = λ

′

advLadv + λ
′

recLrec + λ
′

pLp + λ
′

idLid + λ
′

ctxLctx.
(7)
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Reconstruction Loss. When the source and target faces are from the same
identity, we define a reconstruction loss to calculate pixel-level errors:

Lrec =
∥∥∥Î − It

∥∥∥
2
if Is, It in same identity,

where Î ∈ { ˆIRe, ˆISw}.
(8)

Perceptual Loss. Besides measuring the difference between two faces at the
pixel level, we adopt LPIPS [47] loss to calculate the semantic errors:

Lp =
∥∥∥ϕvgg(Î)− ϕvgg(It)

∥∥∥
2
, (9)

where ϕvgg(·) represents the pre-trained VGG16 [35] network.
Identity Loss. We calculate the cosine similarity to estimate the identity

consistent between swapped and source faces:

Lid = 1− cos(R(Is), R( ˆISw)), (10)

where R(·) is a pre-trained ArcFace [8] network.
Contextual Loss. We utilize contextual loss [25] to mitigate the effect of

excessive information on the swapped faces:

Lctx = −log(CX(ϕvgg(Ît), ϕvgg(ISw))). (11)

Adversarial Loss. We adopt adversarial training to ensure the authenticity
of the transformed faces:

Ladv = Ex∼px
[logD (x)] + Ex̃∼px̃

[log (1−D (x̃))] , (12)

where px ans px̃ are real and generated image distributions.

4 Experiments

4.1 Datasets and Implementations Details

Datasets. For face reenactment, we leverage the VoxCeleb2 [7] dataset, which
contains over 1 million utterances for over 6,000 celebrities. Following the pre-
processing method in FOMM [34], we crop faces from the original videos and
resize them to 256 × 256 for training and testing. For face swapping, we adopt
the CelebA-HQ [17] dataset, which consists of 28,000 faces for training and 2,000
for testing. We use the FaceForensics++ [32] dataset for further evaluation.

Evaluation Metric. For face reenactment, we use FID [14] to evaluate the
realism of the generated images. The Average Pose Errors (APE) and Average
Expression Errors (AEE) are used to estimate the motion accuracy, and Cosine
SIMilarity (CSIM) is used to measure identity preservation. D3DFR [10] is used
to extract the pose and expression coefficients. CosFace [38] is used to extract
identity embedding. We additionally use LPIPS [47] to evaluate reconstruction
quality. For face swapping, we evaluate the performance by IDentity Retrieval
(IDRet), APE, and AEE. IDRet retrieves the closest face to evaluate identity
modification while APE and AEE evaluate attributes preservation.
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Fig. 3. Qualitative comparison with four SOTA methods on VoxCeleb2 [7] test set. The
top shows the results of the reconstruction task and the bottom of the reenactment.

Implementation Details. For face reenactment, we perform reconstruction
during training, i.e., randomly sample the source and target faces from the
same video. The values of the loss weights are set to λadv = 1, λrec = 5, λp = 5.
For face swapping, we train on the CelebA-HQ dataset with resized 256 × 256
faces. The values of the loss weights are set to λ

′

adv = 1, λ
′

rec = 1, λ
′

p = 1,

λ
′

id = 2.5, λ
′

ctx = 0.5. The ratio of the training data with It = Is and It ̸= Is is
set to 1 : 4. We train two tasks in stages. First, face reenactment is trained for
500K iterations from scratch. Then we only load the trained attribute embedder
weights for initialization, and then train the face swapping stage with 500K
iterations. Both tasks adopt Adam optimizer with β1 = 0, β2 = 0.99, lr = 1e−4
for updating whole model weights, using 2 Tesla V100 GPUs and 8 batch size.

4.2 Comparison with SOTAs

Qualitative Results. For face reenactment, we conduct two tasks: Reconstruc-
tion where the source and target faces are of the same identity, and Reenactment
where the source face is driven to mimic the motions of another cross-identity
individual. We perform qualitative comparisons with X2Face [40], Bi-layer [42],
FOMM [34], and PIRenderer [31]. As shown in Fig. 3, we sample two pairs for
reconstruction and four pairs for reenactment from VoxCeleb2 test set. It can be
seen that X2Face suffers from severe warping artifacts. Bi-layer over-smooths the
facial details and could not generate authentic background. Recent FOMM and
PIRenderer could generate high-quality results, but they fail to handle extreme
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Source UniFaceGANPeng et al.Target FaceShifter FaceInpainter OursFSGAN

Source Target OursSimSwap MegaFS Source Target OursSimSwap MegaFSFaceShifter

(a) (b)

Fig. 4. Qualitative comparison with three SOTA unified methods and two SOTA iso-
lated methods. Images are from official attached results in the corresponding paper.

Source UniFaceGANPeng et al.Target FaceShifter FaceInpainter OursFSGAN

Source Target OursSimSwap MegaFS Source Target OursSimSwap MegaFSFaceShifter

(a) (b)

Fig. 5.Qualitative comparison with SOTAmethods. (a) The results on CelebA-HQ [17]
test set. We not compare with FaceShifter since its official codes are not available. (b)
The results on FaceForensics++ [32]. FaceShifter attaches official results in this dataset.

cases. As shown in row 3, they are sensitive to the lighting in the target face
due to their dependence on structural information. In rows 4 and 6, the source
identity could not be well-preserved when the source face shape is very different
from the target. Besides, under the large-pose conditions in rows 5 and 6, they
fail to maintain source identity and are less realistic. In contrast, our method
successfully generates more realistic results with accurate pose and expression
while still preserving the source identity in various conditions.

For face swapping, we first compare our method with three SOTA unified
works (Peng et al . [29], UniFaceGAN [4], and FSGAN [27]) and two SOTA
isolated methods (FaceShifter [23] and FaceInpainter [22]). Obviously, recent
unified works fail to preserve the attributes of the target face (e.g ., skin color
and gaze) and maintain the low identity consistency. Our method exhibits a
strong identity modification ability as SOTA FaceInpainter while achieving more
high-fidelity swapped faces with authentic skin textures. We further conduct a
series of qualitative experiments to compare with FaceShifter, SimSwap [5], and
MegaFS [50] on CelebA-HQ and FaceForensics++ dataset. As shown in Fig. 5,
we sample eight pairs of significant gaps between pose, expression, skin color,
and lighting. Notably, FaceShifter could produce highly identifiable faces but
unable to keep the details of the attributes, e.g ., closed eyes in row 2 of Fig. 5
(b), while SimSwap improves the attributes preservation but in poor identity
consistency, e.g ., pupil color in row 1 and small mouth in row 2 of Fig. 5 (b).
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Table 1. Quantitative results on the tasks of reconstruction for VoxCeleb2 [7] test set.
Bold and underline represent optimal and suboptimal results. The up arrow indicates
that the larger the value, the better the model performance, and vice versa.

Method FID↓ LPIPS↓ AEE↓ APE↓ CSIM↑ Auth.↑
X2Face [40] 93.99 0.3612 2.76 0.194 0.6122 0.12
Bi-layer [42] 149.14 0.5443 1.92 0.055 0.7002 -
FOMM [34] 48.96 0.1817 1.55 0.044 0.8462 0.30

PIRenderer [31] 55.57 0.2634 2.09 0.059 0.8186 0.25
Ours 45.91 0.1907 1.70 0.042 0.8607 0.33

Table 2. Quantitative results on the tasks of reenactment for VoxCeleb2 [7] test set.

Method FID↓ AEE↓ APE↓ CSIM↑ Auth.↑
X2Face [40] 119.32 3.99 0.274 0.4329 0.09
Bi-layer [42] 195.67 3.18 0.073 0.5353 -
FOMM [34] 72.20 3.25 0.067 0.5365 0.26

PIRenderer [31] 73.73 3.08 0.079 0.4737 0.21
Ours 54.34 3.15 0.070 0.5703 0.44

Table 3. Quantitative results on the tasks of face swapping for FaceForensics++ [32].

Method IDRet↑ AEE↓ APE↓ Id-Attr.↑ Auth.↑
DeepFakes [30] 79.84 3.75 0.260 0.04 0.02
FaceShifter [23] 92.59 3.47 0.206 0.11 0.13
SimSwap [5] 90.02 3.13 0.039 0.13 0.08
MegaFS [50] 93.87 3.45 0.202 0.13 0.10

Ours 99.45 3.21 0.052 0.59 0.67

Comparing with SOTA unified and isolated methods shows the superiority of
our method to generate both identity-consistent and attributes-preserving faces.

Quantitative Results. We first evaluate the effectiveness of the face reenact-
ment with different SOTA methods on VoxCeleb2. We randomly sample 1,000
videos from the test set and set 6 random seeds to generate 6K pairs in total.
The reconstruction results are summarized in Tab. 1 and the reenactment ones
are in Tab. 2. It can be seen that FOMM and PIRenderer achieve impressive
results on AEE and APE due to the accurate structure prior in most conditions.
However, as facial structures involve identity information, they would inevitably
cause poor identity preservation when guiding the reenactment, which can be
inferred from the low CSIM. Besides, these methods struggle to handle challeng-
ing conditions and generate unrealistic facial textures, resulting in low FID. The
above observations are consistent with the qualitative results in Fig. 3.

For face swapping, we conduct quantitative comparisons on FaceForensics++
and follow the settings in MegaFS, which carefully check the aligned faces and
manually categorize all videos into 885 identities. As depicted in Tab. 3, SimSwap
preserves attributes of the target face better but a relatively poor performance
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Source Target FaceShifter w/o Ctx Loss with Ctx Loss

Source Target w/o AttrT FullAligned Source

(a) (b)

Source Target w/o IdT Fullw/o IdT

0.536 0.571

w/o AttrT

0.510 0.538

Fig. 6. Qualitative ablation study for contextual loss of face swapping. We zoom in
the red dotted rectangles of the forehead area for more clear comparison.

on IDRet. Our method achieves comparable results in attribute preservation
and maintains the highest IDRet, outperforming MegaFS with a large margin.
Results show that our method is better considering both identity consistency
with the source and attribute preservation with the target. Our method is not
compared with works [29, 4] quantitatively due to unavailability of their codes.

Human Study. We conduct the human study to evaluate the performance of
each method in two tasks. Concretely, we randomly sample 200 pairs from the
corresponding test set. Each pair is compared 5 times by different volunteers.
For face reenactment, the volunteers are asked to choose the most realistic image
among the generated results of all methods. Similarly, for face swapping, the
volunteers are invited to select the one that most resembles the source and shares
similar attributes with the target, as well as the one that looks most realistic.
The results are shown in Tab. 1, Tab. 2, and Tab. 3 of the Id-Attr. (abbreviated
from Identity-consistent and Attribute-preserving) and Auth. (abbreviated from
Authentic), our generated faces are preferred by volunteers, meaning that we
can generate higher fidelity images than SOTA methods on both tasks.

4.3 Ablation Study and Further Analysis

Loss Functions. To evaluate the effectiveness of contextual loss, we report
the ablation study in Fig. 6. We sample two pairs of significant identity differ-
ences in the forehead area. FaceShifter tends to show excessive source identity
and cause apparent artifacts. Comparing the results of columns 3 and 4, our
method without contextual loss can already alleviate texture distortions due to
the effectively semantic interactions. The last column exhibiting a better perfor-
mance illustrates that contextual loss further helps preserve the target textures.
We further evaluate the effectiveness of identity and adversarial losses on Face-
Forensicss++. IDRet suffers a sharp decline without identity loss, from 99.45 to
0.08, while FID shows higher value without adversarial loss, from 3.29 to 4.01.

Network Components. We perform qualitative and quantitative experiments
to evaluate the effectiveness of AttrT and IdT. As shown in Fig. 7 (a), IdT is
critical for identity transfer since our model without it fails to generate identity-
consistent faces. From columns 1 and 5, AttrT aligns the source face with the
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Source Target FaceShifter w/o CX Loss with CX Loss

Source Target w/o AttrT FullAligned Source

(a) (b)

Source Target w/o IdT Fullw/o IdT

0.536 0.571

w/o AttrT

0.510 0.538

Fig. 7. Qualitative ablation study of our method with different components. (a) The
results of face swapping, please attention to the mouth of row 1 and eyes of row 2. (b)
The results of face reenactment, we tag CSIM on reenacted faces for clear comparison.

Table 4. Quantitative ablation study of our approach with different components. We
mark the optimal and suboptimal results without considering meaningless values.

Method
Face Swapping Face Reenactment

IDRet↑ AEE↓ APE↓ FID↓ AEE↓ APE↓ CSIM↑
w/o IdT 0.05 0.02 0.000 56.28 3.16 0.071 0.5570

w/o AttrT 99.43 3.30 0.058 44.45 4.34 0.424 0.9884
Ours 99.45 3.21 0.052 54.34 3.15 0.070 0.5703

target face in terms of attributes, e.g ., closed mouth and closed eyes. Comparing
the results of columns 4 and 6, we can observe that the aligned source features
help achieve more attributes-preserving results. Similarly, we can draw the con-
clusions from Fig. 7 (b) that AttrT successfully transfers the accurate motions
from the target, and IdT further boosts the identity consistency with the source
face on the reenactment task, as depicted in columns 4 and 5. Moreover, the
above observations could also be summarized from Tab. 4, the sharp decreasing
of IDRet, and rapidly rising of AEE and APE illustrate that IdT and AttrT are
indispensable to the corresponding tasks. In the meantime, AttrT significantly
improves the attributes preservation for face swapping with a smaller AEE and
APE, and IdT keeps better identity preservation for face reenactment with the
improvement of CSIM.

Interpretability of AttrT. Since AttrT receives the FDF from the attribute
embedder, we first perform a qualitative experiment to demonstrate the disen-
tanglement of learned attribute representations. This experiment is based on
the intuition that a well-disentangled attribute descriptor contains almost no
identity information and can be used to purely measure the similarity of pose
and expression between different identity individuals. Specifically, we randomly
sample three images from the VoxCeleb2 test set and select their most consis-
tent faces with all test images, according to the cosine similarity between two
attribute embeddings. The results are shown in Fig. 8 (a), where the retrieved
images have similar poses and expressions to those of the query images. Besides,
we visualize the feature maps and FDF in Fig. 9. As expected, FDF explicitly
models the absolute pose and expression of the target face, which can adaptively
animate the source to desired attributes.
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Query Images Retrieved Images Source

Target

(3, 4)

(7, 7)

(4, 6)

(5, 4)

(a) (b)

Source Target Before Warp After Warp FDF-D FDF-S

Fig. 8. (a) Image retrieval using the disentangled attribute embeddings. The Top-
4 retrieved images have similar poses and expressions but different identity from the
query. (b) Attention visualization of IdT. The color bars indicate activation values. The
points in the target face could correctly match similar semantic areas in the source.

Query Images Retrieved Images Source

Target

(3, 4)

(7, 7)

(4, 6)

(5, 4)

(a) (b)

Source Target Before Warp After Warp FDF-D FDF-S

Fig. 9. The visualization of feature maps before and after warping, and FDF repre-
sented in dense flow (FDF-D) and sparse displacement (FDF-S). These two pairs are
sampled from Fig. 3. We enlarge one FDF-S to show better motion details.

Interpretability of IdT. To better understand the effect of the IdT, we vi-
sualize the attention maps in Fig. 8 (b). Specifically, we select four points from
different regions in the target face, i.e., forehead, eyes, face, and background.
The visualized attention maps indicate that each location pays more attention
to semantically similar areas, allowing the explicitly identity-related semantic
interaction to achieve the generation of highly identity-consistent.

5 Conclusions

In this paper, we propose a novel end-to-end unified paradigm to complete face
reenactment and swapping. Our method shows several appealing properties: 1)
We extract identity and attributes during inference stage without any prior
knowledge, which is more robust under some challenging conditions. 2) To allow
sufficient feature interaction, we design a novel AttrT to transfer attributes for
reenactment and IdT to integrate identity for swapping. 3) We effectively joint
AttrT and IdT by exploiting their underlying similarity to achieve better identity
consistency in reenactment and better attribute preservation in swapping.
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