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1 Additional Proof

In this section, we prove the linear convergence of L-Tracing. As shown in Fig. 3
of the main body, the signed distance of the kth tracing point Ok is fk, the signed
distance between Ok and the surface point is Q is ϵk, according to the defination
of the signed distance, we know |fk| ≤ |ϵk|, besides, fk and ϵk have the same sign.
If the ray is encountered with a convex surface, we have |fk| ≥ |ϵksinθ|, if the
surface is concave, we have |fk| ≥ |ϵksinα|, Since our tracing point always starts
from outside of the surface, we have ϵ0 > 0. Thus we formulate our problem as
follows:

For a series ϵk, where k ∈ N, the equation ϵk+1 = ϵk−fk is satisfied, besides,
|ϵk| ≥ |fk| ≥ |ϵksinϕ|, ϕ equals to θ for the convex surface and α for the concave
surface, ϕ ∈ (0, 90◦], if ϵ0 > 0, fk and ϵk have the same sign. Prove: the series ϵk
converges to 0 linearly.

Firstly, we prove series ϵk is convergent by applying mathematical induction,
when k = 0, we have:

ϵ0 > 0 (1)

If ϵk > 0, we have ϵk ≥ fk > 0, thus:

ϵk+1 = ϵk − fk ≥ 0 (2)

According to mathematical induction, we derive that: for ∀k ∈ N, ϵk ≥ 0 is
satisfied. Since fk have the same sign with ϵk, for ∀k ∈ N, fk ≥ 0 is satisfied,
thus:

ϵk+1 − ϵk = −fk ≤ 0 (3)

From Eqn. 3, we know ϵk is a monotonic decreasing series, according to
monotone convergence theorem, series ϵk is convergent.
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Secondly, we prove series ϵk converges to 0. Since fk ≥ 0 and ϵksinϕ ≥ 0, we
get fk ≥ ϵksinϕ, as:

0 ≤ ϵk+1 = ϵk − fk ≤ ϵk(1− sinϕ) (4)

from Eqn. 4 we get:

0 ≤ ϵn ≤ (1− sinϕ)nϵ0 (5)

for ∀q > 0, we find:

N = ⌈
log( q

ϵ0
)

log(1− sinϕ)
⌉, N ∈ N (6)

when n > N , we get:

|ϵn − 0| ≤ (1− sinϕ)nϵ0 < q (7)

Thus the series ϵk converges to 0. Thirdly, we prove that the convergence is
in a linear speed, the limitation is described as:

lim
k→∞

|ϵk+1 − 0|
|ϵk − 0|

=
|ϵk − fk|

|ϵk|
(8)

since 0 ≤ fk ≤ ϵk, we get:

lim
k→∞

|ϵk+1 − 0|
|ϵk − 0|

= 1− fk
ϵk

(9)

as k → ∞, we have: ϵk → 0 and fk → 0, the local surface is regarded as a
plane if k reaches the limitation. Since ϕ is the angle between the surface and
the ray, we get:

lim
k→∞

ϵk+1

ϵk
= 1− sinϕ < 1 (10)

Now we complete the proof, the series ϵk converges to 0 linearly.

2 Ablation Study

In Fig. 2, we visualize the light visibility estimated by L-Tracing in different
iterations(20, 40, 80). Similar to Section 5.1 of the main body, we visualize
the “mean” light visibility of the observed object’s surface to show the average
intensity of the light reaching the surface, we also list the light visibility under
the single point light with no ambient illumination(OLAT). Results show that
the light visibility images estimated under different tracing iterations are close
to each other, except for slight differences that we visualize in Fig. 1. Since these
differences induce a small drop in the overall quality of estimated light visibility
and recovered surface material properties, we set the L-Tracing iterations to 20
when comparing with related approaches.
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Iteration=20 Iteration=80Iteration=40

Fig. 1. Details of Light Visibility. We select one region on the light visibility images
of “Drums OLAT2” and “Lego OLAT2”. Although the light visibility estimated in 20
iterations losses some subtle details compared to those from 40 and 80 iterations, it
has very little impact on the performance of our framework.

3 Implementation details

Our framework is implemented in PyTorch [5], there are two training stages in
our framework: stage one is the training of neural implicit surfaces, we optimize
the MLPs that model the signed distance function and spatial color. In stage
two, we do reflectance and illumination decomposition on the trained neural
surface with L-Tracing as the light visibility estimation method, we optimize
the Albedo MLP and Material Latent MLP. The BRDF MLP is pre-trained on
MERL dataset [2] and fixed during stage two.

3.1 Network Architecture

For stage one, we refer to [6] for network architecture designing, the neural
surface MLP f that models the SDF consists of 8 layers with the layer size of
256, we use a skip connection that connects the input and the fourth layer’s
output. The positional encoding frequency of the input coordinates is 8. For
stage two, all introduced MLPs contain 4 layers with layer size of 128, a skip
connection connects the input to the third layer. Similar to [7], the final output
is activated by the Sigmoid function in Albedo MLP, and the Softplus(β=1)
function in Material Latent MLP. The encoding frequency for the spatial location
is 10 in Albedo MLP and Material Latent MLP. According to [4, 7],we constrain
the albedo to range [0.03, 0.8], making it useful for learning reflectance. Our
environment illumination is in the resolution of 16×32, each light source includes
3 parameters learning the RGB channels, thus the illumination is modeled by
trainable parameters with the tensor size of 512× 3.
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Fig. 2. Visual Results of Ablation Study.We visualize the light visibility estimated
by L-Tracing in different tracing iterations. The light visibility images estimated in 20
iterations are close the those in 40 and 80 iterations, indicating that it rarely needs 80
iterations to compute accurate light visibility.
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3.2 Training Details

In both stages, the resolution of the training images is 512 × 512. For shape
reconstruction, we sample a batch of rays with the batch size of 1024 in each
iteration, the model is optimized for 150k iterations, we linearly warm up the
learning rate from 0 to 5× 10−4 in the first 5k iterations, then use cosine decay
scheduler controlling it to 5× 10−5 in the rest iterations. For reflectance factor-
ization, the training iterations is 5k and the batch size of the sampled rays is
2048. The learning rate is 5× 10−3 during all iterations. L-Tracing is applied for
light visibility estimation in stage two, we set the tracing iterations to 20. We
test our framework on one Nvidia GeForce RTX 3090, it takes 8 hours for the
training of shape reconstruction and takes only 20-30 minutes for the training
of reflectance factorization.

4 Additional Results

In Tab. 1, we report the metrics on novel view synthesis quality for the four
scenes in NeRFactor’s synthetic dataset. We also report the albedo estimation
quality in Tab. 2 and the HDR relighting image quality in Tab. 3 for the same
scenes. Each scene of the four scenes includes 8 validation views, among them
each view includes one ground truth albedo and 8 ground truth HDR relighting
images. The additional visualization of estimated light visibility of “Hotdog” and
“Lego” is shown in Fig. 4. We visualize the recovered albedo of “Hotdog” and
“Lego” in Fig. 3, and visualize the relighting images of “Drums” and “Ficus” in
Fig. 5. As for real-world datasets, we did experiments on DTU MVS datasets [1]
and real scene pinecone(captured by authors of [3]) , the results are shown in
Fig. 6.

Ours, LT NeRFactor NeRFactor, VI NvdiffrecRef. Ours, VI

Fig. 3. Albedo Recovery.We visualize the recovered albedo of “Lego” and “Hotdog”.
The albedo from ours and NeRFactor are rescaled to eliminate the scale ambiguity. The
results of Nvdiffrec are provided by Nvdiffrec’s [4] authors.
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Fig. 4. Light Visibility Visualization. The light visibility is estimated on the
NeRFactor synthetic dataset. The color denotes the lighting intensity on the surface.
“Mean” denotes the mean light visibility across all light sources, while “OLAT1” and
“OLAT2” denotes the light visibility under two different single light source points.

Night

Sunset

City

Sunrise

Original

Original

Ours, LT Ours, VI NeRFactor NeRFactor, VIRef. Nvdiffrec

Fig. 5. Novel View Relighting. We visualize the relighting results of “Drums” and
“Ficus”. The images are produced by rendering the learned surface and reflectance
with novel HDR light probes. The results of Nvdiffrec are provided by Nvdiffrec’s [4]
authors.
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Fig. 6. Real-World Results. “Original light” means rendering the observed ob-
ject with learned surface reflectance and learned environment illumination. We choose
pinecone from NeRF [3] and scan105 from DTU MVS datasets [1].

Table 1. Evaluation on Novel View Synthesis. The metrics for each scene are
the arithmetic mean over 8 validation views. The results of NeRF are taken from Table
4 of Nvdiffrec.

PSNR↑
Method Drums Ficus Hotdog Lego Avg

NeRF [3] 27.670 28.050 36.710 31.890 31.080
NeuS [6] 24.806 29.211 36.106 30.652 30.193

Nvdiffrec [4] 27.550 26.783 36.023 32.213 30.640
NeRFactor [7] 27.134 35.090 34.451 30.799 31.869
NeRFactor, VI [7] 25.136 34.614 31.594 29.808 30.288

Ours, VI 25.861 36.989 35.750 30.316 32.229
Ours, LT 25.628 34.714 34.836 29.596 31.194

SSIM↑
Method Drums Ficus Hotdog Lego Avg

NeRF [3] 0.951 0.957 0.971 0.944 0.956
NeuS [6] 0.932 0.931 0.976 0.938 0.944

Nvdiffrec [4] 0.958 0.970 0.980 0.955 0.965
NeRFactor [7] 0.950 0.979 0.945 0.902 0.944
NeRFactor, VI [7] 0.920 0.977 0.883 0.882 0.916

Ours, VI 0.941 0.988 0.957 0.903 0.947
Ours, LT 0.938 0.986 0.955 0.893 0.943

LPIPS↓
Method Drums Ficus Hotdog Lego Avg

NeRF [3] 0.069 0.055 0.058 0.075 0.064
NeuS [6] 0.057 0.041 0.085 0.141 0.081

Nvdiffrec [4] 0.054 0.033 0.040 0.049 0.044
NeRFactor [7] 0.065 0.026 0.097 0.116 0.076
NeRFactor, VI [7] 0.081 0.027 0.162 0.117 0.097

Ours, VI 0.066 0.013 0.063 0.095 0.059
Ours, LT 0.066 0.018 0.070 0.098 0.063
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Table 2. Evaluation on Albedo. Referring to [4], before measuring the errors, we
rescaled the albedos from all tested methods to eliminate the scale ambiguity.

PSNR↑
Method Drums Ficus Hotdog Lego Avg

Nvdiffrec [4] 20.418 35.452 27.559 21.393 26.205
NeRFactor [7] 23.211 36.043 27.265 24.790 27.829
NeRFactor, VI [7] 23.029 36.101 26.773 24.844 27.686

Ours, VI 22.704 36.161 27.069 24.443 27.594
Ours, LT 22.616 35.440 26.950 24.179 27.296

SSIM↑
Method Drums Ficus Hotdog Lego Avg

Nvdiffrec [4] 0.909 0.986 0.944 0.877 0.929
NeRFactor [7] 0.935 0.990 0.928 0.920 0.943
NeRFactor, VI [7] 0.932 0.990 0.919 0.921 0.941

Ours, VI 0.928 0.989 0.926 0.897 0.935
Ours, LT 0.927 0.989 0.924 0.890 0.933

LPIPS↓
Method Drums Ficus Hotdog Lego Avg

Nvdiffrec [4] 0.084 0.015 0.076 0.138 0.078
NeRFactor [7] 0.063 0.011 0.097 0.089 0.065
NeRFactor, VI [7] 0.066 0.011 0.107 0.096 0.070

Ours, VI 0.070 0.011 0.093 0.129 0.076
Ours, LT 0.075 0.011 0.099 0.134 0.080

Table 3. Evaluation on Relighting. Each listed scene includes 8 validation views,
each view includes 8 HDR probe relighting images. The metrics for each scene are the
arithmetic mean over 64 relighting images.

PSNR↑
Method Drums Ficus Hotdog Lego Avg

Nvdiffrec [4] 23.112 28.404 29.029 21.461 25.502
NeRFactor [7] 23.648 28.409 25.314 26.694 26.016
NeRFactor, VI [7] 22.558 28.804 23.109 25.180 24.913

Ours, VI 22.130 31.144 25.463 24.776 25.878
Ours, LT 22.986 28.737 25.665 24.957 25.586

SSIM↑
Method Drums Ficus Hotdog Lego Avg

Nvdiffrec [4] 0.923 0.978 0.930 0.849 0.919
NeRFactor [7] 0.921 0.953 0.912 0.873 0.915
NeRFactor, VI [7] 0.884 0.953 0.801 0.841 0.870

Ours, VI 0.911 0.981 0.921 0.856 0.917
Ours, LT 0.916 0.977 0.922 0.866 0.920

LPIPS↓
Method Drums Ficus Hotdog Lego Avg

Nvdiffrec [4] 0.070 0.023 0.086 0.111 0.073
NeRFactor [7] 0.077 0.036 0.121 0.124 0.090
NeRFactor, VI [7] 0.095 0.051 0.203 0.137 0.122

Ours, VI 0.080 0.018 0.093 0.111 0.075
Ours, LT 0.077 0.026 0.100 0.116 0.080
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