
Adaptive Feature Interpolation for Low-Shot
Image Generation

Mengyu Dai1, Haibin Hang2, and Xiaoyang Guo3

1 Salesforce
2 Amazon

3 Meta
mdai@salesforce.com, haibinh@amazon.com, xiaoyangg@fb.com

Abstract. Training of generative models especially Generative Adver-
sarial Networks can easily diverge in low-data setting. To mitigate this
issue, we propose a novel implicit data augmentation approach which fa-
cilitates stable training and synthesize high-quality samples without need
of label information. Specifically, we view the discriminator as a metric
embedding of the real data manifold, which offers proper distances be-
tween real data points. We then utilize information in the feature space
to develop a fully unsupervised and data-driven augmentation method.
Experiments on few-shot generation tasks show the proposed method sig-
nificantly improve results from strong baselines with hundreds of training
samples.

1 Introduction

Majority of learning algorithms today favor the feed of large training data. How-
ever, it is often difficult to collect sufficient amount of high-quality data for usage.
In addition, intelligent systems like human brains do not need millions of samples
to learn useful patterns and are energy-efficient. On the premise of it, learning
with small data has been an important research area in various tasks [40, 13,
24, 32, 16, 27, 38, 34, 5]. Among numerous promising works along the direction,
a limited amount target on generative models. Training of generative models
especially Generative Adversarial Networks (GANs) [11] can easily diverge in
low-data setting. To overcome the issue, people come up with methods focus-
ing on different aspects in GAN training, such as data augmentation [17, 43],
network architecture design [26, 18] and applying regularization [41, 35]. Data
augmentation can substantially increase the size of usable samples and enable
stable training [43].

Unlike above data augmentation approaches for generative models which tar-
get on image domain, we propose a simple yet effective method to implicitly aug-
ment training data without supervision. To our knowledge, it is the first attempt
to interpolate the multidimensional output feature of the discriminator for data
generation. This can possibly be due to the fact that applications using GAN
frameworks usually adopt objectives with 1-dimensional discriminator output,
such as vanilla GAN [11] and Wasserstein GAN [2]. Recently, Dai and Hang [8]
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introduce a metric learning perspective to the GAN discriminator with multidi-
mensional output and reveal an interesting flattening effect : along the training
process, the learned metric gradually becomes more uniform and flat. The ob-
servation inspire us to explore the possibility of implementing augmentation in
feature space in an unsupervised fashion.

In this paper, we propose a way to implicitly augment training data by tak-
ing the advantage of the flattening effect of discriminators with multiple output
neurons. An intuitive understanding is that, compared to highly sparse and
nonlinear nature of real data manifold [3], the low-dimensional feature space is
relatively dense and flat. Hence applying interpolation in feature space yields
a feasible way for augmentation with higher fidelity. An example of the effect
of feature interpolation during training with StyleGAN2 architectures is shown
in Figure 1. Both sessions utilized adaptive image augmentation [17], while fea-
ture interpolation significantly stabilized training. The novelty of this work is

Fig. 1. FID (↓) during training on Shells dataset. Red: without feature interpolation;
Green: with feature interpolation. Here “training images” refers to training iteration
× batch size.

summarized as follows: 1. We propose an implicit data augmentation method in
multidimensional feature space of discriminator output. To our knowledge, this is
the first attempt in unsupervised image generation. 2. We develop a data-driven
approach for augmentation, with criteria based on the underlying structure of
feature space during training. 3. Results from few-shot image generation exper-
iments show significant improvements on several benchmark datasets.

2 Related Work

2.1 Low-Shot Data Generation

Recent works contribute to low-shot data generation from different perspectives.
Karras et al. [17] implemented augmentation on images with adaptive probabil-
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ities by using a validation set. Zhao et al. [43] proposed DiffAugment which
applies random differentiable augmentation on both real and generated images.
The above methods significantly improve the amount of available training data
in image domain thus remarkably prevent discriminator from overfitting. Tseng
et al. [35] designed a regularization loss term on predictions of discriminator by
tracking the moving averages of discriminator predictions during training. Zhang
et al. [41] proposed consistency regularization for GANs, with the argument on
the invariance of samples after transformation. Liu et al. [26] proposed an SLE
module and an encoder-decoder reconstruction regularization on discriminator
to improve training stability in low-data training settings. For other directions,
one can refer to [28, 15, 14, 23]. Different from above techniques, our proposed
method is implemented in the multi-dimensional feature space of discriminator
output. It does not conflict with data augmentation techniques in the image
domain and is independent of network architectures.

2.2 Geometric Interpretations in GANs

The key idea of this paper comes from the interesting flattening effect of discrim-
inator observed in [8]. Particularly, in their paper [8], Dai and Hang interpret
the discriminator as a metric generator which learns some intrinsic metric of real
data manifold such that the manifold is flat under the learned metric. In this
paper, we observe the similar behaviors in the geometric GAN [25] framework
with hinge loss. Specifically, geometric GAN use SVM separating hyper-plane
to maximizes the margin between real/fake feature vectors and use hinge loss
for discriminator which is simple and fast. Similar effects are also mentioned in
[30] by Shao et al. which shows manifolds learned by deep generative models are
close to zero curvature.

2.3 Interpolation in Feature Space and Mixup

Combining features in the embedding space are shown to be helpful in image re-
trieval [7, 6, 36, 1]. Recently, Ko et al. [21] proposed embedding expansion which
utilized a combination of embeddings and performs hard negative mining to
learn informative feature representations. DeVries and Taylor [10] claimed that
simple transformations to feature space results in plausible synthetic data due
to manifold unfolding in feature space. Verma et al. [37] introduced Manifold
Mixup, which implemented interpolation between hidden feature vectors to ob-
tain smoother decision boundaries at multiple levels of representation. Further-
more, in [37] authors also indicated the flattening effect of Manifold Mixup in
learning representations.

Another branch of data augmentation techniques takes advantage of the prior
knowledge in learning tasks to interpolate both training images and the corre-
sponding labels. Zhang et al. [42] suggested that linear interpolations of data
samples should lead to linear interpolations of their associated labels. Kim et
al. [20] applied batch mixup and formulated the optimal construction of a batch
of mixup data. Other works along the track also show improvements on various
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discriminative learning tasks [19, 37, 39, 33]. Despite the promising progress, ap-
plying these methods require augmentation in training data’s associated labels,
which does not suit the use case in this paper. Different from above augmenta-
tion methods which are mostly used in supervised discriminative tasks, in this
work we develop an implicit augmentation method using data-driven feature
interpolation, which is suitable for generative tasks in a unsupervised fashion.

3 Methodology

In this section we introduce the main idea of the paper and the proposed implicit
augmentation algorithm for low-shot generation in detail.

Fig. 2. Direct interpolation of real data likely returns points far away from real data
manifold; With flattening effect, we propose interpolation in feature space which returns
feature y as an approximation of using some imaginary “real” sample x.

3.1 The Flattening Effect of Discriminator

In this paper, we denote y as a valid feature vector iff. y = gw(x) for some
data x from real data manifold given some deep metric learning network gw. A
simple illustration is shown in Figure 2. One question we are interested in is:
How far away is the interpolation of a group of valid feature vectors from some
individual valid feature vector? In the following we will address this question in
a GAN framework using observations from experimental results.

We adopt the default training setting in [26] and Shells dataset which contains
64 diverse images for experimentation. [26] uses hinge loss as GAN objective,
thus the discriminator has metric learning effect and is equipped with multi-
dimensional output. The hinge objective can be formulated as:

LG = Ez∼N [−D(G(z))] (1)

LD = Ex∼Preal
[max(0, 1−D(x))]

+ Ex∼Pfake
[max(0, 1 +D(x))] , (2)

where D(x) is also named gw(x) in this paper.
We utilize the following way introduced in [8, 30] to detect the change of the

learned metric along the training process: (i) For each iteration i, sample some
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real data points to form a finite metric space Xi; (ii) Construct the normalized
distance matrix of Xi under the learned metric; (iii) Apply multidimensional
scaling (MDS) to the normalized distance matrix to obtain the decreasing (finite)

sequence of eigenvalues Ci = {λ(i)
1 , λ

(i)
2 , · · · , λ(i)

b }, where b is the number of
sample points.

Fig. 3. Each curve represents the first 20 eigenvalues obtained using multidimensional
scaling (MDS) of the 64 × 64 normalized distance matrix from 64 real images un-
der learned metric during training on Shells dataset. We draw curves for iterations
0, 1000, · · · , 9000.

Now we observe the eigenvalues to see how the Euclidean distance among
feature vectors evolve during the training process. As shown in Figure 3, the
curve of eigenvalues becomes closer and closer to x-axis with training going
forward. At the iteration 9000, only the first few eigenvalues are non-trivial
which implies that the valid feature vectors are compressed on a low-dimensional
hyperplane. Compared to the input data dimension m = 1024 × 1024 × 3, the
valid feature subspace is significantly flat and uniform. This experimental result
is consistent with results in [8], even though the training settings being used are
very different. An example of how to infer the shape of data set using eigenvalue
curve is shown in Figure 4.

The above observation suggests interesting facts to the question at the begin-
ning of this section: If a set of valid feature vectors y1, · · · , yk are close to each
other, then any interpolation point y =

∑k
i=1 πiyi with

∑
πi = 1 and 0 ≤ πi ≤ 1

is very likely a valid feature vector. Next, we explore how this flattening effect
helps with data augmentation.

3.2 Implicit Data Augmentation

Given some neural network gw, loss function L and training samples xi, one
direct way of augmenting data is to generate synthetic data sample x and use it
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(a) (b)

Fig. 4. (a) Blue points are located on an ellipsoid and red points are located on a flat
disc; (b) Each curve represents the eigenvalue curve of corresponding point set with
the same color.

as training data. All the efforts a synthetic data x could make end up with the
calculation of the gradients:

∂L(gw(x))

∂w
.

Given valid feature vectors y1, y2, · · · , yk which are extracted from some
training samples x1, x2, · · · , xk. For any interpolation y =

∑k
i=1 πiyi with 0 ≤

πi ≤ 1 and
∑k

i=1 πi = 1, based on the flattening effect, very likely there exists
a virtual real data point x such that y = gw(x). Even though it is not obvious
to construct x explicitly, we are able to estimate its contribution to gradients
implicitly by taking the average of the contributions of x1, · · · , xk:

∂L(gw(x))

∂w
≈

k∑
i=1

πi
∂L(gw(xi))

∂w
,

when y1, · · · , yk are close enough.

The above assertion is summarised in the following:

Lemma 1. Given some neural network gw : Rm → Rn and some differentiable
loss function L : Rn → R. Fix y = gw(x). Then for a set of nearby points

yi = gw(xi), i = 1, · · · , k such that y =
∑k

i=1 πiyi,
∑k

i=1 πi = 1, 0 ≤ πi ≤ 1, we
have:

∣∣∣∣∂L(gw(x))∂w
−

k∑
i=1

πi
∂L(gw(xi))

∂w

∣∣∣∣ = O(max
i

∥y − yi∥) .
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Proof. In the following, we use ∂j to represent the partial derivative of the j-th
coordinate.

∂L(gw(x))

∂w
−

k∑
i=1

πi
∂L(gw(xi))

∂w

=

n∑
j=1

∂jL(y)
∂g

(j)
w (x)

∂w
−

k∑
i=1

πi

n∑
j=1

∂jL(yi)
∂g

(j)
w (xi)

∂w

=
∑
i,j

∂jL(y)πi
∂g

(j)
w (xi)

∂w
−

∑
i,j

πi∂jL(yi)
∂g

(j)
w (xi)

∂w

=
∑
i,j

πi
∂g

(j)
w (xi)

∂w
(∂jL(y)− ∂jL(yi))

=
∂gw(x)

∂w
O(max

i
∥y − yi∥) = O(max

i
∥y − yi∥)

In summary, one can update the network parameters by using the average of
the gradients raised by some set of training samples when performing gradient
descent, if their embedded features are close to each other. In the following sec-
tions, we introduce the proposed data-driven augmentation algorithm in detail.

3.3 Nearest Neighbors Interpolation

Denote a data point (image) xi, its feature vector yi = gw(xi), and the k near-
est neighbours (including itself) as yij , j = 1, · · · , k. We define an interpolated
feature for yi using its k nearest neighbours as

ỹi =

k∑
j=1

πijyij (3)

where
∑k

j=1 πij = 1 and 0 ≤ πij ≤ 1.
For each yi, πij in Eqn (3) follows Dirichlet distribution:

πij ∼ Dir(αij), i = 1, 2, · · · , k (4)

One can decide the concentration parameters αij to control the weights of the
nearest neighbors. For example, when αij = 1 for all js, the weights are uni-
formly distributed. Here we leverage distances between features and geometry
of manifold to inform the parameters. The detailed procedure is described as
follows.

For the i-th feature yi and its nearest neighbor yij , j = 1, 2, · · · , k:

αij = T (M(yi, yij))
t , (5)
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where T (x) : R∗ → R+ is a monotonically decreasing function. (R∗ = {x ∈
R, x >= 0},R+ = {x ∈ R, x > 0}). M(yi, yij) is the distance between yi and
yij and t > 0 is used to control the skewness of the interpolation. There are lots
of choices for T (x), for example, T (x) = 1

1+x . The intuition is to have larger
weights for closer neighbors, as shown in Figure 5. In terms of t, a smaller t
gives more uniform/smooth interpolation while larger t prefers more weights on
nearer neighbors. For simplicity we set t = 1 as the default choice.

Fig. 5. Illustration of using Dirichlet distribution to interpolate features. yij , j = 1, 2, 3
are the first 3 nearest neighbors of yi. ỹi = πi1yi1 + πi3yi2 + πi3yi3 is the interpolation
where πij are sampled from Dirichlet distribution with concentration parameter αij in
proportion to the distance M(yi, yij).

3.4 Data-Driven Adaptive Augmentation

To facilitate usage of feature interpolation, we consider taking advantage of the
flattening effect during training to decide the aggressiveness of augmentation.
Under the context, the aggressiveness can mainly be interpreted by (1) choices
of nearest neighbour interpolation, (2) shape of Dirichlet distribution and (3)
proportion of augmented features to use. To address (1), when the embedding
space is more flat, one may use a larger k for sampling interpolated points. On the
contrary, a small k leads to the interpolated features only cover a small portion
of the feature space, thus may result in limited augmentation effect and bias
in recovering real data manifold. One important question is how to reflect the
degree of “flatness” of data manifold. As mentioned earlier, such information can
be reached by the (multidimensional scaling) MDS of pairwise distances between
features [30, 8]. The flatness can be reflected by the number of large eigenvalues
of MDS, where fewer number of large eigenvalues indicate approximately smaller
dimensions of the space. Empirically we count number of eigenvalues {λi} bigger
than 10% of the largest eigenvalue λmax in a batch b as the effective dimensions,
and use k = I(λi < 0.1λmax) as number of near neighbours.
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The shape of Dirichlet distribution is controlled by M obtained from data it-
self as discussed in Section 3.3. We also involve augmentation probability p which
decides the proportion of interpolated points used for training. p = 0 refers to
no augmentation, and p = 1 refers to when all features are from interpolation.
Similarly, we let p = (k − 1)/b which introduces more aggressive augmentation
with fewer effective dimensions. In practice one can also find other ways to define
p, or use fixed ps for simplicity. In experiments we observe using a reasonable
choice of p (such as p = 0.6) is sufficient for stabilizing training. We will dis-
cuss the behaviors of these parameters later in Section 4.2. The whole Adaptive
Feature Interpolation (AFI) algorithm is summarized in Algorithm 1.

Algorithm 1 Adaptive Feature Interpolation.

Input: A batch of features {yi} extracted from real data;
Output: Augmented batch of features {y∗

i };

1: Calculate distance matrix M from {yi};
2: Solve for MDS of M and return its eigenvalues {λi};
3: Calculate {α}, k, p from M and {λi};
4: For each i, sample interpolated features ỹi using Eqn (4) with its k near neighbours;
5: For each i, set y∗

i = ỹi using Eqn (3) with probability p else y∗
i = yi.

4 Experiments

In this section, we explore the behavior of the proposed method and provide
evaluation results on multiple datasets.

4.1 Datasets and Implementation Details

We conducted unconditional generation experiments on several benchmark datasets
or their subsets, including Shells, Art, Anime Face, Pokemon provided by [26],
Cat, Dog [31], Obama, Grumpy cat [43] and CIFAR-10 [22]. We utilized various
metrics for evaluations, including Frechet Inception Distance (FID) [12], Kernel
Inception Distance (KID) [4] and Precision and Recall (PR) [29]. By default we
generated 50K samples against real data for evaluation. Lower FID, KID scores
and higher PR indicate better results.

We adopted StyleGAN2 [17] and FastGAN [26] network architectures, and
used consistent parameter settings provided in their papers for experimentation.
To facilitate experiments with multidimensional discriminator output, the num-
ber of output neurons n of discriminator in [17] was set to 20, and the output
logits of discriminator in [26] were reshaped to fit multidimensional setting. Fea-
ture interpolation is performed on features extracted from both real and fake
images, which is empirically shown to be beneficial in experiments. Experiments
were conducted using PyTorch framework on Tesla V100 GPUs.
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4.2 Ablation Study

In this section we study the behaviors of proposed feature interpolation (FI)
along with experiments using direct image interpolation (II) for comparison.

We first study the effect of p in simple cases using StyleGAN2 architectures
[17, 18]. In each setting we recorded FID during training with p = 0.3, 0.6, 0.9 as
shown in Figure 6. Here in II sessions we performed direct interpolation on images
in a mixup style [42]. For FI sessions we did not utilize any image augmentation
techniques. One can see that compared with FI experiments, the II sessions
diverged earlier in all cases. The II session with p = 0.9 has less positive effect
compared to when p = 0.6, which indicates image interpolation does not favor
large ps in this case. In contrast, the FI experiments had more stable training
sessions even with p = 0.9. Best results were obtained with dynamic p in this
case. These results suggest that FI may better enjoy the “non-leaking” property
[17] in training. In experiments on different datasets we find the use of small
amount of original valid features is a necessary regularization for stable training.
Note that for II it is not obvious to apply dynamic ks. One reason is that using
Euclidean distances between pixels to find near neighbors seems worthless. In
addition, with fixed real images one cannot implement dynamic augmentation
based on the flattening effect.

Fig. 6. FID evaluation during training on Shells dataset using image interpolation (II)
and feature interpolation (FI) with StyleGAN2 architectures.

Next we experimented on settings both uniform (t = 0) and skewed (t = 1)
distributions to study the behavior of Dirichlet distributions on feature interpo-
lation. In each experiment we used batch size 8, and trained 50K iterations with
fixed p = 0.9 using FastGAN architectures. In this case we employed DiffAug-
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ment for image augmentation and used 1K generated images for fast evaluation.
In each setting we report the best FID during training along with its corre-
sponding iteration in Table 1. Overall, we notice that FIDs with skewed distri-

k 1 2 3 4 5 6 7 8

Uniform
(t=0)

FID 165.72 140.89 148.95 141.82 145.58 138.54 136.13 144.90
Iter(K) 10 30 20 40 35 45 35 20

Skewed
(t=1)

FID 165.72 130.98 136.33 141.51 131.54 137.62 139.90 135.85
Iter(K) 10 35 50 40 50 35 35 45

Table 1. FID evaluation of generated samples on Shells dataset using FastGAN archi-
tectures with fixed ks and p = 0.9.

butions are in general better than ones with uniform distributions. Intuitively,
with skewed distribution the interpolated features are likely closer to original
features, thus may lead to smaller bias in training.

One interesting question is the relation between size of dataset N and value
of k in training. We recorded ks up to 500K training images in CIFAR-10 exper-
iments and 200K training images in Art experiments with effective batch size 8
on each GPU, and computed averaged k against different Ns. Table 2 also shows

CIFAR-10 Art

Images 100 500 5000 50000 100 1000

p = 0 4.39 4.02 2.34 2.14 3.41 2.43
AFI 4.62 3.86 2.18 2.26 3.53 2.59

Table 2. Averaged k during training under different amount of training data N with
batch size 8 on each GPU.

that under each setting, overall averaged k decreases with N increasing, which
corresponds to less augmentation with more real training data. This dynamic
mechanism reduces the risk of introducing more biased augmentation with larger
N as mentioned in [17], where authors point out an interesting phenomenon that
the positive effect of data augmentation decreases with size of real training data
increasing. In addition, results in Table 2 also reveal that more training data
enlarges the effective dimension of data manifold. Here we also present averaged
k during training on CIFAR-10 in Figure 7 which provides some insights on the
behaviors of flatness reflected by k. We notice that smaller Ns suggest fewer ef-
fective dimensions of data manifold and stronger augmentation. Especially with
small Ns (N = 100 and 500), the use of augmentation becomes more and more
aggressive during training, except for the beginning of training sessions. At the
beginning stage, the averaged k fluctuates or even decreases before it reaches the
point of inflection. The longer period of this training phase for larger Ns may
suggest that the discriminator needs more training to learn meaningful feature
representations.
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Fig. 7. Averaged k during training on CIFAR-10 with different Ns using effective batch
size 8 on each GPU.

To study the effect of feature interpolation on other datasets, we performed
experiments using AFI without applying transformation-based image augmenta-
tions such as [17, 43]. We also present results using interpolation methods similar
as input and manifold mixup [42, 37], except that in the unsupervised task no
labels are available for interpolation. In each setting we augmented both real and
fake images (or features) with the corresponding method only. Interpolations us-
ing [42, 37] were implemented on images and features respectively. Table 3 shows
AFI significantly improves baseline results on all datasets. In contrast, directly
applying feature interpolation in a mixup style led to the worst result.

Shells Anime Art Pokemon Cat Dog Grumpy cat Obama

StyleGAN2 229.83 197.01 145.08 194.93 78.32 225.63 43.88 104.64

+ Input 135.66 91.99 86.51 174.91 60.35 118.79 26.98 36.65
+ Feature 319.80 308.16 117.35 376.83 236.99 270.66 118.80 160.57
+ AFI 48.71 85.97 81.08 131.86 57.47 143.60 37.46 31.88

Table 3. FID evaluation of experiments without transformation-based augmentations.

4.3 Results

In the following we provide final evaluations results on various datasets.
FID evaluation of 1024 × 1024 and 256 × 256 experiments are displayed in

Table 4. In these experiments we incorporated image augmentation techniques,
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Dataset Shells Anime Art Pokemon Dog Cat Grumpy cat Obama

Image size 1024 1024 1024 1024 256 256 256 256

Number of images 64 120 1000 800 389 160 100 100

FastGAN [26] 152.53 60.04 48.44 57.05 51.24 39.30 27.59 40.52
+ AFI 124.80 55.35 43.09 50.47 50.89 35.18 25.02 36.43

StyleGAN2 [17] 123.66 60.51 72.36 75.39 59.07 39.78 31.58 44.04
Hinge loss, n = 20 101.72 55.67 58.42 55.32 56.43 40.24 28.69 40.18
+ AFI 62.99 33.48 43.94 44.79 49.14 35.26 22.03 31.99
Table 4. FID evaluations on 1024× 1024 and 256× 256 experiments using FastGAN
and StyleGAN2 architectures.

where [17] applies adaptive augmentation and [26] employs DiffAugment. Table 4
shows that using feature interpolation further improved results from strong base-
lines. With StyleGAN2 architectures we observe more significant gains across
datasets. Note that simply using n = 20 without FI, one can already see improve-
ments compared to results from [17]. This behavior is consistent with theoretical
analysis and experimental results in [9] that multidimensional discriminator out-
put has its advantage in GAN training. We further present evaluations of KID
and precision-recall with StyleGAN2 architectures in Table 5 and Table 6 for
reference. Examples of randomly generated 1024 × 1024 images are displayed
in Figure 8. As shown in the figure, samples from experiments with FI have
consistently better qualities.

We also tested the effect of feature interpolation on CIFAR-10 with small
amount of partial data using the default setting in [17] as baseline. Using feature
interpolation improves FID from 42.80 to 27.62 with only 0.2% training data (100
images), and from 19.69 to 13.50 with 1% training data.

Shells Anime Art Pokemon

KID PR KID PR KID PR KID PR

[17] 20 (0.789,0.085) 15 (0.966,0.933) 26 (0.574,0.823) 28 (0.621,0.727)
+ AFI 2 (0.852,0.132) 4 (0.984,0.974) 9 (0.887,0.965) 12 (0.948,0.922)

Table 5. KID(x103)(↓) and Precision-Recall (PR)(↑) evaluations on 1024 × 1024 ex-
periments.

Dog Cat Grumpy cat Obama

KID PR KID PR KID PR KID PR

[17] 18 (0.874,0.948) 6 (0.974,0.951) 5 (0.845,0.794) 13 (0.930,0.860)
+ AFI 14 (0.922,0.932) 4 (0.976,0.950) 3 (0.973,0.953) 10 (0.979,0.970)

Table 6. KID(x103) and Precision-Recall (PR) evaluations on 256× 256 experiments.
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Fig. 8. Randomly generated 1024 × 1024 samples on different datasets. From top to
bottom: Shells, Art, Pokemon and Anime. Left: StyleGAN2-ADA [17]; Right: with
Adaptive Feature Interpolation.

5 Discussion

In this paper we have proposed an adaptive augmentation approach for low-shot
data generation. Instead of producing new training images, the method functions
in the multidimensional feature space of discriminator output by utilizing the
flattening effect of feature space during training. Experiments show the proposed
method improves results from strong baselines in low-data regime.
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