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Fig. 1. Make-A-Scene: Samples of generated images from text inputs (a), and a text
and scene input (b). Our method is able to both generate the scene (a, bottom left)
and image, or generate the image from text and a simple sketch input (b, center).

Abstract. Recent text-to-image generation methods provide a simple
yet exciting conversion capability between text and image domains. While
these methods have incrementally improved the generated image fidelity
and text relevancy, several pivotal gaps remain unanswered, limiting ap-
plicability and quality. We propose a novel text-to-image method that
addresses these gaps by (i) enabling a simple control mechanism com-
plementary to text in the form of a scene, (ii) introducing elements that
substantially improve the tokenization process by employing domain-
specific knowledge over key image regions (faces and salient objects),
and (iii) adapting classifier-free guidance for the transformer use case.
Our model achieves state-of-the-art FID and human evaluation results,
unlocking the ability to generate high fidelity images in a resolution of
512 × 512 pixels, significantly improving visual quality. Through scene
controllability, we introduce several new capabilities: (i) Scene editing,
(ii) text editing with anchor scenes, (iii) overcoming out-of-distribution
text prompts, and (iv) story illustration generation, as demonstrated in
the story we wrote.
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1 Introduction

“A poet would be overcome by sleep and hunger before being able to
describe with words what a painter is able to depict in an instant.”

Similar to this quote by Leonardo da Vinci [27], equivalents of the expression
“A picture is worth a thousand words” have been iterated in different languages
and eras [1,14,25], alluding to the heightened expressiveness of images over text,
from the human perspective. There is no surprise then, that the task of text-to-
image generation has been gaining increased attention with the recent success of
text-to-image modeling via large-scale models and datasets. This new capability
of effortlessly bridging between the text and image domains enables new forms
of creativity to be accessible to the general public.

While current methods provide a simple yet exciting conversion between the
text and image domains, they still lack several pivotal aspects:

(i) Controllability. The sole input accepted by the majority of models is
text, confining any output to be controlled by a text description only. While
certain perspectives can be controlled with text, such as style or color, others
such as structure, form, or arrangement can only be loosely described at best [46].
This lack of control conveys a notion of randomness and weak user-influence on
the image content and context [33]. Controlling elements additional to text have
been suggested by [68], yet their use is confined to restricted datasets such as
fashion items or faces. An earlier work by [23] suggests coarse control in the form
of bounding boxes resulting in low resolution images.

(ii) Human perception. While images are generated to match human per-
ception and attention, the generation process does not include any relevant prior
knowledge, resulting in little correlation between generation and human atten-
tion. A clear example of this gap can be observed in person and face generation,
where a dissonance is present between the importance of face pixels from the
human perspective and the loss applied over the whole image [28, 65]. This gap
is relevant to animals and other salient objects as well.

(iii) Quality and resolution. Although quality has gradually improved
between consecutive methods, the previous state-of-the-art methods are still
limited to an output image resolution of 256 × 256 pixels [40, 45]. Alternative
approaches propose a super-resolution network which results in less favorable
visual and quantitative results [12]. Quality and resolution are strongly linked,
as scaling up to a resolution of 512× 512 requires a substantially higher quality
with fewer artifacts than 256× 256.

In this work, we introduce a novel method that successfully tackles these
pivotal gaps, while attaining state-of-the-art results in the task of text-to-image
generation. Our method provides a new type of control complementary to text,
enabling new-generation capabilities while improving structural consistency and
quality. Furthermore, we propose explicit losses correlated with human prefer-
ences, significantly improving image quality, breaking the common resolution
barrier, and thus producing results in a resolution of 512× 512 pixels.
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Our method is comprised of an autoregressive transformer, where in addition
to the conventional use of text and image tokens, we introduce implicit condi-
tioning over optionally controlled scene tokens, derived from segmentation maps.
During inference, the segmentation tokens are either generated independently by
the transformer or extracted from an input image, providing freedom to impel
additional constraints over the generated image. Contrary to the common use of
segmentation for explicit conditioning as employed in many GAN-based meth-
ods [24, 42, 61], our segmentation tokens provide implicit conditioning in the
sense that the generated image and image tokens are not constrained to use the
segmentation information, as there is no loss tying them together. In practice,
this contributes to the variety of samples generated by the model, producing
diverse results constrained to the input segmentations.

We demonstrate the new capabilities this method provides in addition to con-
trollability, such as (i) complex scene generation (Fig. 1), (ii) out-of-distribution
generation (Fig. 3), (iii) scene editing (Fig. 4), and (iv) text editing with anchored
scenes (Fig. 5). We additionally provide an example of harnessing controllability
to assist with the creative process of storytelling in the supplementary materials.

While most approaches rely on losses agnostic to human perception, this ap-
proach differs in that respect. We use two modified Vector-Quantized Variational
Autoencoders (VQ-VAE) to encode and decode the image and scene tokens with
explicit losses targeted at specific image regions correlated with human percep-
tion and attention, such as faces and salient objects. The losses contribute to the
generation process by emphasizing the specific regions of interest and integrating
domain-specific perceptual knowledge in the form of network feature-matching.

While some methods rely on image re-ranking for post-generation image fil-
tering (utilizing CLIP [44] for instance), we extend the use of classifier-free guid-
ance suggested for diffusion models [20,53] by [22,40] to transformers, eliminating
the need for post-generation filtering, thus producing faster and higher quality
generation results, better adhering to input text prompts.

An extensive set of experiments is provided to establish the visual and nu-
merical validity of the our different contributions.

2 Related Work

Image generation. Recent advancements in deep generative models have en-
abled algorithms to generate high-quality and natural-looking images. Genera-
tive Adversarial Networks (GANs) [17] facilitate the generation of high fidelity
images [3,29,30,56] in multiple domains by simultaneously training a generator
network G and a discriminator network D, where G is trained to fool D, while D
is trained to judge if a given image is real or fake. Concurrently to GANs, Varia-
tional Autoencoders (VAEs) [31,57] have introduced a likelihood-based approach
to image generation. Other likelihood-based models include autoregressive mod-
els [8, 13,41,43] and diffusion models [11,20,21]. While the former model image
pixels as a sequence with autoregressive dependency between each pixel, the
latter synthesizes images via a gradual denoising process. Specifically, sampling
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starts with a noisy image which is iteratively denoised until all denoising steps
are performed. Applying both methods directly to the image pixel-space can be
challenging. Consequently, recent approaches either compress the image to a dis-
crete representation [13,58] via Vector Quantized Variational Autoencoders (VQ-
VAEs) [58], or downsample the image resolution [11, 21]. Our method is based
on autoregressive modeling of the discrete image representation.
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“a green train
is coming down

the tracks”

“a group of skiers
are preparing to ski
down a mountain.”

“a small kitchen
with a

low ceiling”

“a group of
elephants walking
in muddy water.”

“a living area
with a television

and a table”

Fig. 2. Qualitative comparison with previous work. The text and generated images
for [40,45,66] were taken from [40]. For CogView [12] we use the released 512×512 model
weights, applying self-reranking of 60 for post-generation selection. When zoomed-in,
our results can be seen to be of higher-quality, higher-resolution, with crisp details.
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Fig. 3. Overcoming out-of-distribution text prompts with scene control. By introduc-
ing simple scene sketches (bottom right) as additional inputs, our method is able to
overcome unusual objects and scenarios presented as failure cases in previous methods.

Image tokenization. Image generation models based on discrete representa-
tion [12, 13, 45, 47, 58] follow a two-stage training scheme. First, an image tok-
enizer is trained to extract a discrete image representation. In the second stage,
a generative model generates the image in the discrete latent space. Inspired by
Vector Quantization (VQ) techniques, VQ-VAE [58] learns to extract a discrete
latent representation by performing online clustering.

VQ-VAE-2 [47] presented a hierarchical architecture composed of VQ-VAE
models operating at multiple scales, enabling faster generation compared with
pixel space generation. The DALL-E [45] text-to-image model used dVAE, which
uses gumbel-softmax [26,38], relaxing the VQ-VAE’s online clustering. Recently,
VQGAN [13] added adversarial and perceptual losses [67] on top of the VQ-
VAE reconstruction task, producing reconstructed images with higher quality.
In our work, we modify the VQGAN framework by adding perceptual losses to
specific image regions, such as faces and salient objects, which further improve
the fidelity of the generated images.

Image-to-image generation. Generating images from segmentation maps or
scenes can be viewed as a conditional image synthesis task [24,37,42,60,61,70].
Specifically, this form of image synthesis permits more controllability over the
desired output. CycleGAN [70] trained a mapping function from one domain to
the other. UNIT [37] projected two different domains into a shared latent space
and used a per-domain decoder to re-synthesize images in the desired domain.
Both methods do not require supervision between domains. pix2pix [24] utilized
conditional GANs together with a supervised reconstruction loss. pix2pixHD [61]
improved the latter by increasing output image resolution thanks to improved



6 O. Gafni et al.

(a) (b) (c) (d) (e)

Fig. 4. Generating images through edited scenes. For an input text (a) and the seg-
mentations extracted from an input image (b), we can re-generate the image (c) or edit
the segmentations (d) by replacing classes (top) or adding classes (bottom), generating
images with new context or content (e).

(a) (b) (c) (d)

Fig. 5. Generating new image interpretations through text editing and anchor scenes.
For an input text (a) and image (b), we first extract the semantic segmentation (c),
we can then re-generate new images (d) given the input segmentation and edited text.
Purple denotes text added or replacing the original text.

network architecture. SPADE [42] introduced a spatially-adaptive normalization
layer which elevated information lost in normalization layers. [15] introduced
face-refinement to SPADE through a pre-trained face-embedding network in-
spired by face-generation methods [16]. Unlike the aforementioned, our work
conditions jointly on text and segmentation, enabling bi-domain controllability.

Text-to-image generation. Text-to-image generation [12, 40, 45, 54, 63, 64,
66, 69, 71] focuses on generating complex scenes from standalone text descrip-
tion. Preliminary work on text-to-image conditioned RNN-based DRAW [18] on
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text [39]. With the introduction of GANs, text conditioned image generation
improved [48]. AttnGAN [63] introduced an attention component which enabled
the generator network to attend to relevant words in the text. DM-GAN [71]
introduced a dynamic memory component while DF-GAN [54] employed a novel
fusion block to fuse text information into image features. Contrastive learning
further improved the results of DM-GAN [64] while XMC-GAN [66] used con-
trastive learning to maximize the mutual information between image and text.

DALL-E [45] and CogView [12] trained an autoregressive transformer [59] on
text and image tokens, demonstrating convincing zero-shot capabilities on the
MS-COCO dataset. GLIDE [40] used diffusion models conditioned on images.
Inspired by the high-quality unconditional images generation model, GLIDE
employed guided inference with and without a classifier network to generate
high-fidelity images. LAFITE [69] employed a pre-trained CLIP [44] model to
project text and images to the same latent space, training text-to-image models
without text data. Similarly to DALL-E and CogView, we train an autoregres-
sive transformer model on text and image tokens. Our main contributions are
introducing additional controlling elements in the form of a scene, improve the
tokenization process, and adapt classifier-free guidance to transformers.

3 Method

Our model generates an image given a text input and an optional scene layout
(segmentation map). As demonstrated in our experiments, by conditioning over
the scene layout, our method provides a new form of implicit controllability,
improves structural consistency and quality, and adheres to human preference
(as assessed by our human evaluation study). In addition to our scene-based
approach, we extended our aspiration of improving the general and perceived
quality with a better representation of the token space. We introduce several
modifications to the tokenization process, emphasizing awareness of aspects with
increased importance in the human perspective, such as faces and salient objects.
To refrain from post-generation filtering and further improve the generation
quality and text alignment, we employ classifier-free guidance.

We follow next with a detailed overview of the proposed method, comprised
of (i) scene representation and tokenization, (ii) attending human preference in
the token space with explicit losses, (iii) the scene-based transformer, and (iv)
transformer classifier-free guidance. Aspects commonly used prior to this method
are not extensively detailed below, whereas specific settings for all elements can
be found in the appendix.

3.1 Scene representation and tokenization

The scene is composed of a union of three complementary semantic segmentation
groups - panoptic, human, and face. By combining the three extracted semantic
segmentation groups, the network learns to both generate the semantic layout
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and condition on it while generating the final image. The semantic layout pro-
vides additional global context in an implicit form that correlates with human
preference, as the choice of categories within the scene groups, and the choice
of the groups themselves are a prior to human preference and awareness. We
consider this form of conditioning to be implicit, as the network may disregard
any scene information, and generate the image conditioned solely on text. Our
experiments indicate that both the text and scene firmly control the image.

In order to create the scene token space, we employ VQ-SEG: a modified VQ-
VAE for semantic segmentation, building on the VQ-VAE suggested for semantic
segmentation in [13]. In our implementation the inputs and outputs of VQ-SEG
are m channels, representing the number of classes for all semantic segmentation
groupsm = mp+mh+mf+1, wheremp,mh,mf are the number of categories for
the panoptic segmentation [62], human segmentation [34], and face segmentation
extracted with [5] respectively. The additional channel is a map of the edges
separating the different classes and instances. The edge channel provides both
separations for adjacent instances of the same class, and emphasis on scarce
classes with high importance, as edges (perimeter) are less biased towards larger
categories than pixels (area).

3.2 Adhering to human emphasis in the token space

We observe an inherent upper-bound on image quality when generating images
with the transformer, stemming from the tokenization reconstruction method.
In other words, quality limitations of the VQ image reconstruction method in-
herently transfer to quality limitations on images generated by the transformer.
To that end, we introduce several modifications to both the segmentation and
image reconstruction methods. These modifications are losses in the form of em-
phasis (specific region awareness) and perceptual knowledge (feature-matching
over task-specific pre-trained networks).

Face-aware vector quantization. While using a scene as an additional form
of conditioning provides an implicit prior for human preference, we institute
explicit emphasis in the form of additional losses, explicitly targeted at specific
image regions.

We employ a feature-matching loss over the activations of a pre-trained face-
embedding network, introducing “awareness” of face regions and additional per-
ceptual information, motivating high-quality face reconstruction. Before training
the face-aware VQ (denoted as VQ-IMG), faces are located using the semantic
segmentation information extracted for VQ-SEG. The face locations are then
used during the face-aware VQ training stage, running up to kf faces per image
from the ground-truth and reconstructed images through the face-embedding
network. The face loss can then be formulated as following:

LFace =
∑
k

∑
l

αl
f∥FE

l(ĉkf )− FEl(ckf )∥, (1)
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where the index l is used to denote the size of the spatial activation at specific
layers of the face embedding network FE [6], while the summation runs over
the last layers of each block of size 112 × 112, 56 × 56, 28 × 28, 7 × 7, 1 × 1
(1 × 1 being the size of the top most block), ĉkf and ckf are respectively the

reconstructed and ground-truth face crops k out of kf faces in an image, αl
f is

a per-layer normalizing hyperparameter, and LFace is the face loss added to the
VQGAN losses defined by [13].

Face emphasis in the scene space. While training the VQ-SEG network,
we observe a frequent reduction of the semantic segmentations representing the
face parts (such as the eyes, nose, lips, eyebrows) in the reconstructed scene.
This effect is not surprising due to the relatively small number of pixels that
each face part accounts for in the scene space. A straightforward solution would
be to employ a loss more suitable for class imbalance, such as focal loss [35].
However, we do not aspire to increase the importance of classes that are both
scarce, and of less importance, such as fruit or a tooth-brush. Instead, we (1)
employ a weighted binary cross-entropy face loss over the segmentation face parts
classes, emphasizing higher importance for face parts, and (2) include the face
parts edges as part of the semantic segmentation edge map mentioned above.
The weighted binary cross-entropy loss can then be formulated as following:

LWBCE = αcat BCE(s, ŝ), (2)

where s and ŝ are the input and reconstructed segmentation maps respectively,
αcat is a per-category weight function, BCE is a binary cross-entropy loss, and
LWBCE is the weighted binary cross-entropy loss added to the conditional VQ-
VAE losses defined by [13].

Object-aware vector quantization. We generalized and extend the face-
aware VQ method to increase awareness and perceptual knowledge of objects
defined as “things” in the panoptic segmentation categories. Rather than a spe-
cialized face-embedding network, we employ a pre-trained VGG [52] network
trained on ImageNet [32], and introduce a feature-matching loss representing
the perceptual differences between the object crops of the reconstructed and
ground-truth images. By running the feature-matching over image crops, we are
able to increase the output image resolution from 256 × 256 by simply adding
to VQ-IMG an additional down-sample and up-sample layer to the encoder and
decoder respectively. Similarly to Eq. 1, the loss can be formulated as:

LObj =
∑
k

∑
l

αl
o∥VGGl(ĉko)−VGGl(cko)∥, (3)

where ĉko and cko are the reconstructed and input object crops respectively, VGGl

are the activations of the l− th layer from the pre-trained VGG network, αl
o is a

per-layer normalizing hyperparameter, and LObj is the object-aware loss added
to the VQ-IMG losses defined in Eq. 1.
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3.3 Scene-based transformer

The method relies on an autoregressive transformer with three independent con-
secutive token spaces: text, scene, and image, as depicted in the appendix. The
token sequence is comprised of nx text tokens encoded by a BPE [50] encoder,
followed by ny scene tokens encoded by VQ-SEG, followed by nz image tokens
encoded and decoded by VQ-IMG.

Prior to training the scene-based transformer, each encoded token sequence
corresponding to a [text, scene, image] triplet is extracted using the correspond-
ing encoder, producing a sequence that consists of:

tx, ty, tz = BPE(ix),VQ-SEG(iy),VQ-IMG(iz),

t = [tx, ty, tz],

where ix, iy, iz are the input text, scene and image respectively, ix ∈ Ndx , dx
is the length of the input text sequence, iy ∈ Rhy×wy×m, iz ∈ Rhz×wz×3,
hy, wy, hz, wz are the height and width dimensions of the scene and image inputs
respectively, BPE is the Byte Pair Encoding encoder, tx, ty, tz are the text, scene
and image input tokens respectively, and t is the complete token sequence.

3.4 Autoregressive transformer classifier-free guidance

Inspired by the high-fidelity of unconditional image generation models, we em-
ploy classifier-free guidance [9, 22, 44]. Classifier-free guidance is the process of
guiding an unconditional sample in the direction of a conditional sample. To
support unconditional sampling we fine-tune the transformer while randomly
replacing the text prompt with padding tokens with a probability of pCF . Dur-
ing inference, we generate two parallel token streams: a conditional token stream
conditioned on text, and an unconditional token stream conditioned on an empty
text stream initialized with padding tokens. For transformers, we apply classifier-
free guidance on logit scores:

logitscond = T (ty, tz|tx),
logitsuncond = T (ty, tz|∅),

logitscf = logitsuncond + αc · (logitscond − logitsuncond),

where ∅ is the empty text stream, logitscond are logit scores outputted by the
conditioned token stream, logitsuncond are logit scores outputted by the uncon-
ditioned token stream, αc is the guidance scale, and logitscf is the guided logit
scores used to sample the next scene or image token, T is an autoregressive
transformer based on the architecture of GPT-3 [4]. Note that since we use an
autoregressive transformer, we use logitscf to sample once and feed the same
token (image or scene) to the conditional and unconditional stream.
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4 Experiments

Our model achieves state-of-the-art results in human-based and numerical met-
ric comparisons. Samples supporting qualitative advantage are provided in Fig. 2.
Additionally, we demonstrate new creative capabilities possible with this method’s
new form of controllability. Finally, to better assess the effect of each contribu-
tion, an ablation study is provided.

Experiments were performed with a 4 billion parameter transformer, gener-
ating a sequence of 256 text tokens, 256 scene tokens, and 1024 image tokens,
that are then decoded into an image with a resolution of 256× 256 or 512× 512
pixels (depending on the model of choice).

Datasets. The scene-based transformer is trained on a union of CC12m [7],
CC [51], and subsets of YFCC100m [55] and Redcaps [10], amounting to 35m
text-image pairs. MS-COCO [36] is used as well unless otherwise specified. VQ-
SEG and VQ-IMG are trained on CC12m, CC, and MS-COCO.

Metrics. The goal of text-to-image generation is to generate high-quality and
text-aligned images from a human perspective. Different metrics have been sug-
gested to mimic the human perspective, where some are considered more reliable
than others. We consider human evaluation the highest authority when evaluat-
ing image quality and text-alignment, and rely on FID [19] to increase evaluation
confidence and handle cases where human evaluation is not applicable. We do
not use IS [49] as it has been noted to be insufficient for model evaluation [2].

4.1 Comparison with previous work

The task of text-to-image generation does not contain absolute ground-truths,
as a specific text description could apply to multiple images and vice versa. This
constrains evaluation metrics to evaluate distributions of images, rather than
specific images, thus we employ FID [19] as our secondary metric.

Baselines. We compare our results with several state-of-the-art methods using
the FID metric and human evaluators (AMT) when possible. DALL-E [45] pro-
vides strong zero-shot capabilities, similarly employing an autoregressive trans-
former with VQ-VAE tokenization. We train a re-implementation of DALL-E
with 4B parameters to enable human evaluation and fairly compare both meth-
ods employing an identical VQ method (VQGAN). GLIDE [40] demonstrates
vastly improved results over DALL-E, adopting a diffusion-based [53] approach
with classifier-free guidance [22]. We additionally provide an FID comparison
with CogView [12], LAFITE [69], XMC-GAN [66], DM-GAN(+CL) [64],
DF-GAN [54], DM-GAN [71], DF-GAN [54] and, AttnGAN [63].
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Human evaluation results. Human evaluation with previous methods is pro-
vided in Tab. 1. In each instance, human evaluators are required to choose be-
tween two images generated by the two models being compared. The two models
are compared in three aspects: (i) image quality, (ii) photorealism (which im-
age appears more real), and (iii) text alignment (which image best matches the
text). Each question is surveyed using 500 image pairs, where 5 different evalua-
tors answer each question, amounting to 2500 instances per question for a given
comparison. We compare our 256 × 256 model with our re-implementation of
DALL-E [45] and CogView’s [12] 256× 256 model. CogView’s 512× 512 model
is compared with our corresponding model. Results are presented as a percent-
age of majority votes in favor of our method when comparing between a certain
model and ours. Compared with the three methods, ours achieves significantly
higher favorability in all aspects.

FID comparison. FID is calculated over a subset of 30k images generated
from the MS-COCO validation set text prompts with no re-ranking, and pro-
vided in Tab. 1. The evaluated models are divided into two groups: trained with
and without (denoted as filtered) the MS-COCO training set. In both scenar-
ios our model achieves the lowest FID. In addition, we provide a loose practical
lower-bound (denoted as ground-truth), calculated between the training and val-
idation subsets of MS-COCO. As FID results are approaching small numbers, it
is interesting to get an idea of a possible practical lower-bound.

Generating out of distribution. Methods that generate from text inputs only
are more confined to generate within the training distribution, as demonstrated
by [40]. Unusual objects and scenarios can be challenging to generate, as certain
objects are strongly correlated with specific structures, such as cats with four
legs or cars with round wheels. The same is true for scenarios, “a mouse hunting a
lion” is most likely not a scenario easily found within the dataset. Using scenes in
the form of simple sketches as inputs, we are able to attend to these uncommon
objects and scenarios, as demonstrated in Fig. 3, despite the fact that some
objects do not exist as categories in our scene (such as the mouse and lion). We
solve the category gap by using categories that may be close in certain aspects
(elephant instead of mouse, cat instead of lion). In practice, for non-existent
categories several categories could be used instead.

4.2 Scene controllability

Samples are provided in Fig. 1, 3, 4, 5 and in the supplementary with both our
256× 256 and 512× 512 models. In addition to generating high fidelity images
from text only, we demonstrate the applicability of scene-wise image control and
maintaining consistency between generations.

Scene editing and anchoring. Rather than editing certain regions of images
as demonstrated by [45], we introduce new capabilities of generating images
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Table 1. Comparison with previous work (FID and human preference). FID is calcu-
lated over a subset of 30k images generated from the MS-COCO validation set text
prompts. When possible, we include models trained with and without (filtered) the
MS-COCO training set. In both scenarios our model achieves state of the art results,
correlating with visual samples and human evaluation. We add a loose practical lower-
bound (denoted as ground-truth), calculated between the training and validation sub-
sets of MS-COCO. Human evaluation is shown as a percentage of majority votes in
favor of our method when comparing between a certain model and ours.

Model FID↓ FID↓ Image Photo- Text
(filt.) quality realism alignment

AttnGAN [63] 35.49 - - - -
DM-GAN [71] 32.64 - - - -
DF-GAN [54] 21.42 - - - -
DM-GAN+CL [64] 20.79 - - - -
XMC-GAN [66] 9.33 - - - -
DALL-E [45] - 34.60 81.8% 81.0% 65.9%
CogView256 [12] - 32.20 92.2% 94.2% 92.2%
CogView512 [12] - 36.53 91.1% 88.2% 87.8%
LAFITE [69] 8.12 26.94 - - -
GLIDE [40] - 12.24 - - -
Ours256 7.55 11.84

Ground-truth 2.47 - - - -

from existing or edited scenes. In Fig. 4, two scenarios are considered. In both
scenarios the semantic segmentation is extracted from an input image, and used
to re-generate an image conditioned on the input text. In the top row, the scene
is edited, replacing the ‘sky’ and ‘tree’ categories with ‘sea’, and the ‘grass’
category with ‘sand’, resulting in a generated image adhering to the new scene.
A simple sketch of a giant dog is added to the scene in the bottom row, resulting
in a generated image corresponding to the new scene without any change in text.

Fig. 5 demonstrates the ability to generate new interpretations of existing
images and scenes. After extracting the semantic segmentation from a given
image, we re-generate the image conditioned on the input scene and edited text.

Storytelling through controllability. To demonstrate the applicability of
harnessing scene control for story illustrations, we wrote a children story, and
illustrated it using our method. The main advantages of using simple sketches as
additional inputs in this case, are (i) that authors can translate their ideas into
paintings or realistic images, while being less susceptible to the “randomness”
of text-to-image generation, and (ii) improved consistency between generation.
A short video of the story and process can be found in this video.

https://youtu.be/N4BagnXzPXY
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4.3 Ablation study.

An ablation study of human preference and FID is provided in Tab. 2 to assess
the effectiveness of our different contributions. Settings in both studies are simi-
lar to the comparison made with previous work (Sec. 4.1). Each row corresponds
to a model trained with the additional element, compared with the model with-
out that specific addition for human preference. We note that while the lowest
FID is attained by the 256× 256 model, human preference favors the 512× 512
model with object-aware training, particularly in quality. Furthermore, we re-
examine the FID of the best model, where the scene is given as an additional
input, to gain a better notion of the gap from the lower-bound (Tab. 1).

Table 2. Ablation study (FID and human preference). FID is calculated over a subset
of 30k images generated from the MS-COCO validation set text prompts. Human
evaluation is shown as a percentage of majority votes in favor of the added element
compared to the previous model. Classifier-free guidance is denoted as CF.

Model FID↓ Image Photo- Text
quality realism alignment

Base 18.01 - - -
+Scene tokens 19.16 57.3% 65.3% 58.3%
+Face-aware 14.45 63.6% 59.8% 57.4%
+CF 7.55 76.8% 66.8% 66.8%
+Obj-aware512 8.70 62.0% 53.5% 52.2%

+CF with scene input 4.69 - - -

5 Conclusion

The text-to-image domain has witnessed a plethora of novel methods aimed at
improving the general quality and adherence to text of generated images. While
some methods propose image editing techniques, progress is not often directed
towards enabling new forms of human creativity and experiences. We attempt to
progress text-to-image generation towards a more interactive experience, where
people can perceive more control over the generated outputs, thus enable real-
world applications such as storytelling. In addition to improving the general
image quality, we focus on improving key image aspects we deem significant in
human perception, such as faces and salient objects, resulting in higher favora-
bility of our method in human evaluations and objective metrics.
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