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Abstract. Image-based volumetric humans using pixel-aligned features
promise generalization to unseen poses and identities. Prior work lever-
ages global spatial encodings and multi-view geometric consistency to
reduce spatial ambiguity. However, global encodings often suffer from
overfitting to the distribution of the training data, and it is difficult
to learn multi-view consistent reconstruction from sparse views. In this
work, we investigate common issues with existing spatial encodings and
propose a simple yet highly effective approach to modeling high-fidelity
volumetric humans from sparse views. One of the key ideas is to encode
relative spatial 3D information via sparse 3D keypoints. This approach is
robust to the sparsity of viewpoints and cross-dataset domain gap. Our
approach outperforms state-of-the-art methods for head reconstruction.
On human body reconstruction for unseen subjects, we also achieve per-
formance comparable to prior work that uses a parametric human body
model and temporal feature aggregation. Our experiments show that a
majority of errors in prior work stem from an inappropriate choice of
spatial encoding and thus we suggest a new direction for high-fidelity
image-based human modeling.

Keywords: Neural Radiance Field, Pixel-Aligned Features

1 Introduction

3D renderable human representations are an important component for social
telepresence, mixed reality, and a new generation of entertainment platforms.
Classical mesh-based methods require dense multi-view stereo [34, 57, 58] or
depth sensor fusion [68]. The fidelity of these methods is limited due to the
difficulty of accurate geometry reconstruction. Recently, neural volumetric rep-
resentations [29, 40] have enabled high-fidelity human reconstruction, especially
where accurate geometry is difficult to obtain (e.g. hair). By injecting human-
specific parametric shape models [7, 32], extensive multi-view data capture can
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Fig. 1. (a) Our approach allows us to synthesize high-fidelity volumetric humans from
two or three views of unseen subjects. (b) A model learned on studio captures can be
used without modification on in-the-wild iPhone captures; and (c) finally, the same
approach also allows us to synthesize novel views of unseen human subjects (faces are
blurred). The figure is best viewed in electronic format.

be reduced to sparse camera setups [15, 43]. However, these learning-based ap-
proaches are subject-specific and require days of training for each individual
subject, which severely limits their scalability. Democratizing digital volumetric
humans requires an ability to instantly create a personalized reconstruction of
a user from two or three snaps (from different views) taken from their phone.
Towards this goal, we learn to generalize metrically accurate image-based volu-
metric humans from two or three views.

Fully convolutional pixel-aligned features utilizing multi-scale information
have enabled better performance for various 2D computer vision tasks [6,11,31,
41], including the generalizable reconstruction of unseen subjects [27, 46, 49, 67]
Pixel-aligned neural fields infer field quantities given a pixel location and spatial
encoding function (to avoid ray-depth ambiguity). Different spatial encoding
functions [16,19,21,46] have been proposed in the literature. However, the effect
of spatial encoding is not fully understood. In this paper, we provide an extensive
analysis of spatial encodings for modeling pixel-aligned neural radiance fields for
human faces. Our experiments show that the choice of spatial encoding influences
the reconstruction quality and generalization to novel identities and views. The
models that use camera depth overfit to the training distribution, and multi-view
stereo constraints are less robust to sparse views with large baselines.
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We present a simple yet highly effective approach based on sparse 3D key-
points to address the limitations of existing approaches. 3D keypoints are easy
to obtain using an off-the-shelf 2D keypoint detector [11] and a simple triangu-
lation of multi-views [18]. We treat 3D keypoints as spatial anchors and encode
relative 3D spatial information to those keypoints. Unlike global spatial encod-
ing [49,50,67], the relative spatial information is agnostic to camera parameters.
This property allows the proposed approach to be robust to changes in pose.
3D keypoints also allow us to use the same approach for both human faces and
bodies. Our approach achieves state-of-the-art performance for generating vol-
umetric humans for unseen subjects from sparse-and-wide two or three views,
and we can also incorporate more views to further improve performance. We also
achieve performance comparable to Neural Human Performer (NHP) [27] when
it comes to full-body human reconstruction. NHP relies on accurate parametric
body fitting and temporal feature aggregation, whereas our approach employs 3D
keypoints alone. Our method is not biased [56] to the distribution of the training
data. We can use the learned model (without modification) to never-before-seen
iPhone captures. We attribute our ability to generalize image-based volumetric
humans to an unseen data distribution to our choice of spatial encoding. Our
key contributions include:

– A simple approach that leverages sparse 3D keypoints and allows us to create
high-fidelity state-of-the-art volumetric humans for unseen subjects from
widely spread out two or three views.

– Extensive analysis on the use of spatial encodings to understand their limi-
tations and the efficacy of the proposed approach.

– We demonstrate generalization to never-before-seen iPhone captures by train-
ing with only a studio-captured dataset. To our knowledge, no prior work
has shown these results.

2 Related Work

Our goal is to create high-fidelity volumetric humans for unseen subjects from
as few as two views.
Classical Template-based Techniques: Early work on human reconstruc-
tion [22] required dense 3D reconstruction from a large number of images of the
subject and non-rigid registration to align a template mesh to 3D point clouds.
Cao et al. [10] employ coarse geometry along with face blendshapes and a mor-
phable hair model to address restrictions posed by dense 3D reconstruction. Hu
et al. [20] retrieve hair templates from a database and carefully compose fa-
cial and hair details. Video Avatar [1] obtains a full-body avatar based on a
monocular video captured using silhouette-based modeling. The dependence on
geometry and meshes restricts the applicability of these methods to faithfully
reconstruct regions such as the hair, mouth, teeth, etc., where it is non-trivial
to obtain accurate geometry.
Neural Rendering: Neural rendering [54,55] has tackled some of the challenges
classical template-based approaches struggle with by directly learning compo-
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nents of the image formation process from raw sensor measurements. 2D neural
rendering approaches [25, 33, 35, 37, 44, 45] employ surface rendering and a con-
volutional network to bridge the gap between rendered and real images. The
downside of these 2D techniques is that they struggle to synthesize novel view-
points in a temporally coherent manner. Deep Appearance Models [28] employ a
coarse 3D proxy mesh in combination with view-dependent texture mapping to
learn personalized face avatars from dense multi-view supervision. Using a 3D
proxy mesh significantly helps with viewpoint generalization, but the approach
faces challenges in synthesizing certain regions for which it is hard to obtain good
3D reconstruction, such as the hair and inside the mouth. Current state-of-the-
art methods such as NeuralVolumes [29] and NeRF [40] employ differentiable
volumetric rendering instead of relying on meshes. Due to their volumetric na-
ture, these methods enable high-quality results even for regions where estimating
3D geometry is challenging. Various extensions [5,30,63] have further improved
quality. These methods require dense multi-view supervision for person-specific
training and take 3–4 days to train a single model.

Sparse View Reconstruction: Large scale deployment requires approaches
that allow a user to take two or three pictures of themselves from multi-views and
generate a digital human from this data. The use of pixel-aligned features [49,50]
further allows the use of large datasets for learning generalized models from
sparse views. Different approaches [13,14,60,67] have combined multi-view con-
straints and pixel-aligned features alongside NeRF to learn generalizable view-
synthesis. In this work, we observe that these approaches struggle to generate
fine details given sparse views for unseen human faces and bodies.

Learning Face and Body Reconstruction: Generalizable parametric mesh
[4, 32, 66] and implicit [2, 36, 38, 61, 65] body models can provide additional con-
straints for learning details from sparse views. Recent approaches have incor-
porated priors specific to human faces [8, 9, 15, 17, 48, 59, 70] and human bod-
ies [42,43,62,64,65,69,71,72] to reduce the dependence on multi-view captures.
Approaches such as H3DNet [47] and SIDER [12] use signed-distance functions
(SDFs) for learning geometry priors from large datasets and perform test-time
fine-tuning on the test subject. PaMIR [72] uses volumetric features guided by
a human body model for better generalization. Neural Human Performer [27]
employs SMPL with pixel-aligned features and temporal feature aggregation. In
this work, we observe that the use of human 3D-keypoints provides necessary
and sufficient constraints for learning from sparse-view inputs. Our approach
has high flexibility since it only relies on 3D keypoints alone and thus enables
us to work both on human faces and bodies. Prior methods have also employed
various forms of spatial encoding for better learning. For example, PVA [46]
and PortraitNeRF [16] use face-centric coordinates. ARCH/ARCH++ [19, 21]
use canonical body coordinates. In this work, we extensively study the role of
spatial encoding, and found that the use of a relative depth encoding using 3D
keypoints leads to the best results. Our findings enable us to learn a represen-
tation that generalizes to never-before-seen iPhone camera captures for unseen
human faces. In addition to achieving state-of-the-art results on volumetric face
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reconstruction from as few as two images, our approach can also be used for
synthesizing novel views of unseen human bodies and achieves competitive per-
formance to prior work [27] in this setting.

3 Preliminaries: Neural Radiance Fields

NeRF [40] is a continuous function that represents the scene as a volumetric
radiance field of color and density. Given a 3D point and a viewing direction
d ∈ R3, NeRF estimates RGB color values and density (c, σ) that are then
accumulated via quadrature to calculate the expected color of each camera ray
r(t) = o+ td:

C(r) =

∫ tf

tn

exp

(
−
∫ t

tn

σ(s) ds

)
σ(t)c(t, d) dt , (1)

where tn and tf define near and far bounds.
Pixel-aligned NeRF. One of the core limitations of NeRF is that the approach
requires per-scene optimization and does not work well for extremely sparse input
views (e.g., two images). To address these challenges, several recent methods [46,
60,67] propose to condition NeRF on pixel-aligned image features and generalize
to novel scenes without retraining.
Spatial Encoding. To avoid the ray-depth ambiguity, pixel-aligned neural
fields [46,49,50,67] attach spatial encoding to the pixel-aligned feature. PIFu [49]
and related methods [50, 67] use depth value in the camera coordinate space as
spatial encoding, while PVA [46] uses coordinates relative to the head posi-
tion. However, we argue that such spatial encodings are global and sub-optimal
for learning generalizable volumetric humans. In contrast, our proposed relative
spatial encoding provides a localized context that enables better learning and is
more robust to changes in human pose.

4 KeypointNeRF

Our method is based on a radiance field function:

f
(
X, d|{(In, Pn)}Nn=1

)
= (c, σ) (2)

that infers a color c ∈ R3 and a density σ ∈ R value for any point in 3D space
given its position X ∈ R3 and its viewing direction d ∈ R3 as input. In addition,
the function has access to the N input images In and their camera calibrations
Pn. We model the function f as a neural network that consists of four main parts;
a spatial keypoint encoder (Sec. 4.1), two convolutional image encoders that
extract pixel-aligned features (Sec. 4.2), an MLP fusion network that aggregates
multiple pixel-aligned features (Sec. 4.3), and two MLPs that predict density σ
and color values c (Sec. 4.4). The high-level overview of our method is illustrated
in Fig. 2 and in the following we further describe its components.
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Fig. 2. Overview. We learn a generalizable image-based neural radiance represen-
tation for volumetric humans. Given a sparse set of input images {In}Nn=1 and their
respective camera parameters Pn, we first detect keypoints and lift them to 3D P. The
keypoints are used to provide the relative spatial encoding (Sec 4.1). The input im-
ages are simultaneously encoded via convolutional encoders and provide image-guided
pixel-aligned features (Sec 4.2). These two types of encoding are fused (Sec. 4.3) and
condition the radiance field (Sec. 4.4). The radiance field is decoupled by two MLPs,
one that directly predicts view-independent density value σ, and the other one which
predicts blending weights that are used to output the final color value c by blending
image pixel values {Φ(X|In)}Nn=1. The predicted color and density values are accumu-
lated along the ray via volume rendering [39] to render the volumetric representation
from novel views. The rendered example in the figure is an actual output of our method
for the displayed two input images of an unseen subject.

4.1 Relative Spatial Keypoint Encoding

Our method first leverages an off-the-shelf keypoint regressor [11] to extract K
2D keypoints from at least two input views. Then these points are triangulated
and lifted to 3D P = {pk ∈ R3}Kk=1 by using the direct linear transformation
algorithm [18]. To spatially encode the query pointX, we first compute the depth
values of the query point and all keypoints w.r.t each input view z(pk|Pn) by
the 2D projection and then estimate their relative depth difference δn(pk, X) =
z(pk|Pn) − z(X|Pn). We further employ positional encoding γ(·) [40] and the
Gaussian exponential kernel to create the final relative spatial encoding for the
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query point X as:

sn(X|P) =
[
exp

(−l2(pk, X)2

2α2

)
γ
(
δn(pk, X)

)]K
k=1

, (3)

where α is a fixed hyper-parameter that controls the impact of each keypoint.
We set this value to 5cm for facial keypoints and to 10cm for the human skeleton.

4.2 Convolutional Pixel-aligned Features

In addition to the spatial encoding sn(X), we extract pixel-aligned features
for the query point X by encoding the input images In ∈ RH×W×3 using two
convolutional encoders.
Image Encoders. The first image encoder uses a single HourGlass [41] net-
work that generates both deep low-resolution F gl

n ∈ RH/8×W/8×64 and shallow
high-resolution F gh

n ∈ RH/2×W/2×8 feature maps. This network learns a geomet-
ric prior of humans and its output is used to condition the density estimation
network. The second encoder is a convolutional network with residual connec-
tions [23] that encodes input images F a

n ∈ RH/4×W/4×8 and provides an alterna-
tive pathway for the appearance information which is independent of the density
prediction branch in the spirit of DoubleField [52]. Please see the supplemental
material for further architectural details.
Pixel-aligned Features. To compute the pixel-aligned features, we project the
query point on each feature plane x = π(X|Pn) ∈ R2 and bi-linearly interpolate
the grid values. We define this operation of computing the pixel-aligned fea-
tures (2D projection and interpolation) by the operator Φn(X|F ), where F can
represent any grid of vectors for the nth camera: F gl

n , F gh
n , F a

n , In.

4.3 Multi-view Feature Fusion

To model a multi-view consistent radiance field, we need to fuse the per-view
spatial encodings sn (Eq. 3) and the pixel-aligned features Φn.

The spatial encoding sn is first translated into a feature vector via a single-
layer perceptron. This feature is then jointly blended with the deep low-resolution
pixel-aligned feature Φn(X|F gl

n ) by a two-layer perceptron. The output is then
concatenated with the shallow high-resolution feature Φn(X|F gh

n ) and processed
by an additional two-layer perceptron that outputs per-view 64-dimensional fea-
ture vector that jointly encodes the blended spatial encoding and the pixel-
aligned information. These multi-view features are then fused into a single fea-
ture vector GX ∈ R128 by the mean and variance pooling operators as in [60].

4.4 Modeling Radiance Fields

The radiance field is modeled via decoupled MLPs for density σ and color c
prediction.
Density Fields. The density network is implemented as a four-layer MLP that
takes as input the geometry feature vector GX and predicts the density value σ.
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View-dependent Color Fields. We implement an additional MLP to output
the consistent color value c for a given query point X and its viewing direc-
tion d by blending image pixel values {Φ(X|Pn)}Nn=1 similarly to IBRNet [60].
The input to this MLP is 1) the extracted geometry feature vector GX that
ensures geometrically consistent renderings, 2) the additional pixel-aligned fea-
tures Φn(X|F a

n ), 3) the corresponding pixel values Φn(X|In), and 4) the view
direction that is encoded as the difference between the view direction d and the
camera views along with their dot product.

These inputs are concatenated and augmented with the mean and variance
vectors computed over the multi-view pixel-aligned features, and jointly propa-
gated through a nine-layer perceptron with residual connections which predicts
blending weights for each input view {wn}Nn=1. These blending weights form the
final color prediction by fusing the corresponding pixel-aligned color values:

c =

N∑
n=1

exp(wn)Φn(X|In)∑N
i=1 exp(wi)

. (4)

5 Novel View Synthesis

Given our radiance field function f(X, d) = (c, σ), we render novel views via the
volume rendering equation (1), in which we define the near and far bound by an-
alytically computing the intersection of the pixel ray and a geometric proxy that
over-approximates the volumetric human and use the entrance and exit points as
near and far bounds respectively. For the experiments on human heads, we use
a sphere with a radius of 30 centimeters centered around the keypoints, while
for the human bodies we follow the prior work [27, 43] and use a 3D bounding
box. Similar to NeRF [40], we employ a coarse-to-fine rendering strategy, but we
employ the same network weights for both levels.

5.1 Training and Implementation Details

To train our network, we render H ′ ×W ′ patches (as in [51]) by accumulating
color and density values for 64 sampled points along the ray for the coarse and
64 more for the fine rendering. Our method is trained end-to-end by minimizing
the mean ℓ1-distance between the rendered and the ground truth pixel values
and the VGG [53]-loss applied over rendered and ground truth image patches:

L = LRGB + LVGG . (5)

The use of the VGG loss for NeRF training was also leveraged by the concur-
rent methods [3,64] to better capture high-frequency details. The final loss L is
minimized by the Adam optimizer [26] with a learning rate of 1e−4 and a batch
size of one. For the other parameters, we use their defaults. The background
from all training and test input images is removed via an off-the-shelf matting
network [24]. Additionally for more temporally coherent novel-view synthesis at
inference time, we clip the maximum of the dot product (introduced in Sec. 4.4)
to 0.8 when the number of input images is two in the supplementary video.
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6 Experiments

In this section, we validate our method on three different reconstruction tasks
and datasets: 1) reconstruction of human heads from images captured in a multi-
camera studio, 2) reconstruction of human heads from in-the-wild images taken
with the iPhone’s camera, and 3) reconstruction of human bodies on the public
ZJU-MoCap dataset [43]. As evaluation metrics, we follow prior work [27,46,60]
and report the standard SSIM and PSNR metrics.

6.1 Reconstruction of Human Heads from Studio Data

Dataset and Experimental Setup. Our captured data consists of 29 1280×
768-resolution cameras positioned in front of subjects. We use a total of 351
identities and 26 cameras for training and 38 novel identities for evaluation. At
inference time, we reconstruct humans only from 2–3 input views.
Baselines. As baseline, we employ the current state-of-the-art model IBR-
Net [60]. In addition, we add several other baselines by varying different types of
encoding for the query points in our proposed reconstruction pipeline. Specifi-
cally, 1) our pipeline without any encoding, 2) with the camera z encoding used
in [49, 50], 3) with the encoding of xyz coordinates in the canonical space of
a human head that is used in [46], 4) relative encoding of xyz as the distance
between the query point and estimated keypoints, 5) our relative spatial encod-
ing without distance weighing (α → ∞ in Eq. 3), and 6) the proposed weighted
relative encoding as described in the method section (Sec. 4.3). The last three
models use a total of 13 facial keypoints that are visualized in Fig. 1. All methods
are trained with a batch size of one for 150k training steps, except IBRNet [60]
which was trained for 200k iterations. For more comparisons and baselines we
refer the reader to the supplementary material and video.

Table 1. Studio Capture Results. Quantitative comparison with IBRNet [60] and
different types of spatial encoding. Visual results are provided in Fig. 3

SSIM↑ PSNR↑

PVA [46] 81.95 25.87
IBRNet [60] 82.39 27.14

O
u
r
P
ip
e
li
n
e 1) no encoding 84.38 27.16

2) camera z encoding [49] 77.86 22.66
3) canonical xyz encoding [46] 83.11 26.33
4) relative xyz encoding 83.66 27.05
5) relative z encoding 84.72 27.66
6) KeypointNeRF (distance weighted relative z encoding, Eq. 3) 85.19 27.64

Results. We provide novel view synthesis (Fig. 3) results for unseen identities
that have been reconstructed from only two input images. The results clearly
demonstrate that the rendered images of our method are significantly sharper
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Fig. 3. Studio Capture Results. Reconstruction results on held-out subjects from
only two input views. Best viewed in electronic format.

compared to the baselines and are of significantly higher quality. This improve-
ment is confirmed by the quantitative evaluation (Tab. 1) which further indicates
that the proposed distance weighting of the relative spatial encoding improves
the reconstruction quality. The third-best performing method is our pipeline
without any spatial encoding. However, such a method does not generalize well
to other capture systems as we will demonstrate in the next section on in-the-
wild captured data.
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Table 2. Robustness to Different Noise Levels. Perturbing our keypoints vs. per-
turbing head position in the canonical xyz encoding used in [46]. Our proposed encoding
demonstrates significantly slower performance degradation as the noise increases

Noise level Canonical xyz encoding Our keypoint encoding
[mm] SSIM↑ PSNR↑ SSIM↑ PSNR↑

no noise 83.65 27.05 85.19 27.64
1 82.79 26.24 85.20 27.64
2 82.26 26.05 85.08 27.62
3 81.58 25.48 84.96 27.59
4 80.92 25.08 84.95 27.56
5 80.36 25.16 84.80 27.51

10 76.62 22.23 83.69 27.10
15 73.33 20.26 82.33 26.47
20 70.40 18.87 81.17 25.77

Robustness to Different Noise Levels. We evaluate the robustness of our
relative spatial encoding and the encoding in canonical space proposed by Raj
et al. [46] by adding different noise levels to the estimated keypoints and the
head center respectively. The results reported in Tab. 2 show that our proposed
encoding based on keypoints is significantly more robust compared to modeling
in an object-specific canonical space. Note that the canonical encoding requires
head template fitting for which we used the ground truth estimation from all
views and which, in practice, is very erroneous or even infeasible from two views
alone.
Dynamic scenes. Although our model is trained only with a neutral face, it
generalizes well to dynamic expressions and outperforms the baseline methods.
We evaluate the trained models on 38 test subjects performing eight different
expressions and report results in Tab. 3.

Table 3. Dynamic expressions. Our model is more accurate than the baselines

SSIM↑PSNR↑

IBRNet [60] 82.64 26.79
Ours (no keypoints) 84.97 27.14
Ours 85.31 27.30

6.2 Reconstruction from In-the-wild Captures

Setup. To tackle the problem of reconstructing humans in the wild, we acquire a
small dataset of subjects by taking several photos with an iPhone and estimate
camera parameters. We directly use intrinsic from manufacturing information
of iPhone and extrinsic is computed by multi-view RGB-D fitting as in [9].
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Fig. 4. In-the-wild Captures. Our approach produces high-quality reconstructions
from three iPhone images, while all baselines show significant artifacts.



KeypointNeRF 13

We evaluate the reconstruction methods trained on the studio captured data in
Sec. 6.1 without any retraining.

As input, all methods take three 1920×1024-resolution images of a person and
predict a radiance field that is then rendered from novel views. In Fig. 4, we dis-
play rendered novel views of IBRNet [60], our method without any spatial encod-
ing, and our method with the proposed spatial encoding. The baseline methods
produce significantly worse results with lots of blur and cloudy artifacts, whereas

Table 4. In-the-wild Captures.

SSIM↑ PSNR↑

IBRNet [60] 81.74 18.45
Ours (no keypoints) 79.50 19.79
KeypointNeRF 86.73 25.29

our method can reliably reconstruct the hu-
man heads. This improvement is quantita-
tively supported by computed SSIM and
PSNR on novel held-out views of the visual-
ized four subjects (Tab. 4). This experiment
demonstrates that our relative spatial encod-
ing is the crucial component for cross-dataset
generalization. Please see the supplementary
material for more visualizations.

6.3 Reconstruction of Human Bodies

Additionally, we demonstrate that our method is suitable for reconstructing full
volumetric human bodies without relying on template fitting of parametric hu-
man bodies [32]. We use the public ZJU [43] dataset in order to follow the experi-
mental setup used in [27], so that we could closely compare our method’s ability
to reconstruct human bodies to the current state-of-the-art method without
changing any experimental variables. We follow the standard training-test split
of frames and use a total of seven subjects for training and three for validation.
At inference time, all methods use three input views. We compare our method
with the generalizable volumetric methods: pixelNeRF [67], PVA [46], the current
state-of-the-art Neural Human Performer (NHP) [27], and our method without
weighting the relative spatial encoding in Eq. 3. We report results on unseen
identities for 438 novel views in Table 5 and side-by-side qualitative compar-
isons with NHP in Fig. 5. The results demonstrate that weighting the spatial
encoding benefits reconstruction of human bodies as well. Our method is on par
with the significantly more complex NHP, which relies on the accurate registra-
tion of the SMPL body model [32] and temporal feature fusion, whereas ours
only requires skeleton keypoints.

7 Conclusion

We present a simple yet highly effective approach for generating high-fidelity
volumetric humans from as few as two input images. The key to our approach
is a novel spatial encoding based on relative information extracted from 3D
keypoints. Our approach outperforms state-of-the-art methods for head recon-
struction and better generalizes to challenging out-of-domain inputs, such as
selfies captured in the wild by an iPhone. Since our approach does not require
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Table 5. Human Body Experiment. Comparison of our method with the baseline
methods pixelNeRF [67], PVA [46], and Neural Human Performer (NHP) [27]; “no w.”
in the table means our method without weighting the relative spatial encoding (Eq 3)

pixelNeRF PVA NHP Ours GT

PSNR↑ SSIM↑

pixelNeRF 23.17 86.93
PVA 23.15 86.63
NHP 24.75 90.58
Ours (no w.) 24.66 89.30
Ours 25.03 89.69
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Fig. 5. Human Body Experiment. Comparison of NHP [27] and our method on
unseen identities from the ZJU-MoCap dataset [43]. Best viewed in electronic format.

a parametric template mesh, it can be applied to the task of body reconstruc-
tion without modification, where it achieves performance comparable to more
complicated prior work that has to rely on parametric human body models and
temporal feature aggregation. We believe that our local spatial encoding based
on keypoints might also be useful for many other category-specific neural ren-
dering applications.
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