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1 Additional Details & Results

1.1 Image Regression

For image regression task, we set the angular velocity of the sinusoidal function
to 30 and initialize the weights of MLPs following [10]. We provide other results
of Set 5 dataset [3] in Fig. 1. We also report the memory consumption as well
training time required in Tab. 1. The proposed training paradigm requires more
memory and time at the training phase for additional computation and stor-
age of derivatives but it is worth noting that the time, as well as the memory
consumption at the inference phase, is the same with or without the derivative
supervision.

1.2 Inverse Rendering

For inverse rendering task, we set the angular velocity of the sinusoidal function
to 1 and initialize the weights of MLPs according to the method described in [6].
LLFF dataset [8,9] consists of 8 scenes captured with a handheld cellphone,
captured with 20 to 62 images. We follow [9] to hold out 1

8 of images for the
evaluation set. All of the training images are 756 × 1008, but the dataset also
provides the raw cellphone images of 3024×4032, which will be used to evaluate
high resolution rendering results in Sec. 4.

We provide other results of LLFF dataset [8,9] in Fig. 2. Tab. 2 reports the
training-time memory consumption and time. Similar to image regression, the
additional cost is only at training-time.

2 Audio Regression

As mentioned in the discussions of the main paper, the training paradigm we
proposed can further generalize to more tasks, as long as the tasks satisfy the
formulation in Sec. 3.1 of the main paper. Here we follow [10] to conduct the
task of audio signal representation.
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Table 1.GPUmemory consumption at training phase and training time of 1000 epochs
in image regression task of Baby. P.E. stands for positional encoding; S.T. stands for
Sobolev training.

Method Memory(MB) Time(s)

ReLU+P.E. [9] 130 4.678

ReLU+P.E.+S.T. 316 20.548

ReLU+P.E.+S.T.∗ 401 14.081

SIREN [10] 176 3.977

SIREN+S.T. 753 22.963

SIREN+S.T.∗ 704 16.556

* The new PyTorch 1.11.0 supports compu-
tation of per-sample derivatives, so we also
report the statistics obtained.

Table 2. GPU memory consumption at training phase and training time of 1000
iterations in inverse rendering task of Fern.

Method Memory(MB) Time(s)

ReLU+P.E. 228 87.264

ReLU+P.E.+S.T. 912 190.434

SIREN+P.E. 348 86.642

SIREN+P.E.+S.T. 1827 204.748

Implementation

Dataset Following [10], we use two different audio signals, one for music and one
for speech. For music data, we use the first 7 seconds from Bach’s Cello Suite No.1
(Bach)⋆, and for the speech, we use stock audio of a male actor counting from
0 to 9 (Counting)⋆⋆. Both audio signals share a sampling rate of 44100Hz, and
in total there are 308207 samples in Bach and 537936 samples in Counting. We
normalize signal values to the range of [−1, 1]. Same as other tasks, we separate
all samples within an audio clip into two groups, namely training samples and
evaluation samples, by performing nearest-neighbor downscaling by a factor of
5. The approximated derivatives are obtained by two-sided differences method,
similar to the vanilla derivative filter of the task on images.

Network Architecture We implement a fully-connected MLP with 4 activated
linear layers with 256 hidden units and 1 output linear layer. We set the angular
velocity of the sinusoidal function to 30 and follow the initialization strategy in
[10] to initialize the weights of MLPs.

⋆ Audio file available at https://www.yourclassical.org/episode/2017/04/04/

daily-download-js-bach--cello-suite-no-1-prelude.
⋆⋆ Audio file available at http://soundbible.com/2008-0-9-Male-Vocalized.html.

https://www.yourclassical.org/episode/2017/04/04/daily-download-js-bach--cello-suite-no-1-prelude
https://www.yourclassical.org/episode/2017/04/04/daily-download-js-bach--cello-suite-no-1-prelude
http://soundbible.com/2008-0-9-Male-Vocalized.html
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Table 3. Quantitative PSNR results on the task of audio regression on Bach and
Counting. 1/5 samples are used for training, and rest samples are used for evaluation.
When trained with additional supervision on derivatives, PSNR is significantly im-
proved.

Method Mean Bach Counting

SIREN [10] 35.89 41.50 30.28

SIREN+S.T. 41.23 48.89 33.57

Training & Evaluation At the stage of training, we use the entire set of training
samples to train the network as a batch with Adam optimizer, at a learning rate
of 5× 10−5. For evaluation, we measure PSNR only on the evaluation samples.

Results The quantitative results in PSNR of regressing these two audio clips are
shown in Tab. 3. Sobolev training significantly improves the regression quality of
both audio clips. We further illustrate the visualized comparisons respectively in
Fig. 3 and Fig. 4, showing the regression error of the derivative-trained network
is smaller.

As our results show ReLU-activated networks can not fit audio signals well,
which is consistent with the result of [10], we only report the results of Sine-
activated networks.

3 Different Activation Functions

Recent ReLU-based MLPs normally have poor convergence property under deriva-
tive supervision, we mainly investigate the performance difference between ReLU
and periodic activation function, i.e., sine, in the main paper. In this part, an
experiment is designed to study the convergence properties of derivatives with
different activation functions. The scope of the investigation is shown in Tab. 4.

Dataset We convert the RGB image Bird of Set 5 [3] to grayscale as our dataset.
The original image shape is 288× 288× 1, we use the Sobel operator to get ap-
proximate image partial derivatives, resulting the derivative image with shape
288 × 288 × 2, w.r.t. u and v respectively. We perform nearest-neighbor down-
sampling on the original image and derivative image by a factor of 4.

Network Architecture The network architecture is the same as the image regres-
sion task in the main paper, except for the channel number of the last linear
layer is 1 instead of 3. The angular velocity of the sinusoidal function and weight
initialization method are both the same as image regression task. Taking the
conclusion in [11,13] into consideration, we do two parallel experiments with
and without positional encoding for all activation functions except for sine.

Training & Evaluation We use the downsampled 1/16 pixels as our training data
and the remaining pixels as evaluation samples. The network is optimized for
10k iterations at a learning rate of 10−4.
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Table 4. Different activation functions and their definitions and weight initialization

Activation Definition Derivative Initialization

ReLU [1] f(x) =

{
x, x > 0

0, x ≤ 0
f ′(x) =

{
1, x > 0

0, x < 0
Kaiming normal[6]

ELU [4] f(x) =

{
x, x > 0

α(ex − 1), x ≤ 0
f ′(x) =

{
1, x > 0

αex, x < 0
Normal

SELU [7] f(x) =

{
λx, x > 0

λα(ex − 1), x ≤ 0
f ′(x) =

{
λ, x > 0

λαex x ≤ 0
Normal

Sigmoid f(x) = 1
1+e−x f ′(x) = f(x)(1− f(x)) Xavier normal [5]

Softplus f(x) = ln(1 + ex) f ′(x) = 1
1+e−x Kaiming normal[6]

Tanh f(x) = ex−e−x

ex+e−x f ′(x) = 1− (f(x))2 Xavier normal [5]

Sine [10] f(x) = sin(x) f ′(x) = cos(x) Specific uniform [10]

Table 5. Quantitative comparisons of different activation functions on the task of
(grayscale) image regression.

Activation PSNR↑ SSIM↑
ReLU 25.06 0.711

ReLU P.E. 29.36 0.856

ELU 21.13 0.537

ELU P.E. 29.76 0.879

SELU 20.20 0.433

SELU P.E. 28.55 0.837

Sigmoid 18.06 0.408

Sigmoid P.E. 24.27 0.638

Softplus 18.38 0.417

Softplus P.E. 24.24 0.639

Tanh 23.27 0.635

Tanh P.E. 31.14 0.902

Sine 33.13 0.960

Results Fig. 5 and Fig. 6 respectively show the convergence curve of derivative
loss with and without positional encoding. Sine demonstrates its great power in
fitting the network’s derivative compared with other activation functions. It is
worth noting that positional encoding is helpful to improve the MLPs’ ability
of approximating derivatives when applied with other activation functions. The
corresponding quantitative results are shown in Tab. 5.

4 Precision of Approximate Image Derivatives

In all aforementioned experiments, the partial derivatives we leverage for super-
vision are obtained by applying Sobel filters on the images before downsampling
and for training, we perform nearest-neighbor downsampling for both image
values and approximated derivatives. This is generally reasonable since in real
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applications, the original images are usually of very high resolution, such as
LLFF dataset [8,9], whose original resolution is 3024 × 4032. Without getting
deteriorated rendering results, we would like the training data of INRs to be as
few as possible for faster training and a direct solution is to downscale the im-
ages. As our results in the main paper show, by keeping the derivatives obtained
at a high resolution, the problem of downgraded performance will get alleviated.

We also conduct experiments of image regression and inverse rendering where
derivatives are obtained from the downsampled images, abandoning the data
dependence of the raw data before downsampling, which is to say, we will use
all samples in hand for training.

4.1 Image Regression

The dataset we used consists of 5 images of 1356 × 2040, which are generated
by uniformly sampling images from DIV2K [2] validation set. We downsample
the original images by nearest-neighbor interpolation with a factor 4 and use
Sobel filters to calculate the approximate derivatives on downsampled images.
The network architecture and training & evaluation settings are consistent with
the image regression task of the main paper.

Results The quantitative results are shown in Tab. 6. From Tab. 6, we can
see training with derivatives from downsampled images still gives a great per-
formance improvement than value-based training paradigm.

4.2 Inverse Rendering

The experiment settings are different from the main paper. Here we do not per-
form downsampling to images; instead, we use images of 756× 1008 for training
and render novel views of 756× 1008 and 3024× 4032. The approximated image
derivatives are calculated from images of 756 × 1008. As is mentioned, LLFF
dataset [8] provides raw images of 3024 × 4032 so we can evaluate rendering
results at a higher resolution.

Results The quantitative results on rendering views of different resolutions
are shown in Tab. 7. As can be proven by the results, we can still get a slight
performance improvement when training with approximated derivatives from
downsampled training images. Also, the performance gap is enlarged, when the
rendering views’ resolutions are higher, indicating the great generalizability of
Sobolev trained MLPs.

The difference between the two sources of image derivatives is basically the
precision of approximated derivatives. As shown in the results of both tasks,
the precision of approximated derivatives does not affect much. It is using the
derivatives for supervision that matters.
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Table 6. Quantitative results on the task of image regression on DIV2K validation
set.

Method Mean
DIV2K Validation Set

0820 0840 0860 0880 0900

PSNR ↑
ReLU+P.E. [9] 23.34 20.44 25.75 18.62 29.36 22.51

ReLU+P.E.+S.T. 23.91 20.90 26.30 19.17 30.00 23.18

SIREN [10] 22.69 19.70 24.87 17.23 29.21 22.45

SIREN+S.T. 24.44 21.58 26.87 19.35 30.64 23.74

SSIM ↑
ReLU+P.E. [9] 0.577 0.497 0.651 0.371 0.817 0.547

ReLU+P.E.+S.T. 0.625 0.559 0.692 0.401 0.843 0.629

SIREN [10] 0.594 0.508 0.650 0.356 0.842 0.616

SIREN+S.T. 0.703 0.663 0.754 0.488 0.875 0.733

Table 7. Quantitative results of using different paradigms when training with images
of resolution 756× 1008 and rendering novel views of 756× 1008 and 3024× 4032.

Method Render H ×W Mean Fern Flower Fortress Horns Leaves Orchids Room T-Rex

PSNR ↑

ReLU+P.E. [9]
756× 1008 24.69 24.26 25.92 28.58 25.32 20.39 19.991 28.54 24.52
3024× 4032 23.12 22.24 24.93 27.22 23.66 18.90 19.258 26.24 22.54

SIREN+P.E.+S.T.
756× 1008 24.72 24.33 26.06 28.66 25.40 20.65 19.985 28.03 24.68
3024× 4032 23.22 22.32 25.07 27.26 23.72 19.10 19.261 26.14 22.88

SSIM ↑

ReLU+P.E. [9]
756× 1008 0.755 0.744 0.788 0.792 0.746 0.646 0.606 0.900 0.816
3024× 4032 0.723 0.714 0.773 0.819 0.703 0.570 0.616 0.860 0.732

SIREN+P.E.+S.T.
756× 1008 0.767 0.755 0.807 0.819 0.760 0.666 0.614 0.899 0.818
3024× 4032 0.729 0.717 0.781 0.830 0.705 0.581 0.622 0.859 0.736

5 Use of Existing Assets

Some codes of image regression task and audio regression task are borrowed
from SIREN [10]. The implementation of inverse rendering task are based on
NeRF-PyTorch [12], which is a PyTorch version of original NeRF [9].

https://github.com/vsitzmann/siren
https://github.com/yenchenlin/nerf-pytorch
https://github.com/bmild/nerf
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Ground Truth ReLU+P.E. ReLU+P.E.+S.T. SIREN SIREN+S.T.

(a)

(b)

Fig. 1. Additional results of image regression. Bird (a), Head (b).

(a)

(b)

Ground Truth ReLU+P.E. ReLU+P.E.+S.T. SIREN+P.E. SIREN+P.E.+S.T.

Fig. 2. Additional results of inverse rendering. Flower (a), Fortress (b).
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(a) SIREN [10]
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(b) SIREN+S.T.

Fig. 3. Regressed waveforms of the INRs trained with and without derivative super-
vision on the clip of Bach. From top to bottom: ground truth waveform, regressed
waveform and error detected. We zoom in the waveform marked with red at the right
column accordingly.
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(a) SIREN [10]
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(b) SIREN+S.T.

Fig. 4. Regressed waveforms of the INRs trained with and without derivative supervi-
sion on the clip of Counting. From top to bottom: ground truth waveform, regressed
waveform and error detected. We zoom in the waveform marked with red at the right
column accordingly.
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Fig. 5. Derivative loss of different activation functions.
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Fig. 6. Derivative loss of different activation functions with positional encoding. P.E.
means positional encoding.
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