
Multi-Curve Translator for High-Resolution
Photorealistic Image Translation—Appendix

A Implementation Details

A.1 I2I Translation

We use LSGAN [17] and PatchGAN [7] to train CycleGAN [25], UNIT [15], and
their MCT variants. The objective function of LSGAN is:

min
D

LLSGAN (D) =
1

2
Ey∼p(y)

[
(D(y)− b)2

]
+

1

2
Ex∼p(x)

[
(D(G(x))− a)2

]
min
G

LLSGAN (G) =
1

2
Ex∼p(x)

[
(D(G(x))− c)2

]
,

(1)

where a = c = 1 and b = 0. Both CycleGAN and UNIT contain two discrim-
inators (DX and DY) and two generators (GX→Y and GY→X ). For UNIT, a
generator can be further divided into an encoder E and a generator G, then
GX→Y = GY(EX (x)) and GY→X = GX (EY(y)). Note that the process of sam-
pling latent codes is omitted here. For simplicity, we denote the adversarial loss
when training the generator G as Lgan.

CycleGAN and UNIT both contain the cycle-consistency loss [25,9], which is
formulated as:

Lcyc = Ex∼p(x) [∥GY→X (GX→Y(x))− x∥1]
+ Ey∼p(y) [∥GX→Y(GY→X (y))− y∥1] .

(2)

We also employ the identity loss [22]. For CycleGAN, it is formulated as:

Lidt = Ey∼p(y) [∥GX→Y(y)− y∥1]
+ Ex∼p(x) [∥GY→X (x)− x∥1]

(3)

UNIT’s identity loss is the reconstruction loss that is formulated as:

Lidt = Ey∼p(y) [∥GY(EY(y))− y∥1]
+ Ex∼p(x) [∥GX (EX (x))− x∥1]

(4)

Besides, UNIT also adds a KL divergence loss to penalize deviation of the
distribution of the latent code zX = EX (x) and zY = EY(y) from the prior
distribution, denoted as:

LKL = KL (qX (zX |x) ∥pη(z))
+ KL (qY (zY |y) ∥pη(z))

(5)



2

where the prior distribution pη(z) is a zero-mean Gaussian pη(z) = N (z|0, I).
Note the KL terms also penalize the latent codes deviating from the prior dis-
tribution in the cycle-reconstruction stream. When training the MCT variants,
we further add Lreg stated in the main paper:

Lreg = ∥Gy→x
b (Gx→y

m (x))− x∥
1
. (6)

The CycleGAN’s full objective is:

L = Lgan + λ1Lidt + λ2Lcyc. (7)

where λ1 = 5 and λ2 = 10. Then the MCT-CycleGAN’s full objective is:

L = Lgan + λ1Lidt + λ2Lcyc + λ3Lreg. (8)

where λ1 = 5, λ2 = 10, and λ3 = 1.
The UNIT’s full objective is:

L = λ0Lgan + λ1Lidt + λ2Lcyc + λ3LKL. (9)

where λ0 = 10, λ1 = λ2 = 100, and λ3 = 0.1. And MCT-UNIT’s full objective
is:

L = λ0Lgan + λ1Lidt + λ2Lcyc + λ3LKL + λ4Lreg. (10)

where λ0 = 10, λ1 = λ2 = 100, λ3 = 0.1 and λ4 = 10.
We use the Adam optimizer [10] to train the models with a mini-batch size

of 1. The base models were trained from scratch with a learning rate of 2×10−4.
We keep the same learning rate for the first 100 epochs and linearly decay the
rate to zero over the next 100 epochs. The MCT variants load the base models’
weights but also use an initial learning rate of 2× 10−4. We finetune them with
half of the epochs, i.e., keep the same learning rate for the first 50 epochs and
linearly decay the rate to zero over the next 50 epochs.

A.2 Style Transfer

AdaIN [5] encodes the style image and the content image using a pre-trained
VGG-19 [20] up to relu4 1. Let VGG-19 be E, the style image be s, and the
content image be c. Then the transformed feature maps are:

t = AdaIN(E(c), E(s)). (11)

The goal of AdaIN is to train a decoder G to reconstruct t into a stylized image.
AdaIN employs content loss as:

Lc = ∥E(G(t))− t∥2 (12)

Let the mean of the feature maps be µ and the variance be σ, AdaIN’s style loss
is:

Ls =

L∑
i=1

∥µ (ϕi(G(t)))− µ (ϕi(s))∥2

+

L∑
i=1

∥σ (ϕi(G(t)))− σ (ϕi(s))∥2

(13)



3

where each ϕi denotes a layer in VGG-19 used to compute the style loss (relu1 1,
relu2 1, relu3 1, relu4 1). Besides, we add a gradient loss Lg to prompt the
preservation of the geometric structure as:

Lg = ∥∇hG(c)−∇hc∥22 + ∥∇vG(c)−∇vc∥22 , (14)

where ∇h (∇v) denotes the gradient operator along the horizontal (vertical)
direction.

We employs a weighted combination of the content loss Lc, the style loss Ls,
and the gradient loss Lg to train AdaIN and MCT-AdaIN:

L = Lc + λ1Ls + λ2Lg, (15)

where λ1 = 1 and λ2 = 100.

The key to WCT2 [23] is the network architecture and the procedure of
performing WCT [13], while its training scheme is simple. WCT2 also uses the
pre-trained VGG-19 as the encoder and aims to train a decoder to reconstruct the
encoder’s feature map into the input image. WCT2 uses the L2 reconstruction
loss and the additional feature Gram matching loss with the encoder to train the
decoder. For simplicity, we only keep the reconstruction loss because the Gram
matching loss is not necessary. The L2 reconstruction loss is formulated as:

L = ∥G(E(c))− c∥2. (16)

Then its MCT variant’s loss function is:

L = ∥Gm(E(c))− c∥2 + ∥Gb(E(c))− c∥2. (17)

The challenge of extending WCT2 to its MCT variant is that it is extremely
easy to fall into a collapse solution, even if we constrain the base output. Specif-
ically, the curves represented by the parameter maps obtained by summing the
two outputs of the MCT variant are always identity mapping, even if we per-
form WCT on the intermediate feature maps. For this reason, we need to further
prevent the slicing operation from leaking low-frequency information from the
input to the output. First, we perform the grayscale operation on the HR image.
Then the HR image contains only one channel, so the corresponding number
of curves is changed from 9 to 3 (C = 3M). When performing stylization, we
further match the HR image’s brightness with the style image’s brightness to
prevent the brightness of the HR image from being retained in the output image,
which can be expressed as c̃ = c − µ(c) + µ(s). Note that we do not grayscale
and brightness-align the LR images.

We use the Adam optimizer to train the models with a mini-batch size of 8.
The base models were trained from scratch with a learning rate of 1× 10−4 for
1 × 105 iterations. Their MCT variants load the base models’ weights, and are
trained with a learning rate of 1× 10−4 for 5× 104 iterations.



4

A.3 Image Dehazing

We use only the L1 loss function to train GCANet [1], MSBDN [4], and their
MCT variants:

L = ∥G(x)− y∥1. (18)

All models are trained from scratch using the Adam optimizer with the cosine
annealing strategy [16] but not warm restarts. For all models, we set the initial
learning rate to 1 × 10−4. For GCANet and MCT-GCANet, we set mini-batch
size to 56 and train them for 500 epochs. For MSBDN and MCT-MSBDN, we
set mini-batch size to 28 and train them for 300 epochs.

A.4 Photo Retouching

Since color mapping and receptive field are critical for photo retouching, we set
Hd = Wd = 32, M = 32 for MCT-DPED and set M = 16 and p = 8 for
MCT-DPE.

For paired training, we also use the L1 loss function to train DPED [6]
and DPE [3]. All models are trained from scratch using the Adam optimizer
with the cosine annealing strategy but not warm restarts. And they are trained
from scratch with a learning rate of 1× 10−4 for 100 epochs. Since the memory
consumptions of these models are different, we train them using different mini-
batch sizes. For DPED, we set the mini-batch size to 16. For DPED-MCT and
DPE, we set the mini-batch size to 64. For DPE-MCT, we set the mini-batch
size to 32.

For unpaired training, we employ the earlier described CycleGAN’s training
scheme. For DPED, all training hyperparameters are not modified. For DPE, we
removed the identity loss because we found that it would cause the DPE to fall
into a poor solution.

B Limitations & Future Works

MCT is a flexible framework that minimizes the effort of modifying the base
model into an MCT variant. For a new I2I translation task, we only need to
modify the output layer of the existing model to extend it to its MCT variant.
Besides, we can not only load the pre-training weights of the base model but
also use the training strategy of the base model directly without modifying any
hyperparameters. Unfortunately, there are limitations to the tasks for which
MCT is applicable.

The first is the tasks to which MCT can be applied. We assume that if the
I2I translation process only slightly changes the shape and texture of the objects
in the image (i.e., high-frequency information), then a mapping responsible for
local regions in the image domain can be learned to approximate this translation
process. For tasks that do not satisfy our assumptions, such as dog2cat, MCT
is helpless. The reason is that MCT is realized by interpolation to apply the



5

LR parameter maps to transform HR images, so the transformation of high-
frequency information is spatially smooth. However, for some I2I translation
tasks with large shape changes, the transformation of high-frequency information
is highly unsmoothed spatially. We have tried to introduce spatial support similar
to KPN [18], but no visible improvement has been achieved. It may mean that
improving the translator’s capability to translate high-frequency information
without significantly increasing the number of parameters and the computational
cost is a non-trivial task. And it is the focus of our future research.

In addition to this, MCT is not always plug-and-play. For CycleGAN and
UNIT, we need to constrain the base output to prevent the MCT variants from
falling into collapse solutions. For WCT2, we need to grayscale and brightness-
align the HR images to reduce further the low-frequency information flowing
from the input to the output through the slicing operation. It is necessary to
develop more generalized training strategies to reduce further the difficulty of
extending the base model to their MCT variants.

Finally, although the MCT variants are significantly faster compared to their
base models, they may still be computationally heavy for edge devices due to
the high computational cost of some base models (e.g. CycleGAN). For this, we
may need to introduce the model compression approach or design lightweight
network architectures to lower the computational cost of the backbone network.
In addition, the runtime of the lookup table should not be ignored since the
memory bandwidth of the edge device can limit the speed of slicing operations.
We plan to find a better dimensionality reduction operation than image down-
sampling and revise the slicing operation to reduce computational and memory
access costs.

C More Experimental Results

We included the table of FID in the main paper, and we expanded it to FID
/ KID × 100 in Table 1. This experiment provides a rough indication of each
method’s translation capability for HR images, and the results are for reference
only since the FID and KID are not suitable for evaluating HR images.

We expand the user study to style transfer in Table 2. Although the results
of AdaIN preserve almost no high-frequency information, most users still feel
that the quality of MCT-AdaIN is inferior. AdaIN is an artistic style transfer
method, and its fixed VGG encoder without skip connection severely loses de-
tails. This property conflicts with the property of MCT to retain high-frequency
information, making MCT-AdaIN’s results unattractive.

We also explore not reintroducing high-frequency information, but using
super-resolution to predict high-frequency information. We conducted experi-
ments on image retouching (see Table 3). This method does not perform well,
especially in terms of SSIM, and we found that little lost high-frequency infor-
mation can be restored in the output.

We then quantitatively compare the translation capabilities of the state-of-
the-art lightweight I2I translation network and the MCT variants using super-



6

vised learning-based tasks. Table 4 shows the quantitative comparison between
LPTN [14] and MCT-DPE on the photo retouching. It can be seen that LPTN
is significantly inferior to MCT-DPE in both speed and performance. It is worth
mentioning that LPTN only achieves 23.09 dB on the SOTS dataset, 2.62 dB
lower than MCT-GCANet, and 5.61 dB lower than MCT-MSBDN for image
dehazing.

Considering that MCT is a curve-based method, we further compare MCT
with other curve-based methods. Previous curve-based methods were employed
only on image retouching. Since GleNet [8] was tested on downsampled images
and provided an empty repository, we re-implemented GleNet’s GEN (LEN is not
real-time). We train CURL [19] in the unpaired setting because no previous works
reported the result. We did not train StarEnhancer [21] in the unpaired setting
because it is a multi-style method that is non-trivial to extend. Table 5 shows the
comparison. The global transformation introduces inductive biases practical for
image retouching, making the previous curve-based methods prevent overfitting
and run fast. In contrast, DPE as a base model does not effectively aggregate
global information.

Table 6 illustates more runtime comparison results. Figures 2-11 show more
qualitative comparison results. Readers can generate more test results using the
provided code and pre-trained models.

We finally visualize the effectiveness of the two training strategies. Fig. 1
shows a special case when training MCT-CycleGAN on day2dusk. If we train
MCT-CycleGAN without constraining the base output, it may fall into a poor
solution. In contrast, imposing constraints on the base output makes the back-
bone network responsible for low-frequency information and medium-frequency
information, leaving only the high-frequency information lost during downsam-
pling to be taken care of by the slicing operation. When we do not use the pixel
unaligned training strategy, the output image of MCT may lose high-frequency
information. Unlike increasing the weight of cycle-consistency loss, a pixel un-
aligned training strategy causes the slicing operation to focus more on high-
frequency information. Note that although the output of MCT is blurred at this
point, it still contains more high-frequency information than the upsampled base
output due to the curve slicing operation.

Input w/o base output constraint w/o pixel non-alignment Final

Fig. 1. Ablation study on day2dusk. The second image is the result without con-
straining the base output during training. The third image is the result without the
pixel unalignment training strategy. The last image is the result using our proposed
full training scheme.



7

Table 1. Quantitative comparison (FID / KID × 100) of the photorealistic I2I trans-
lation. Lower is better.

day2dusk dusk2day summer2autumn autumn2summer

CycleGAN 89.00 / 1.14 94.17 / 1.69 101.98 / 1.45 100.34 / 1.65
UNIT 92.14 / 1.38 96.66 / 1.58 105.15 / 1.54 95.18 / 1.50

MCT-CycleGAN 81.67 / 0.67 92.14 / 1.75 103.45 / 1.56 94.72 / 1.55
MCT-UNIT 84.22 / 1.01 93.14 / 1.72 103.43 / 1.44 91.35 / 1.48

Table 2. User study results. The percentage indicates the preferred model outputs
out of 95 responses. Note that d2d means day2dusk, s2a means summer2autumn, and M

means Mask.

Methods CycleGAN UNIT AdaIN WCT2

Task d2d s2a d2d s2a w/ M w/o M w/ M w/o M

Base 32.6% 47.4% 29.5% 42.1% 84.2% 89.5% 54.7% 42.1%
MCT 67.4% 52.6% 70.5% 57.9% 15.8% 10.5% 45.3% 57.9%

Table 3. Quantitative comparison of photo retouching in the unpaired setting. The
FPS is tested using a single A100. TU means Translation-Upsampling (use EDSR-
LIIF [2] for scale-arbitrary).

Methods
480p 1080p original

PSNR / SSIM / FPS PSNR / SSIM / FPS PSNR / SSIM / FPS

DPE 21.07 / 0.861 / 284.7 21.02 / 0.859 / 43.7 20.92 / 0.854 / 10.8
TU-DPE 19.47 / 0.730 / 13.7 18.83 / 0.673 / 2.2 18.53 / 0.654 / 0.6

MCT-DPE 23.40 / 0.903 / 271.6 23.31 / 0.903 / 269.9 23.09 / 0.905 / 153.8

Table 4. Quantitative comparison on the FiveK dataset in the unpaired setting. The
FPS is tested on A100 with batch size = 1.

Methods
480p 1080p original

PSNR SSIM FPS PSNR SSIM FPS PSNR SSIM FPS

LPTN (L = 3) 22.12 0.878 248.9 22.09 0.883 188.4 22.02 0.879 37.9

MCT-DPE 23.40 0.903 271.6 23.31 0.903 269.9 23.09 0.905 153.8

Table 5. Quantitative comparison of photo retouching. FPS is measured on 4K images
using a single A100. Note that some results are replicated from [12,21].

Methods
Paired Unpaired

FPS
PSNR SSIM PSNR SSIM

FlexiCurve [12] 23.97 0.910 22.12 0.860 83.3
CURL [19] 24.20 0.880 21.62 0.873 3.4
GEN [8] 24.91 0.937 22.73 0.902 364.3

StarEnhancer [21] 25.29 0.943 - - 242.1

MCT-DPE 25.10 0.941 23.09 0.905 153.8



8

Table 6. Runtime comparison of the base models and their MCT variants.

Method Hardware
Resolution

256×256 360×360 512×512 1280×720 1920×1080 2560×1440 3840×2160 6000×4000 7680×4320

CycleGAN

A100-40G 238.4 146.1 80.7 23.8 10.8 6.1 2.7 OOM OOM
RTX 3090 138.6 72.7 37.1 11.7 5.2 2.9 1.3 OOM OOM
RTX 3080 130.7 65.6 32.8 7.1 4.3 2.4 1.1 OOM OOM
RTX 3070 77.3 41.2 21.4 6.0 2.9 1.7 OOM OOM OOM
RTX 3060 52.6 29.4 15.0 4.4 2.0 1.1 0.5 OOM OOM

RTX 2080Ti 111.4 52.1 27.6 7.4 3.3 1.9 0.9 OOM OOM
GTX 1080Ti 58.1 29.6 15.7 4.1 1.9 1.0 0.5 OOM OOM
GTX 1070Ti 17.5 16.7 8.4 2.3 1.0 0.6 OOM OOM OOM

WCT2

A100-40G 14.2 13.3 11.1 4.7 2.1 1.2 OOM OOM OOM
RTX 3090 13.7 13.1 8.7 3.4 1.7 1.0 OOM OOM OOM
RTX 3080 12.9 10.2 7.2 2.9 OOM OOM OOM OOM OOM
RTX 3070 11.3 9.2 5.9 OOM OOM OOM OOM OOM OOM
RTX 3060 10.6 7.2 4.4 1.4 OOM OOM OOM OOM OOM

RTX 2080Ti 12.4 10.7 7.0 2.5 OOM OOM OOM OOM OOM
GTX 1080Ti 8.9 6.8 4.3 1.2 OOM OOM OOM OOM OOM
GTX 1070Ti 7.6 4.7 2.8 0.7 OOM OOM OOM OOM OOM

GCANet

A100-40G 235.1 199.0 95.6 28.2 12.2 6.9 3.1 1.0 OOM
RTX 3090 229.4 138.7 75.7 21.9 9.8 5.5 2.4 OOM OOM
RTX 3080 227.2 121.4 64.7 18.5 8.3 4.6 OOM OOM OOM
RTX 3070 168.6 81.1 43.3 12.2 5.5 3.1 OOM OOM OOM
RTX 3060 117.4 58.2 30.8 8.7 3.9 2.2 OOM OOM OOM

RTX 2080Ti 205.6 78.5 52.0 14.0 6.1 3.5 OOM OOM OOM
GTX 1080Ti 90.5 41.3 20.5 5.3 2.3 1.3 OOM OOM OOM
GTX 1070Ti 60.6 28.6 14.2 3.8 1.7 0.9 OOM OOM OOM

DPE

A100-40G 410.6 403.5 317.9 94.8 43.7 24.4 10.8 3.6 2.6
RTX 3090 400.3 390.6 279.1 84.2 39.1 21.9 9.9 OOM OOM
RTX 3080 396.4 357.3 252.2 74.5 34.5 19.1 OOM OOM OOM
RTX 3070 382.0 315.4 175.8 51.2 23.5 13.1 OOM OOM OOM
RTX 3060 372.1 231.3 127.6 37.2 17.0 9.5 4.2 OOM OOM

RTX 2080Ti 389.3 345.7 195.8 60.0 26.9 15.3 6.7 OOM OOM
GTX 1080Ti 378.8 238.8 137.5 37.5 16.7 9.3 4.1 OOM OOM
GTX 1070Ti 273.3 153.7 84.2 22.2 10.0 5.5 OOM OOM OOM

MCT-CycleGAN

A100-40G 173.5 172.3 171.5 169.6 168.9 153.1 116.0 64.2 51.1
RTX 3090 116.1 115.9 114.6 111.1 103.5 95.1 77.7 47.6 39.3
RTX 3080 108.9 108.1 106.4 100.7 93.1 84.7 68.1 40.9 33.2
RTX 3070 64.7 64.6 63.8 61.0 57.3 52.6 42.8 26.1 OOM
RTX 3060 44.5 44.3 43.8 42.1 39.5 36.3 29.9 18.6 15.2

RTX 2080Ti 93.1 91.9 89.9 83.3 74.7 65.7 49.8 27.9 22.2
GTX 1080Ti 50.0 49.6 48.8 45.9 41.5 36.9 28.2 15.9 12.6
GTX 1070Ti 29.9 29.6 29.2 27.8 25.7 23.5 18.6 11.0 OOM

MCT-WCT2

A100-40G 14.2 14.1 14.1 14.0 13.9 13.6 13.5 12.6 12.1
RTX 3090 13.4 13.3 13.2 12.9 12.9 12.7 12.5 12.3 11.6
RTX 3080 13.2 12.6 12.5 12.5 12.3 12.3 11.6 10.5 9.9
RTX 3070 11.9 11.9 11.8 11.5 11.5 11.0 10.9 9.4 OOM
RTX 3060 10.4 10.4 10.3 10.2 10.1 9.9 9.4 8.0 7.3

RTX 2080Ti 14.4 14.4 14.4 14.2 14.1 13.7 12.9 10.6 9.8
GTX 1080Ti 9.1 9.1 9.0 8.6 8.8 8.6 8.2 7.1 6.5
GTX 1070Ti 7.5 7.4 7.4 7.4 7.2 7.1 6.6 5.4 OOM

MCT-GCANet

A100-40G 228.1 226.1 223.9 221.1 218.9 197.4 131.1 61.3 47.4
RTX 3090 225.1 222.1 221.9 213.0 195.6 165.8 114.1 56.1 43.3
RTX 3080 216.2 215.4 214.2 194.9 166.8 139.5 95.9 46.3 35.7
RTX 3070 157.1 155.4 151.9 134.5 115.5 97.1 66.2 32.0 OOM
RTX 3060 110.7 108.9 106.4 95.8 82.6 69.3 48.1 23.6 18.2

RTX 2080Ti 194.0 190.2 186.5 158.7 131.1 106.0 70.0 32.7 24.8
GTX 1080Ti 86.4 84.9 83.1 73.8 63.1 52.5 35.7 17.5 13.4
GTX 1070Ti 57.2 56.2 55.2 49.7 43.2 36.7 25.8 12.6 OOM

MCT-DPE

A100-40G 307.1 301.3 300.0 297.3 280.9 252.1 162.4 72.9 55.2
RTX 3090 289.8 288.9 288.7 288.3 263.5 224.4 142.4 63.7 48.0
RTX 3080 274.3 273.4 272.9 265.4 251.1 198.6 123.3 53.8 40.5
RTX 3070 251.5 251.4 247.7 226.6 178.3 138.4 83.3 35.6 OOM
RTX 3060 208.5 204.9 196.0 165.4 130.0 99.5 60.4 25.9 19.3

RTX 2080Ti 274.1 270.2 267.7 245.5 185.6 137.7 80.8 32.9 24.8
GTX 1080Ti 216.8 211.5 198.9 152.6 110.2 80.3 45.7 18.5 14.0
GTX 1070Ti 145.5 141.4 133.6 105.6 78.5 58.3 33.9 13.8 OOM



9

Input CycleGAN UNIT MCT-CycleGAN MCT-UNIT

Fig. 2. Qualitative comparison of day2dusk.



10

Input CycleGAN UNIT MCT-CycleGAN MCT-UNIT

Fig. 3. Qualitative comparison of dusk2day.



11

Input CycleGAN UNIT MCT-CycleGAN MCT-UNIT

Fig. 4. Qualitative comparison of summer2autumn.



12

Input CycleGAN UNIT MCT-CycleGAN MCT-UNIT

Fig. 5. Qualitative comparison of autumn2summer.



13

Content & Style AdaIN WCT2 MCT-AdaIN MCT-WCT2

Fig. 6. Qualitative comparison of style transfer with paired segmentation label maps.



14

Content & Style AdaIN WCT2 MCT-AdaIN MCT-WCT2

Fig. 7. Qualitative comparison of style transfer without segmentation label maps.



15

Input GCANet MSBDN MCT-GCANet MCT- MSBDN GT

Fig. 8. Qualitative comparison of image dehazing on SOTS dataset [11].



16

Input GCANet MSBDN MCT-GCANet MCT- MSBDN GT

Fig. 9. Qualitative comparison of image dehazing on HazeRD dataset [24].



17

Input DPED DPE MCT-DPED MCT- DPE GT

Fig. 10. Qualitative comparison of photo retouching with paired training.



18

Input DPED DPE MCT-DPED MCT- DPE GT

Fig. 11. Qualitative comparison of photo retouching with unpaired training.



19

References

1. Chen, D., He, M., Fan, Q., Liao, J., Zhang, L., Hou, D., Yuan, L., Hua, G.: Gated
context aggregation network for image dehazing and deraining. In: WACV (2019)
4

2. Chen, Y., et al.: Chen, yinbo and liu, sifei and wang, xiaolong. CVPR (2021) 7
3. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: Unpaired

learning for image enhancement from photographs with gans. In: CVPR (2018) 4
4. Dong, H., Pan, J., Xiang, L., Hu, Z., Zhang, X., Wang, F., Yang, M.H.: Multi-scale

boosted dehazing network with dense feature fusion. In: CVPR (2020) 4
5. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance

normalization. In: ICCV (2017) 2
6. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: Dslr-quality

photos on mobile devices with deep convolutional networks. In: ICCV (2017) 4
7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-

tional adversarial networks. In: CVPR (2017) 1
8. Kim, H.U., Koh, Y.J., Kim, C.S.: Global and local enhancement networks for

paired and unpaired image enhancement. In: ECCV (2020) 6, 7
9. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain

relations with generative adversarial networks. In: ICML (2017) 1
10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ICLR (2015)

2
11. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking

single-image dehazing and beyond. IEEE TIP (2018) 15
12. Li, C., Guo, C., Ai, Q., Zhou, S., Loy, C.C.: Flexible piecewise curves estimation

for photo enhancement. arXiv preprint arXiv:2010.13412 (2020) 7
13. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer

via feature transforms. In: NeurIPS (2017) 3
14. Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in

real-time: A laplacian pyramid translation network. In: CVPR (2021) 6
15. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation net-

works. In: NeurIPS (2017) 1
16. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.

In: ICLR (2017) 4
17. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares

generative adversarial networks. In: ICCV (2017) 1
18. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst

denoising with kernel prediction networks. In: CVPR (2018) 5
19. Moran, S., McDonagh, S., Slabaugh, G.: Curl: Neural curve layers for global image

enhancement. In: ICPR (2021) 6, 7
20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: ICLR (2015) 2
21. Song, Y., Qian, H., Du, X.: Starenhancer: Learning real-time and style-aware image

enhancement. In: ICCV (2021) 6, 7
22. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation.

In: ICLR (2016) 1
23. Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via

wavelet transforms. In: ICCV (2019) 3
24. Zhang, Y., Ding, L., Sharma, G.: Hazerd: an outdoor scene dataset and benchmark

for single image dehazing. In: ICIP (2017) 16
25. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation

using cycle-consistent adversarial networks. In: ICCV (2017) 1


