
Deep Bayesian Video Frame Interpolation

Zhiyang Yu1,2† , Yu Zhang2�, Xujie Xiang2,3†, Dongqing Zou2,4,

Xijun Chen1� , and Jimmy S. Ren2,4

1 Harbin Institute of Technology, Harbin, China
2 SenseTime Research and Tetras.AI, Beijing, China

3 Beihang University, Beijing, China
4 Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai, China

zhangyulb@gmail.com chenxijun@hit.edu.cn

Abstract. We present deep Bayesian video frame interpolation, a novel
approach for upsampling a low frame-rate video temporally to its higher
frame-rate counterpart. Our approach learns posterior distributions of
optical flows and frames to be interpolated, which is optimized via learned
gradient descent for fast convergence. Each learned step is a lightweight
network manipulating gradients of the log-likelihood of estimated frames
and flows. Such gradients, parameterized either explicitly or implicitly,
model the fidelity of current estimations when matching real image and
flow distributions to explain the input observations. With this approach
we show new records on 8 of 10 benchmarks, using an architecture with
half the parameters of the state-of-the-art model. Code and models are
publicly available at https://github.com/Oceanlib/DBVI.

Keywords: Video Frame Interpolation · Deep Bayesian · Image Reconstruction

1 Introduction

To meet the requirement of power consumption and image quality, modern video
sensors often work with limited frame aquisition rate. Video Frame Interpolation
(VFI) [3,7,15,16,20,25,41] is an important computational approach that synthe-
sizes the missing intermediate frames between consecutive frames of a low frame-
rate video. When capable of performing interpolation at any continuous time
step, VFI is able to temporally upsample a video to any desired resolution, cre-
ating smooth slow-motion effect at various degrees of natural movements [4,15].

Solving continuous-time VFI requires representing pixel movements continu-
ously. It was commonly achieved by fitting parametric pixel trajectory models to
the optical flows extracted from sparse observed frames [6,15,41]. Intermediate
pixel flows are resampled at sub-frame time steps, providing warping fields to

† The work is done during an internship at SenseTime Research and Tetras.AI.
� Correspondence should be addressed to Yu Zhang (zhangyulb@gmail.com) and Xijun

Chen (chenxijun@hit.edu.cn).

https://github.com/Oceanlib/DBVI

2 Z. Yu et al.

QVISloMo XVFI

FLAVR Proposed Ground Truth

Renderer

Feedback

Network

(c) The proposed VFI

(b) Conventional flow-based VFI

𝑰−1 𝑰𝟎 𝑰1 𝑰2

(a) Consecutive Input Frames

Parameters for rendering:

flow and occlusion mask

Current parameters & result Iterative parameters/result update

Fig. 1. Motivation of the proposed approach. Given input consecutive frames (a), most
conventional approaches predict parameters for novel frame rendering in one pass (b)
while ours generates learned updates in multiple iterations (c) to simplify prior model-
ing. This yields improved interpolation results in challenging scenarios compared with
recent models like SloMo [15], QVI [41], XVFI [32], and FLAVR [16].

reorganize the pixels from known input frames to synthesize the intermediate
view, possibly with external geometric guidance (e.g. depth [3]). However, as
inputs of VFI are sparse scene captures with low temporal frequency, inferring
the underlying full frequency motion is highly ill-posed. Several works tackle
the ill-poseness by learning a function mapping the low frame-rate input to its
high frame-rate counterpart, fitted from raw data (e.g. [7,11,16]). Yet without
continuous representation, they lose the flexibility for continuous-time frame in-
terpolation.

If viewed from optimization perspective, continuous-time VFI methods pre-
dict the parameters (e.g. intermediate scene geometries like flows and occlusion)
of an inference model (e.g. image renderer with scene geometries as rendering pa-
rameters) to best explain the measurements (e.g. input frames). Since there are
far more predictive parameters than measurements, effective priors are required.
In most contemporary works [3,15,27,41], parameters are predicted from sparse
measurements in one pass, having few chance to feedback and improve rendering
errors (as in Fig. 1 (b)). Consequently, burden is left to the network to encode
strong priors into the parameters (e.g. joint space of parameters of natural scene
geometry), which is prohibitively difficult even for large architecture.

In this work we propose deep Bayesian video frame interpolation, a continuous-
time VFI framework with iterative learned task priors. Our framework learns
posterior distributions of the intermediate optical flows and frames to be inter-
polated, optimized via learned gradient descent [1,2] for fast convergence within
a few iterations. Each iteration evaluates the gradients of the log-likelihood mod-
elling fidelity of current estimations of image and flows. Such first-order gradi-
ents are altered by a network encoding learned prior of higher-order information,
such that after updated with altered gradients, intermediate estimations fall ef-
fectively onto the manifold of natural images and flows. We show log-likelihood
gradients w.r.t. interpolated images can be explicitly defined with intuitive in-

Deep Bayesian Video Frame Interpolation 3

terpretations. The gradients w.r.t. interpolated optical flows are derived from an
implicit posterior flow distribution jointly trained with other components to ac-
count for the complex real-world flow distribution. When unfolded, the learned
gradient steps form an architecture that can be trained end-to-end.

Our approach amortizes learning the whole task priors in one pass into mul-
tiple iterations, while each iteration reduces to learning a simpler prior on how
to manipulate gradients towards smaller rendering errors in a principled opti-
mization framework. Evaluated with extensive experiments, this method sets
new records on 8 of 10 public benchmarks, outperforms state-of-the-art VFI
model [16] with half parameter size.

Our work aims to introduce 3 folds of contributions: 1) a principled contiuous-
VFI framework, which produces high-quality interpolation results with less pa-
rameters; 2) a deep parameterization of gradients of arbitary posterior distribu-
tions that can be end-to-end optimized as a network component; 3) a unified
and fair benchmarking of VFI models on standard datasets.

2 Related works

Video frame interpolation has became an active research topic in computer vi-
sion since more than one decade earlier [22,39,43]. Though, the performance of
VFI methods are effectively boosted in recent year [15], with emergence of deep
learning architectures and high-quality training data. Since then, various meth-
ods were proposed. Among them, a large body of works treat VFI as a novel
view rendering problem by warping the observed video frames.

Flow-based rendering predicts pixel flows of intermediate time steps by ana-
lyzing the optical flows extracted from input video. As input frames are sparse,
explicit flow priors are placed to yield continuous sampling of flows at arbitary
time. Early work [15] imposes linear flow prior, which was further extended to
quadratic [41] or even cubic [6] trajectory models to accurately represent lo-
cal movements of pixels. A challenge here is that to get rid of occlusion and
confliction in flow-based warping, flows starting from the intermediate frame to
input frames need to be known, while the resampled flows are in reverse order.
Heuristic flow reversing was thus proposed, by interpolating at occluded pixels
with various local kernels [4,15,32,41] possibly guided by scene geometry like
depth [3]. Instead of reversing flows, [24] addresses occlusion-ware warping with
forward splatting, using color constancy as guidance. As an important compo-
nent, learnable flow refinement modules were applied to improve the heuristically
interpolated flows. To name a few, they include bilateral cost volumes [26,27],
spatial pyramidal flow upsampling [32], temporal pyramidal refinement [6] and
learnable median filtering [41].

Kernel-based rendering learns linear kernels to aggregate input pixels within a
local spatiotemporal window to produce interpolation results. Such kernels were
implemented as separable convolutions [25], deformable convolutions [5,20,30,31]
and trilinear sampling kernels [21]. However, most such methods cannot address
VFI at arbitary time steps as learned kernels are time-specific.

4 Z. Yu et al.

Instead of explicit frame rendering, several works learn direct mapping from
low frame-rate video to its higher frame-rate counterpart from data. It makes
VFI benefit from the strong pattern fitting ability of deep networks, implemented
with channel attention [7] or 3D convolution [16]. Again, they do not address
arbitary-time VFI for the descrete representations of neural network, and have
risk of over-fitting to the low-level statistics of a dataset.

Our method starts from a different perspective, treating directly the inverse
problem nature of VFI and solving it with gradient-based Bayesian optimiza-
tion [1,2]. Though actively studied for low-level tasks like denoising [19,36], de-
mosaicking [18] and 3D view synthesis [9], it is by the first time explored for VFI
to the best of our knowledge. The method can be viewed as combining existing
directions but in different way — it learns frame interpolation by fitting the
data, while at the same time evaluates current rendering errors on the observed
frames and flows and feedback such errors to boost next iteration. This makes it
robust to overfitting, as each of its step is to fix local estimation errors instead
of encoding all the appearance and motion dynamics in a single pass.

3 The Proposed Method

3.1 Background and Notations

Given consecutive frames I−1, I0, I1, I2, where Ii ∈ [0, 1]
H×W×3

, ∀i ∈ {−1, 0, 1, 2},
we aim at interpolating intermediate frame It at any arbitrary time t ∈ (0, 1).
Following prior works [15,32,41], we start by extracting optical flows from input
frames, then fit a continuous motion model that can be resampled at time t to
get flows F0→t,F1→t ∈ RH×W×2. To render the target frame It, such forward
flows were heuristically reversed and then refined in previous works, yielding
backward-stage flows Ft→0, Ft→1 so as to make rendering possible via warping:

I∗t = (1− t)⊙M⊙ ϕB(I0,Ft→0) + t⊙ (1−M)⊙ ϕB(I1,Ft→1), (1)

whereM is the blending mask,⊙ is the Hadamard product, and ϕB stands for the
backward warping function [14]. However, reversing forward flows and inferring
occlusions at unknown time step are both challenging, while the rendering-driven
scheme (1) poses strong assumption on the quality of them.

Differing from previous works, we solve VFI with a deep Bayesian approach,
optimizing for results that can best explain the occurrence of input data regu-
larized with priors. Specfically we learn directly the posterior distributions of It,
conditioned on the observed frames and flows:

I∗t = argmax
It

P (It|I0, I1,F0→t,F1→t). (2)

3.2 Deep Bayesian Video Frame Interpolation

To derive a tractable solution of (2), we make the following simplification

Deep Bayesian Video Frame Interpolation 5

P (It|I0, I1,F0→t,F1→t) =
∏

i∈{0,1}

P (It|Ii,Fi→t), (3)

where It is assumed that can be independently explained by image and flows at
either frame 0 or 1. Since the forward flows F0→t and F1→t are estimated from
low frame-rate video frames, errors inevitably exist. To account for it, we also
incorporate the refined task-specific forward flows as latent variables:

P (It|Ii,Fi→t) =

∫
∆Fi→t

P (It|Ii,Fi→t, ∆Fi→t)P (∆Fi→t|Ii,Fi→t)d∆Fi→t

≈ P (It|Ii,Fi→t, ∆F̂i→t)P (∆F̂i→t|Ii,Fi→t),

(4)

where refined flows are modelled by the residual flows∆Fi→t. The approximation
step replaces the integral, which enumerates all possible∆Fi→ts to be calculated,
with the mode of the conditional ∆F̂i→t = argmax∆Fi→t P (∆Fi→t|Ii,Fi→t), for
tractability. Integrating (4) into (3) and taking the negative logarithm, we arrive
at the following minimization problem

min
It,{∆F̂i→t}

−
∑

i∈{0,1}

(
logP (It|Ii,Fi→t, ∆F̂i→t) + logP (∆F̂i→t|Ii,Fi→t)

)
. (5)

The non-linear problem (5) can be optimized via iterative gradient descent:

I
(k+1)
t = I

(k)
t − λI

∂L

∂It
, ∆F̂

(k+1)
i→t = ∆F̂

(k)
i→t − λF

∂L

∂∆F̂i→t

, (6)

where L(It, {∆F̂i→t}; {Ii}, {Fi→t}) is the objective of (5) ({·} represents the
collection of variables of different is for short), λI and λF are step sizes. For ∂L

∂It
,

∂L

∂It
= −

∑
i∈{0,1}

∂ logP (It|Ii,Fi→t, ∆F̂i→t)

∂It

= −
∑

i∈{0,1}

(
∂ logP (Ii|It,Fi→t, ∆F̂i→t)

∂It
+

∂ logP (It|Fi→t, ∆F̂i→t)

∂It

)
,

(7)

where the first term represents gradients of the log-likelihood that input frame Ii
occurs given the estimations It and∆F̂i→t, while the second term are gradients of
the conditional prior of the interpolated frames. Iteratively evaluating gradients
and performing updates can take large numbers of steps to converge. We leverage
recent advances on learned gradient descent [1], performing updates with learned
gradients conditioned on the classical ones:

I
(k+1)
t = I

(k)
t + GI

({
∂ logP (Ii|I(k)t ,Fi→t, ∆F̂

(k)
i→t)

∂It

}
, I

(k)
t , {Fi→t}, {∆F̂

(k)
i→t}

)
.

(8)

6 Z. Yu et al.

Note that conditional priors are implicitly folded into the learned gradient net-
work GI. Conditioning on the likelihood gradients encodes the local loss land-
scape into iterative minimization, where gradient directions and magnitudes sig-
nify the gap of current estimation to explain the given observations.

The partial gradients ∂L
∂∆F̂i→t

in (5) are comprised exactly of the conditional

likelihood and prior terms. Therefore, its learned update rule can be defined:

∆F̂
(k+1)
i→t = ∆F̂

(k)
i→t +GF

(
∂ logP (I

(k)
t |Ii,Fi→t, ∆F̂

(k)
i→t)

∂∆F̂i→t

, ∆F̂
(k)
i→t, Ii,Fi→t

)
. (9)

With learned gradients, we unroll a small number of K update steps. The
overall optimization procedure can be unfolded as a specific architecture, trained
on a dataset with paired low frame-rate and high frame-rate video frames.

3.3 Formulating the gradients

Each iteration of (8) and (9) requires evaluating specific log-likelihood gradients.
We show that gradients corresponding to the incremental image (8) has explicit
and interpretable representations under simple distributions, resembling warped
reconstruction errors with current flow estimations. For the flow log-likelihood
gradients (9), we propose an implicit representation via deep parameterization
to make them tractable and computationally efficient.
Explicit image log-likelihood gradients. Image likelihood in (8) models

the occurrence of input video frame Ii, given intermediate estimations I
(k)
t and

∆F̂
(k)
i→t. We define this conditional likelihood as a pixel-independent Gaussian

distribution, centered at the warped version of I
(k)
t :

Ii ∼ N
(
ϕB(I

(k)
t ,Fi→t +∆F̂

(k)
i→t), σ

2
I

)
, (10)

where ϕB is the bilinear warping function, and σI is set to a constant. If we

write Ŵ
(k)
i→t as the matrix absorbing bilinear warping weights from flows Fi→t+

∆F̂
(k)
i→t, then the warping can be represented by matrix multiplication Ŵ

(k)
i→tI

(k)
t .

Gradients of this Gaussian likelihood are then (Ŵ
(k)
i→t)

T(Ŵ
(k)
i→tI

(k)
t − Ii). It can

be intuitively interpreted as evaluating the errors of explaining Ii when I
(k)
t is

warped to time i, while gathering such errors at time t by reverse splatting.
Implicit flow log-likelihood gradients. The flow-side likelihood from (9)

aims to explain the occurrence of I
(k)
t given Ii and estimated flows F̂

(k)
i→t. Unlike

image likelihood, defining it with simple distribution by image warping is tricky,

as forward flows F̂
(k)
i→t do not convey sufficient scene geometry (e.g. occlusion

relaionship) for warping. Instead of heuristic flow reversal [3,15,32,41], we model
such distribution implicitly with learnable parameterization. By the Bayesian
formula relating likelihood, posterior and prior, the likelihood gradients can be
implicitly represented with the gradients derived from posterior and prior:

∂ logP (I
(k)
t |·, ∆F̂

(k)
i→t)

∂∆F̂i→t

=
∂ logP (∆F̂

(k)
i→t|I

(k)
t , ·)

∂∆F̂i→t

− ∂ logP (∆F̂
(k)
i→t|·)

∂∆F̂i→t

, (11)

Deep Bayesian Video Frame Interpolation 7

where we omit Ii and Fi→t in the conditions to ease presentation. As prior is
folded into gradient network, we propose to evaluate the log-posterior gradients
(the first term of the righthand of (11)) instead. This resembles flow estimation

from a frame pair I
(k)
t and Ii, where in the existing literature, the flow posterior

distribution is mostly a Laplacian of fixed variance (with ℓ1 loss as negative log-
density) [8,35,37]. However, to ensure such simple distribution works, it requires
presence of ground-truth optical flows, which are absent in our task.

To learn flow posterior gradients without explicitly specifying its underlying

distribution P (∆F̂
(k)
i→t|I

(k)
t , ·), we propose a deep reparameterization approach by

leveraging normalizing-flow-based invertible layers [17]. We assume an invertible,
injective and twice-differentiable function f : Rm 7→ Rm transforms the flow

maps ∆F̂
(k)
i→t to a multi-dimensional latent representation X

(k)
i→t = f(∆F̂

(k)
i→t).

By the change of variables and chain rule of gradients,

∂ logP (∆F̂
(k)
i→t)|I

(k)
t , ·)

∂∆F̂i→t

=
∂ log

∣∣∣det(∂Xi→t

∂∆F̂i→t

)∣∣∣
∂∆F̂i→t

+
∂Xi→t

∂∆F̂i→t

∂ logP (X
(k)
i→t|I

(k)
t , ·)

∂Xi→t
.

(12)
AsXi→t resides in deep latent space, we assume it follows multi-variate Gaus-

sian P (X
(k)
i→t|I

(k)
t , ·) = N

(
µ(I

(k)
t , ·),Σ(I

(k)
t , ·))

)
, whose mean and covariance are

predictive as intermediate network outputs. Gradients of Gaussian log-likelihood
w.r.t. Xi→t can be efficiently evaluated:

∂ logP (X
(k)
i→t|I

(k)
t , ·)

∂Xi→t
= Σ−1(I

(k)
t , ·)

(
X

(k)
i→t − µ(I

(k)
t , ·)

)
. (13)

To ensure PSD of covariance matrix and avoid inversion, we let Σ = SST and
parameterize S−1 instead of Σ. Other gradient terms of (12) can be computed
by once and twice differentiating though the layers of the function f5.

The modeling (12) can be thought of transforming the flow predictions∆F̂i→t

into a deep embedded space such that the fidelity of flows are measureable with
learned metric defined by a simple distribution. The first and second gradient
terms of (12) serve as volume-preserving scaling and biases of the deep gradi-

ents, ensuring real gradients w.r.t. ∆F̂i→t are computed no matter what the
transformation is. The transformation is not explicitly defined, but implicitly
optimized towards explaining the training data. By stacking many invertible
layers to form f , we theoretically can model the gradients of arbitarily complex
posterior distributions of optical flows to match the real distribution.

One thing to take care of in practice is that the forward flows∆F̂i→t have only
two channel dimensions, which is too restricted to learn expressive deep latent
representations (since invertible layers preserve dimensionality). We therefore lift

∆F̂i→t to an augmented M -dimensional space by adding more channels, while
only the first two channels are used for flow modeling. Such additional channels
are initialized with zeros at beginning, while learned during iterations.

5 Please refer to the supplementary material for more discussions on implementation.

8 Z. Yu et al.

Flow

Gradient

𝑰0, 𝑰1
{𝑭0→𝑡, 𝑭1→𝑡}

𝑰𝑡
(𝑘+1)

𝑯(𝑘+1)Shared

CNN

Image

Gradient

{𝜕𝑰𝑡}

{𝜕∆෡𝑭}

𝑰𝑡
(0)

= 𝚶

𝑯(0) = 𝚶

Learned Update Step k

L
e

a
rn

e
d

 U
p

d
a

te
 S

te
p

 0

𝑰𝑡
(1)

𝑯(1)

L
e

a
rn

e
d

 U
p

d
a

te
 S

te
p

 K
-1

𝑰𝑡
(𝐾)

…

𝑰𝑡
(𝑘)

…

𝑯(𝑘)

L
e

a
rn

e
d

 U
p

d
a

te
 S

te
p

 k
-1

(a)

Image Gradient(c)

{𝜕𝑰𝑡}

𝑰i

𝑰𝑡
(𝑘)

{𝑭𝑖→𝑡}

{∆෡𝑭𝑖→𝑡
(𝑘)

}

W G

= 𝚶
∆෡𝑭0→𝑡

(0)

∆෡𝑭1→𝑡
(0)

∆෡𝑭0→𝑡
(1)

∆෡𝑭1→𝑡
(1)

∆෡𝑭0→𝑡
(𝑘)

∆෡𝑭1→𝑡
(𝑘)

∆෡𝑭0→𝑡
(𝑘+1)

∆෡𝑭1→𝑡
(𝑘+1)

Flow Gradient(b)

𝑯(𝑘)

{∆෡𝑭𝑖→𝑡
(𝑘)

}

Conv

invConv𝜃

𝝁 𝜮−𝟏

invConv𝜃T

{𝜕∆෡𝑭}

Element-wise addition/subtraction

{𝜕𝑰𝑡}

{𝜕∆෡𝑭}

Image log-likelihood gradients

Flow log-likelihood gradients

W

G

Backward warping

Gradient calculation

Hadamard product

invConv𝜃T Convolution with transposed weights

Fig. 2. Pipeline of our approach, best viewed in color. Please see text for details.

3.4 Implementation

Architecture. The per-iteration networks GI and GF have many shared inputs

(e.g. {Fi→t}, {∆F̂
(k)
i→t} and {I(k)t }). As shown in Fig.2, we therefore use a single

network to reduce redundant calculation and explore the complementary cues.
At each iteration, this shared network generates learned updates of image and
flows, which are element-wise added to previous estimations to get current results

I
(k)
t and {∆F̂

(k)
i→t}. In addition to image and flow updates, the shared network

also outputs additional intermediate features H(k), which summarizes historical
information and are passed across iterations, as suggested in [2,9].

In each iteration, I
(k)
t , {Ii}, {∆F̂

(k)
i→t}, and {Fi→t} are processed by the Im-

age Gradient Module to get the gradients ∂It, as described in Sect. 3.3. For
flow gradients, first note that flows are lifted to high-dimensional space (∆F̂i→t

is set 16-dimensional in our implementation). The Flow Gradient Module then
predicts the mean and inverse of co-variance (or precision) of 16-dimensional
Gaussian from the last hidden features H(k). For efficiency we assume the preci-
sion matrix is diagonal, using exponential layer on the top to ensure positiveness

of precision. Remember that {∆F̂
(k)
i→t} go through invertible transformation for

gradient evaluation. In practice, we model it with a single invertible convolution
layer [17]. Though stacking more layers is advantageous for performance in prin-
ciple, we find it already effective in experiments (Sect. 4) while highly efficient.
As shown in Fig. 2 (b), differentiation through this transformation is simply a
matrix operation with the transpose of the convolution weights.

After calculated, image and flow gradients are concatenated with other con-
ditional inputs and fed into the shared CNN, whose configuration is shown in
Fig. 3. After an input-transform convolution, two Residual-in-Residual UNet
Blocks (RRUB) are adopted. RRUB is a simplified version of the RRDB block [38],
where its dense block [13] is replaced with a light-weight UNet [29]. The UNet

Deep Bayesian Video Frame Interpolation 9

Residual-in-Residual Unet Block

(RRUB)

× 𝛽

RUnet RUnet

× 𝛽

(b) RUnet(c)

1
 x

 C
o

n
v

1
6

,
3

,
2

1
 x

 C
o

n
v

6
4

,
3

,
2

1
 x

 C
o

n
v

2
5

6
,

3
,

2

1
 x

 C
o

n
v

6
4

,
3

,
0

.5

1
 x

 C
o

n
v

1
6

,
3

,
0

.5

1
 x

 C
o

n
v

1
5
,
3
,
0
.5

1 x Conv

16, 3, 1
2 x RRUB

Shared CNN

𝑭0→𝑡 + ∆෡𝑭0→𝑡
𝑘

𝑯(𝑘)

{𝜕𝑰𝑡}

{𝜕∆෡𝑭}

{𝑰0, 𝑰1, 𝑰𝑡
(𝑘)
}

𝑭1→𝑡 + ∆෡𝑭1→𝑡
𝑘

∆𝑰𝑡
(𝑘)

{∆(∆෡𝑭𝒊→𝑡
(𝑘)

)}

𝑯(𝑘+1)

(a)

1 x Conv

3, 3, 1

2 x Conv

16, 3, 1

1 x Conv

16, 3, 1

1 x Conv

4, 3, 1

C

Channel Concatenation

Fig. 3. Architecture of shared network. Convolutional layers are labeled with the num-
ber of blocks, number of filters followed by the kernel size and stride. Best viewed in
color. Please see text for details.

has 3 scales, with skip connections as feature addition between encoder and de-
coder. Group normalization [40] is used with group size 4, accompanied with
GELU activation [12], for all the convolutional layers in the shared network.

Initialization. At the beginning, I
(0)
t , H(0) and the lifted ∆F̂i→t are initialized

with zeros. The forward flows {Fi→t} are estimated based on the quadratic
motion model proposed in [41], where optical flows are computed by RAFT [37].
Loss function. We use ℓ1 loss only to jointly train all the iterations:

L =

K∑
k=1

αk

∥∥∥Igtt − I
(k)
t

∥∥∥
1
, (14)

where αk is the weight for kth iteration. Weights are set empirically, increasing
monotonously with the iterations (please see Sect. 4.1 for detailed parameters).

4 Experiments

4.1 Experimental Setup

Datasets.We evaluate extensively on 10 benchmarks: GoPro[23], Adobe240[34],
X4K1000FPS[32], Vimeo-90K[42], UCF101[33], DAVIS[28] and the easy,medium,
hard and extreme subsets from SNU-FILM[7]. Among them, GoPro, X4K1000FPS
and Adobe240 are used to evaluate 8× interpolation, while others are 2×.
Unified evaluation protocols with guaranteed reproducibility6. For 8×
interpolation, we follow the same settings in [16] and use the official train/test
split of GoPro to perform evaluations on this dataset. For X4K1000FPS, we use
both the model pretrained on GoPro and retrain it on X4K1000FPS to fairly

6 In the supplementary material we provide a more detailed description.

10 Z. Yu et al.

Table 1. Quantitative results on 8× interpolation in terms of PSNR/SSIM on GoPro,
X4K1000FPS and Adobe240 datasets. Best results highlighted in red.

GoPro X4K1000FPS Adobe240 Param(M) TFLOPS

SloMo [15] 29.71/0.924 25.07/0.795 29.63/0.927 39.61 0.624
QVI [41] 30.52/0.941 28.06/0.855 31.41/0.955 29.23 1.075
DAIN [3] 29.53/0.920 27.28/0.835 30.53/0.939 24.03 5.785
EDSC [5] 29.20/0.916 25.30/0.811 29.87/0.931 8.95 0.260
FLAVR [16] 31.10/0.942 24.50/0.791 30.92/0.938 42.06 3.793
XVFI [32] 29.80/0.925 28.42/0.881 29.74/0.930 5.61 0.676
Ours 31.73/0.947 31.10/0.928 33.28/0.965 15.18 1.284

Table 2. Quantitative results following benchmarking protocol of the X4K1000FPS
dataset [32] for 8× interpolation. Best results highlighted in red.

AdaCoF [20] FeFlow [10] DAIN [3] SloMo [15] FLAVR [16] XVFI [32] QVI [41] Ours

PSNR 25.81 25.16 27.52 27.77 27.92 30.12 29.96 32.89
SSIM 0.772 0.783 0.821 0.849 0.853 0.870 0.892 0.939

compare with existing methods evaluated with these two different protocols. For
Adobe, there is no standard test dataset. We thus follow [32] and randomly
extract non-overlapping clips containing complex motions. Note our sampled
test set is 3× larger than that of [32]. Downsampling as in [41] is not applied.

For 2× interpolation, our model is trained on the train split of Vimeo-90K.
As various methods including ours require 4 consecutive frames as input, we use
the septuplet subset for evaluation. The pre-trained model is tested on the test
dataset of Vimeo-90K, UCF101 and DAVIS, which is the same setting of [16]. We
follow [5,7,27] to report the results on the 4 subsets from SUN-FILM. The Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM)
are used for quantitative evaluation, averaged across all the interpolated frames.

Note that evaluation protocols of previous VFI models for multiple inter-
polation are not totally unified. For example, some were trained with private
training data [6,15,41], or tested on different subsets selected from a particular
dataset [16,32]. As a contribution of this work, we present here a more uni-
fied benchmarking. Specifically, we retrained SloMo [15], QVI [41], DAIN [3],
CAIN [7], FLAVR [16] and XVFI [32], which have open-source code, on differ-
ent datasets with reproducibility guarantee. We reuse the results of several works
(e.g. AdaCoF [20] and FeFlow [10]) in case that their evaluation protocols tightly
follow the standard (and ours). However, for methods without training code or
image results released, we either use their pretrained model (e.g. EDSC [38] and
ABME [27]) or the reported results from related paper with the same evaluation
protocol with ours (e.g. Softsplat [24] results are copied from [31]).

Training Details. For 8× MFI, we use K = 4 iterations, while the per-
iteration weight αk is {0.2, 0.4, 1.0, 1.0}. We train the network for 200 epochs with
Adam optimizer and batch size 16. The learning rate is initialized as 5 × 10−4

Deep Bayesian Video Frame Interpolation 11

Ground Truth QVI EDSC FLAVR XVFI ProposedOverlayed inputs

Fig. 4. Visual comparisons on X4K1000FPS (top 3 rows) and GoPro (bottom 2 rows)
datasets, where each row shows an example. We overlay the nearest 2 input frames to
illustrate the input motion. More results can be found in the supplementary material.

and decreased by a factor of 0.4 at the 80th, 120th and 160th epochs. Data
augmentations like random cropping, flipping, and color jittering are adopted.
For 2× VFI, we use K = 6 iterations with all corresponding αk set to 1.0. The
batch size is 32, and learning rate is decreased at the 110th and 135th epochs,
respectively.

4.2 Comparisons with State-of-the-Art models

8× interpolation. We report quantitative results on 8×VFI on GoPro, Adobe240
and X4K1000FPS in Table 1, as well as TFLOPS and the model size in terms
of number of parameters of different methods. Following [16], all the models for
evaluation are trained on the GoPro dataset except EDSC, for which we use the
officially pretrained model due to lacking the training code. The proposed ap-
proach achieves the best results across all the datasets, achieving at least 0.63dB
improvement with comparable FLOPS and greatly reduced size of model (15M
parameters compared with 42M of FLAVR and 29M of QVI). For those with
less parameters than ours, we achieve nearly 2dB improvements at least.
8× interpolation trained on X4K1000FPS. We also make fair comparisons
on the recently proposed X4K1000FPS dataset [32], by retraining our model on
it and comparing with the benchmarking results from [32], which is summarized

12 Z. Yu et al.

Table 3. Quantitative results on 2× interpolation in terms of PSNR/SSIM with model
size reported in number of parameters. Best results highlighted in red.

Vimeo-90K
(septulets)

UCF101 DAVIS
SNU-FILM

Param(M)
Easy Medium Hard Extreme

SloMo [15] 34.43/0.969 32.45/0.967 26.10/0.862 36.12/0.984 33.44/0.972 29.17/0.928 24.14/0.843 39.61
QVI [41] 34.98/0.970 32.87/0.966 27.20/0.874 39.53/0.990 36.43/0.983 31.07/0.947 24.96/0.856 29.23
CAIN [7] 34.69/0.969 32.40/0.966 27.12/0.872 39.33/0.989 35.34/0.977 30.15/0.933 24.88/0.855 42.78
ABME [27] 35.67/0.972 32.81/0.969 27.00/0.868 39.59/0.990 35.77/0.977 30.58/0.936 25.42/0.864 18.1
EDSC [5] 34.52/0.967 32.67/0.968 26.28/0.849 40.01/0.990 35.37/0.978 29.59/0.926 24.39/0.843 8.95
XVFI [32] 35.21/0.970 32.68/0.968 26.89/0.868 39.21/0.989 34.96/0.977 29.43/0.928 24.02/0.841 5.61
DAIN [3] 33.57/0.964 31.65/0.963 26.61/0.867 38.53/0.988 34.34/0.974 29.50/0.930 24.54/0.851 24.03
BMBC [26] 34.76/0.965 32.61/0.955 26.42/0.868 39.90/0.991 35.34/0.978 29.34/0.927 23.65/0.837 11.01
Softsplat [24] 35.76/0.972 32.89/0.970 27.42/0.878 - - - - 12.46
VFIT-B [31] 36.96/0.978 33.44/0.971 28.09/0.888 - - - - 28.09
FLAVR [16] 36.30/0.975 33.33/0.971 27.44/0.873 40.44/0.991 36.37/0.981 30.87/0.942 25.18/0.862 42.06
Ours 36.17/0.976 33.01/0.970 28.61/0.905 40.46/0.991 36.95/0.985 31.68/0.953 25.90/0.876 21.69

in Table 2. This dataset is more challenging due to the large motion universally
appeared. Our approach achieves 2.7dB improvement than previous leading re-
sult. Fig. 4 shows visual comparisons of different methods. Our approach shows
advantage in challenging cases such as occlusion and high frequency textures,
where many existing methods would fail. Due to space limit, please refer to our
supplementary material for more results.
Single-frame (2×) interpolation. Though our method is for continuous-time
VFI, we evaluate it on additional 7 datasets from the single frame interpola-
tion literature for completeness. Results are shown in Table 3. Following the
convention [16], the models are trained on the septuplet subset of Vimeo-90K.
For EDSC and BMBC the official pretrained models are used due to lacking
the training code. Results of Softsplat and VFIT-B are taken from the litera-
ture [31] due to absence of both source code and models. Though not designed
for single-frame interpolation, the proposed method achieves best results on 5 of
7 datasets. Our method performs worse than FLAVR and VFIT-B, which adopt
larger architectures than ours, on Vimeo-90K and UCF101. These two datasets
have relatively slow motion, so that advantage of our method is less significant.
While, we show much better results than them on DAVIS.

4.3 Performance Analysis

In the following, we conduct several experiments to analyze the performance of
the proposed approach under several conditions. All the experiments are con-
ducted on the GoPro dataset.
Ablation analysis. The aim of this experiment is to show impact of each pro-
posed module. Here, excluding the Image/Flow Gradient module means that
image/flow gradient calculation is removed when forming the input of each iter-
ation. By comparing the 3rd, 5th and 7th rows, we conclude that dropping either
module would cause loss of performance. We also evaluate the case that flow up-
dates are not learned at each iteration. By comparing 4th and 5th rows, we show
there will be 0.3dB PSNR loss. Finally, we evaluate the effectiveness of the pro-
posed deep reparameterization of flow gradients. To this end, we place 2-variate

Deep Bayesian Video Frame Interpolation 13

Table 4. Ablation analysis on the GoPro dataset.

Component
PSNR SSIM

Image Gradient Flow Gradient Flow Update Deep reparam.

✗ ✗ ✗ ✗ 30.56 0.935
✗ ✗ ✓ ✗ 30.72 0.937
✗ ✓ ✓ ✓ 30.78 0.937
✓ ✗ ✗ ✗ 31.28 0.942
✓ ✗ ✓ ✗ 31.52 0.944
✓ ✓ ✓ ✗ 31.53 0.944
✓ ✓ ✓ ✓ 31.73 0.947

30.52

31.07

31.64
31.73

0.931

0.939

0.946
0.947

1.016

1.105

1.195

1.284

1 2 3 4

PSNR

SSIM

TFLOPS
Interpolation result

Image residual

Warping errorstep

Fig. 5. Analyzing the performance of each iteration on the GoPro dataset. Left: quan-
titative performance in terms of PSNR, SSIM and TFLOPS as a function of iteration
step. Right: the per-step interpolation result (top), learned image residual (middle) as
well as the rendering error on one input image by warping the result (visualized as
heatmap).

Gaussian on the 2-dimensional optical flows directly, instead of the transformed
16-dimensional deep features. The model capacity is preserved by adding ex-
tra convolutional layers when processing optical flows for fairer comparison. By
comparing 6th and 7th rows, this variant results into 31.53dB PSNR with a loss
of 0.2dB, demonstrating the effectiveness of deep gradient reparameterization.

Analyzing per-iteration performance. We evaluated the performance of
per-iteration interpolation result in the left of Fig. 5. As expected, the result
get consistently improved with more iterations. Two iterations of our model
already surpasses all methods in Table 1 except FLAVR with comparable FLOPS
and more iterations up to 4 can further outperform FLAVR and achieve the
leading result. In the right of Fig. 5, we visualize the results on one example.
As can be seen, the interpolation result gets consistently sharper, while the
rendering error gets smaller, with iteration goes. The learned per-iteration image
residuals identify pixels with high rendering errors in the previous step. It might
be correlated with different pixels at different iterations, as a result of the quality

14 Z. Yu et al.

Linearity Linearity

S
S

IM

P
S

N
R

30.55

30.11

29.56

28.97

28.39

27.83

30.90
30.69

30.37

30.02

29.64

29.27

31.73
31.57

31.29

30.96

30.6

30.24

0 0.2 0.4 0.6 0.8 1

QVI-PWC

QVI-RAFT

Proposed

0.941

0.937

0.93

0.923

0.914

0.906

0.941
0.939

0.934

0.929

0.923

0.917

0.947
0.945

0.942

0.938

0.933

0.928

0 0.2 0.4 0.6 0.8 1

QVI-PWC

QVI-RAFT

Proposed

Fig. 6. Analyzing the robustness w.r.t. the quality of initial optical flows on different
methods. PSNR and SSIM results are shown in the left and right, respectively.

of previously estimated image and flow results. However, at the last iteration,
the error often converges and the residual becomes subtle.

Analyzing robustness to motion estimation. Many existing approaches
and our method assume the input of high-quality optical flows. In this experi-
ment, we aim to see what happens if the initially estimated pixel motion are of
worse quality. For comparision we choose QVI as baseline, which proposed the
quadratic model for intermediate flow estimation, as also followed by our work.
Since QVI computes optical flows with PWCNet [35] while we use RAFT [37],
for fairness we have also trained a variant, QVI-RAFT, which improves QVI
with RAFT optical flows. For this evaluation, we replace the quadratic model
with the simpler linear one as proposed in [44]. The interpolated forward flows
from quadratic and linear models are alpha blended with different weights in
[0, 1]. In this way, we artifically deteriorate the quality of initial flow estimations
by setting a higher weight for the linear motion model. Fig. 6 shows the per-
formance as a function of the linearity, measured as blending weight of forward
flows generated by linear motion model. As expected, when motion estimation
results get worse, so will be the final performance. However, our approach still
achieves consistently the best results with initial motion of various quality.

5 Conclusion

In this work we present deep Bayesian video frame interpolation, a lightweight
approach showing new records on 8 of 10 VFI benchmarks. Our approach by the
first time formulates VFI with a posterior maximization framework optimized
by learned gradient descent, whose gradient terms are principally defined.

In addition, we provide standard benchmarking results on the GoPro [23]
and X4K1000FPS [32] datasets, and unified evaluation protocols on GoPro. We
hope this facilitates future VFI research.

Deep Bayesian Video Frame Interpolation 15

References

1. Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural
networks. Inverse Problems 33(12), 124007 (2017)

2. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Transactions on
Medical Imaging (TMI) 37(6), 1322–1332 (2018)

3. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video
frame interpolation. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 3703–3712 (2019)

4. Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: Memc-net: Motion estima-
tion and motion compensation driven neural network for video interpolation and
enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 43(3), 933–948 (2019)

5. Cheng, X., Chen, Z.: Multiple video frame interpolation via enhanced deformable
separable convolution. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI) (2021)

6. Chi, Z., Nasiri, R.M., Liu, Z., Lu, J., Tang, J., Plataniotis, K.N.: All at once:
Temporally adaptive multi-frame interpolation with advanced motion modeling.
In: European Conference on Computer Vision (ECCV). vol. 12372, pp. 107–123
(2020)

7. Choi, M., Kim, H., Han, B., Xu, N., Lee, K.M.: Channel attention is all you need for
video frame interpolation. In: AAAI Conference on Artificial Intelligence (AAAI).
pp. 10663–10671 (2020)

8. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van
Der Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convo-
lutional networks. In: IEEE International Conference on Computer Vision (ICCV).
pp. 2758–2766 (2015)

9. Flynn, J., Broxton, M., Debevec, P., DuVall, M., Fyffe, G., Overbeck, R., Snavely,
N., Tucker, R.: Deepview: View synthesis with learned gradient descent. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2367–2376
(2019)

10. Gui, S., Wang, C., Chen, Q., Tao, D.: Featureflow: Robust video interpolation
via structure-to-texture generation. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 14004–14013 (2020)

11. Gupta, A., Aich, A., Roy-Chowdhury, A.K.: Alanet: Adaptive latent attention
network for joint video deblurring and interpolation. In: ACM International Con-
ference on Multimedia (ACMMM). pp. 256–264 (2020)

12. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). Arxiv preprint,
1606.08415 [cs.CV] (2016)

13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 4700–4708 (2017)

14. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: Advances in Neural Information Processing Systems (NeurIPS). pp.
2017–2025 (2015)

15. Jiang, H., Sun, D., Jampani, V., Yang, M., Learned-Miller, E.G., Kautz, J.: Super
slomo: High quality estimation of multiple intermediate frames for video interpola-
tion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 9000–9008 (2018)

16 Z. Yu et al.

16. Kalluri, T., Pathak, D., Chandraker, M., Tran, D.: Flavr: Flow-agnostic video
representations for fast frame interpolation. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2021)

17. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convo-
lutions. In: Advances in Neural Information Processing Systems (NeurIPS). pp.
10236–10245 (2018)

18. Kokkinos, F., Lefkimmiatis, S.: Iterative joint image demosaicking and denoising
using a residual denoising network. IEEE Transactions on Image Processing (TIP)
28(8), 4177–4188 (2019)

19. Kokkinos, F., Lefkimmiatis, S.: Iterative residual cnns for burst photography ap-
plications. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 5929–5938 (2019)

20. Lee, H., Kim, T., Chung, T.y., Pak, D., Ban, Y., Lee, S.: Adacof: Adaptive collab-
oration of flows for video frame interpolation. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 5316–5325 (2020)

21. Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using
deep voxel flow. In: IEEE International Conference on Computer Vision, (ICCV).
pp. 4463–4471 (2017)

22. Mahajan, D., Huang, F.C., Matusik, W., Ramamoorthi, R., Belhumeur, P.: Moving
gradients: a path-based method for plausible image interpolation. ACM Transac-
tions on Graphics (TOG) 28(3), 1–11 (2009)

23. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural net-
work for dynamic scene deblurring. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 3883–3891 (2017)

24. Niklaus, S., Liu, F.: Softmax splatting for video frame interpolation. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5437–5446
(2020)

25. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable
convolution. In: IEEE International Conference on Computer Vision (ICCV). pp.
261–270 (2017)

26. Park, J., Ko, K., Lee, C., Kim, C.: BMBC: bilateral motion estimation with bi-
lateral cost volume for video interpolation. In: European Conference on Computer
Vision (ECCV). vol. 12359, pp. 109–125 (2020)

27. Park, J., Lee, C., Kim, C.S.: Asymmetric bilateral motion estimation for video
frame interpolation. In: IEEE International Conference on Computer Vision
(ICCV). pp. 14539–14548 (2021)

28. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-
Hornung, A.: A benchmark dataset and evaluation methodology for video object
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 724–732 (2016)

29. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical Image Computing
and Computer-assisted Intervention (MICCAI). pp. 234–241 (2015)

30. Shi, Z., Liu, X., Shi, K., Dai, L., Chen, J.: Video frame interpolation via generalized
deformable convolution. IEEE Transactions on Multimedia (TMM) 24, 426–439
(2021)

31. Shi, Z., Xu, X., Liu, X., Chen, J., Yang, M.H.: Video frame interpolation trans-
former. Arxiv preprint, 2111.13817 [cs.CV] (2021)

32. Sim, H., Oh, J., Kim, M.: Xvfi: Extreme video frame interpolation. In: IEEE In-
ternational Conference on Computer Vision, (ICCV). pp. 14489–14498 (2021)

Deep Bayesian Video Frame Interpolation 17

33. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes
from videos in the wild. Arxiv preprint, 1212.0402 [cs.CV] (2012)

34. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video
deblurring for hand-held cameras. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 1279–1288 (2017)

35. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 8934–8943 (2018)

36. Sun, L., Dong, W., Li, X., Wu, J., Li, L., Shi, G.: Deep maximum a posterior
estimator for video denoising. International Journal of Computer Vision (IJCV)
129(10), 2827–2845 (2021)

37. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
European Conference on Computer Vision (ECCV). vol. 12347, pp. 402–419 (2020)

38. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy, C.:
ESRGAN: enhanced super-resolution generative adversarial networks. In: Euro-
pean Conference on Computer Vision Workshops (ECCVW). vol. 11133, pp. 63–79
(2018)

39. Werlberger, M., Pock, T., Unger, M., Bischof, H.: Optical flow guided tv-l 1 video
interpolation and restoration. In: Computer Vision and Pattern Recognition work-
shops (CVPRW). pp. 273–286 (2011)

40. Wu, Y., He, K.: Group normalization. In: European Conference on Computer Vi-
sion (ECCV). vol. 11217, pp. 3–19 (2018)

41. Xu, X., Siyao, L., Sun, W., Yin, Q., Yang, M.H.: Quadratic video interpolation. Ad-
vances in Neural Information Processing Systems (NeurIPS) 32, 1645–1654 (2019)

42. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-
oriented flow. International Journal of Computer Vision (IJCV) 127(8), 1106–1125
(2019)

43. Yu, Z., Li, H., Wang, Z., Hu, Z., Chen, C.W.: Multi-level video frame interpolation:
Exploiting the interaction among different levels. IEEE Transactions on Circuits
and Systems for Video Technology 23(7), 1235–1248 (2013)

44. Yu, Z., Zhang, Y., Liu, D., Zou, D., Chen, X., Liu, Y., Ren, J.S.: Training weakly
supervised video frame interpolation with events. In: IEEE International Confer-
ence on Computer Vision, (ICCV). pp. 14589–14598 (2021)

	Deep Bayesian Video Frame Interpolation

