
Fast-Vid2Vid: Spatial-Temporal Compression for
Video-to-Video Synthesis

Long Zhuo1 , Guangcong Wang2 , Shikai Li3 ,
Wayne Wu1,3 , and Ziwei Liu2B

1 Shanghai AI Laboratory
2 S-Lab, Nanyang Technological University

3 SenseTime Research
zhuolong@pjlab.org.cn {guangcong.wang, ziwei.liu}@ntu.edu.sg

lishikai@sensetime.com wuwenyan0503@gmail.com

Inputs

Sketch2Face

Vid2Vid

Fast-
Vid2Vid

MACs:2066G    FPS:2.77

MACs:282G (8.1×)   FPS:16.81 (6.1×)

Pose2Body

MACs:1254G    FPS:4.27

MACs:151G (8.3×)   FPS:24.77 (5.8×)

Segmentation2City

MACs:1769G    FPS:3.01

MACs:191G (9.3×)   FPS:21.39 (7.1×)

Inputs

Vid2Vid

Fast-
Vid2Vid

Fig. 1. Fast-Vid2Vid. Our proposed Fast-Vid2Vid accelerates the video-to-video syn-
thesis and generates photo-realistic videos more efficiently compared to the original
Vid2Vid model.

Abstract. Video-to-Video synthesis (Vid2Vid) has achieved remarkable
results in generating a photo-realistic video from a sequence of semantic
maps. However, this pipeline suffers from high computational cost and
long inference latency, which largely depends on two essential factors:
1) network architecture parameters, 2) sequential data stream. Recently,
the parameters of image-based generative models have been significantly
compressed via more efficient network architectures. Existing methods
mainly focus on slimming network architectures and ignore the size of
the sequential data stream. Moreover, due to the lack of temporal co-
herence, image-based compression is not sufficient for the compression of
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the video task. In this paper, we present a spatial-temporal compression
framework, Fast-Vid2Vid, which focuses on data aspects of generative
models. It makes the first attempt at time dimension to reduce compu-
tational resources and accelerate inference. Specifically, we compress the
input data stream spatially and reduce the temporal redundancy. Af-
ter the proposed spatial-temporal knowledge distillation, our model can
synthesize key-frames using the low-resolution data stream. Finally, Fast-
Vid2Vid interpolates intermediate frames by motion compensation with
slight latency. On standard benchmarks, Fast-Vid2Vid achieves around
real-time performance as 20 FPS and saves around 8× computational
cost on a single V100 GPU. Code and models are publicly available1.

Keywords: Video-to-Video Synthesis, GAN Compression

1 Introduction

Video-to-video synthesis (Vid2Vid) [42] targets at synthesizing a photo-realistic
video given a sequence of semantic maps as input. A wide range of appli-
cations are derived from this task, such as face-talking video generation
(Sketch2Face) [42,41], driving video generation (Segmentation2City) [42,41] and
human pose transferring generation (Pose2Body) [4,25,51]. With the advance
of Generative Adversarial Networks (GANs) [14], Vid2Vid models [42,41] have
made significant progress in video quality. However, these approaches need large-
scale computational resources to yield the results, and they are computationally
prohibitive and environmentally unfriendly. For example, the standard Vid2Vid [42]
consumes 2066 G MACs for generating each frame, which is 500× more than
ResNet-50 [16]. Recent studies demonstrate that lots of recognition compression
approaches have been successfully extended to image-based GAN compression
methods [1,6,10,24,29,27]. Can we directly employ these existing image-based
GAN compression methods to achieve promising Vid2Vid compression models?

In the literature, image-based GAN compression methods can be roughly cat-
egorized into three groups, including knowledge distillation [1,6,24,29,2], network
pruning [29,40], and neural architecture search (NAS) [27,13,10,12,28]. They fo-
cus on obtaining a compact network by cutting the network architecture param-
eters of the original network. However, the input data, another factor that signif-
icantly affects the inference speed of a deep neural network, has been ignored by
the existing GAN compression methods. Moreover, since they are image-based
synthesis tasks, they do not consider redundant temporal information hidden
in neighbor frames of a video. Therefore, directly applying image-based com-
pression models to Vid2Vid synthesis is difficult to achieve the desired results.
In this work, we aim to compress the input data stream while maintaining the
well-designed network parameters, and generate the photo-realistic results for
Vid2Vid synthesis. Furthermore, we make an initial attempt at removing tem-
poral redundancy to accelerate Vid2Vid model.

1 Project page: https://fast-vid2vid.github.io/
Code and models: https://github.com/fast-vid2vid/fast-vid2vid

https://fast-vid2vid.github.io/
https://github.com/fast-vid2vid/fast-vid2vid
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There are three critical challenges for Vid2Vid compression. First, the typ-
ical Vid2Vid model [42] consists of several encoder-decoders to capture both
spatial and temporal features. It is difficult to reduce the parameters from such
a complicated structure due to the intricate connections between these encoders
and decoders. Second, it is a challenge to compress the input data stream and
achieve decent performance for GAN generation since the perceptual fields of
GAN are much more erratic than image recognition. Third, transferring knowl-
edge from a teacher model to a student model temporally is challenging to align
with the spatial knowledge distillation, as the temporal knowledge is implicitly
hidden within adjacent frames and is more difficult to capture than the spatial
knowledge.

To address the above issues, in this paper, we propose a novel spatial-
temporal compression framework for Vid2Vid synthesis, named Fast-Vid2Vid.
As shown in Fig. 2, we reduce the computational resources by only compress-
ing the input data stream through Motion-Aware Inference (MAI) without de-
stroying the well-designed and complicated network parameters of the original
Vid2Vid model, which addresses challenge 1. For challenges 2 and 3, we propose a
Spatial-Temporal Knowledge Distillation method (STKD) that transfers spatial
and temporal knowledge from the original model to the student network using
compressed input data. Our goal is to transfer the knowledge from large-size
synthesized videos to small-size synthesized ones to make GAN robust enough
to gain promising visual performance when the input data is compressed.

We first train a spatially low-demand generator by taking low-resolution se-
quences as input but generating the full-resolution sequences. We perform Spatial
Knowledge Distillation (Spatial KD) that transfers the spatial knowledge from
the original generator to the spatially low-demand generator to obtain high-
resolution information. Furthermore, we train a part-time generator by uniformly
sampling video frames from sequences. We perform Temporal-aware Knowledge
Distillation (Temporal KD) and distill the temporal knowledge of the original
generator to the part-time student generator to obtain full-time motion infor-
mation by introducing two losses, i.e., local temporal knowledge distillation loss
and global temporal knowledge distillation loss. This design aims to capture the
implicit knowledge in the time dimension.

To summarize, to the best of our knowledge, we make the first attempt to
tackle the Vid2Vid compression problem at data aspects. On a single V100
GPU, Fast-Vid2Vid achieves 18.56 FPS (6.1× acceleration) with 8.1× less com-
putational cost on Sketch2Face, 24.77 FPS (5.8× acceleration) with 8.3× less
computational cost on Segmentation2City, and 21.39 FPS (7.1× acceleration)
with 9.3× less computational cost on Pose2Body. The main contributions of this
paper are concluded as three-fold:

– We present Fast-Vid2Vid, an sequential data stream compression method
in spatial and temporal dimensions to greatly accelerate the Vid2Vid model.

– We introduce Spatial KD that transfers knowledge from a teacher model with
high-resolution input data to a student model with low-resolution input data
to learn high-resolution information.
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– We propose Temporal KD to distill knowledge from a full-time teacher model
to a part-time student model. A new temporal knowledge distillation loss
globally is further presented to capture the time-series correlation.

2 Related Work

Video-to-Video Synthesis. Video-to-video synthesis (Vid2Vid) is a computer
vision task that generates a photo-realistic sequence using the corresponding se-
mantic sequence. Based on high-resolution image-based synthesis [43], Wang et
al. [42] developed a standard Vid2Vid synthesis model by introducing temporal
coherence. Few-shot Vid2Vid model [41] further extended to a few-shot train-
ing version. Recently, Vid2Vid has been successfully extended to a wide range
of video generation tasks, including video super-resolution [35,7,46], video in-
painting [52,47], image-to-video synthesis [36,37] and human pose-to-body syn-
thesis [4,11,51,25]. Most of these methods exploited temporal information to
improve the performance of generated videos. However, they do not focus on
Vid2Vid synthesis compression but on better visual performance.
Model Compression. Model compression aims at reducing superfluous pa-
rameters of deep neural networks to accelerate inference. In the computer vision
task, lots of model pruning approaches [15,26,22,30,17,50,40] have greatly cut
the weights of neural networks. Commonly, compression methods [23,17,26,18]
reduced the unnecessary channels with low activations. GAN compression has
been proved by [49] that it is far more difficult than normal CNN compression.
A content-aware approach [29] was proposed to use salient regions to identify
specific redundancy for GAN pruning. Wang et al. [40] reduced the redundant
weights by NAS. Notably, the mentioned methods simplify the network struc-
ture but ignore the input information. Furthermore, these approaches do not
consider the essential temporal coherence for video-based GAN, and thus yield
sub-optimal results for compressing Vid2Vid models.
Knowledge Distillation. Knowledge Distillation aims to make a student net-
work imitate its teacher. Hinton et al. [20] proposed an effective framework for
model distillation in classification. Knowledge distillation has been widely used
in recognition models [5,6,31,32,48]. Recently, lots of response-based knowledge
distillation methods [1,6,10,2] were proposed for image-based GAN compression.
For example, Jin et al. [24], developed distillation techniques from [27], used a
global kernel alignment module to gain more potential information. Liu et al. [29]
utilized a salient mask to guide the knowledge distillation process based on the
norm. These methods only address image-based knowledge distillation, and thus
only spatial knowledge is exploited, and they do not consider movements. Dif-
ferent from these spatial-aware knowledge distillation, we consider both spatial
information and temporal information into knowledge distillation, which tailors
for Vid2Vid model compression. Most recently, Feng et al. [9] have presented a
resolution-aware knowledge distillation method that ignores the network param-
eters and compresses the input information for image recognition. In our work,
it is the first time to introduce the input data compression for GAN synthesis.



Fast-Vid2Vid 5

{X} {Y}
Vanilla Inference

Same  Parameters

Compression

Key-frames 
Selection

{K}

{Yk | k ∈ K}*

Motion
Compensation

Motion-aware Inference

（Zero-parameters)

H

W
Full-size Input

Low-resolution Input

Full-size PredictionKey-frames Prediction

FG
H

W

{X}

h

w

*

{Y}

H

W

*

Compressed Input

PG

STKD

h

w

{X}

PG

{Y}

H

W

*

Student Output
Teacher Output

H

W

'

Fig. 2. The pipeline of our Fast-Vid2Vid. It maintains the same amount of parameters
as the original generator but compresses the input data in space and time dimensions.

3 Fast-Vid2Vid

3.1 A Revisit of GAN Compression

The function of a deep neural network (DNN) can be written as f(X) = W ∗X,
where W denotes the parameters of the networks, ∗ represents the operation
of DNN and X denotes the input data. Two essential factors accounting for
computational cost are the parameters and the input data. Existing GAN com-
pression methods [1,6,10,24,29,27] have intended to cut the computational cost
by reducing the parameters of network structures. However, the network struc-
tures of GAN for specific tasks are carefully designed and it would cause poor
visual results if the network parameters are cut arbitrarily. Another way to re-
duce computational cost is compressing the input data. In this work, we seek for
compressing the input data instead of the parameters of well-designed networks.
To the best of our knowledge, there is little literature working on compressing
data for GAN compression.

3.2 Overview of Fast-Vid2Vid

The typical Vid2Vid framework [42] takes a sequence of semantic maps {X}T0 ∈
RT×H×W with T frames and the initial real frames as input and predicts a
photo-realistic video sequence {Y }T0 ∈ RT×H×W . H and W denotes the height
and weight of each frame. The vanilla inference of the Vid2Vid model (the full-
time teacher generator) that utilizes a full-size sequential input data stream is
a consecutive process that synthesizes a video sequence frame by frame. Con-
sidering both image synthesis and temporal coherence, a Vid2Vid model often
contains several encoder-decoders to capture spatial-temporal cues, which are
computationally prohibitive. In this paper, we propose a Fast-Vid2Vid compres-
sion framework, an input data compression method, to reduce the computational
resources of the Vid2Vid framework in both space and time dimensions.

Fig. 2 illustrates the overview of the proposed method. Fast-Vid2Vid first
replaces the resBlock of the original Vid2Vid generator [42] with decomposed
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Fig. 3. Left: The proposed Spatial Knowledge Distillation (Spatial KD). Right: The
proposed temporal loss for temporal global knowledge distillation.

convolutional block [21] to obtain a modern network architecture, which is simi-
lar to [27]. During knowledge distillation, we train a student generator using the
compressed data and distill knowledge from the teacher generator by our pro-
posed spatial-temporal knowledge distillation method (STKD). STKD, including
spatial knowledge distilation (Spatial KD) and temporal knowledge distillation
(Temporal KD), performs spatial resolution compression and temporal se-
quential data compression. After STKD, a part-time generator cooperating
with motion compensation synthesizes a full-size sequence by motion-aware
inference (MAI).

3.3 Spatial Resolution Compression for Vid2Vid

To reduce the spatial input data, a straightforward way [9] is to predict the
low-resolution results and re-size them into the full-resolution by a distortion
algorithm. However, in our preliminary experiments, this method leads to se-
vere artifacts since the distortion algorithm lacks high-frequency information
and loses the important textures. Therefore, we make an adaptive change for
Vid2Vid synthesis. We replace the downsampling layers with the normal con-
volution layers to generate the high-resolution results. The modified generator
only takes the low-resolution semantic sequence {X}′T

0 ∈ RT×h×w as the input,
where h×w = 1

(2d)2
H ×W , and d is the number of the modified downsampling

layers. d is set to 1. In this way, we obtain a spatially low-demand generator.
Next, the spatially low-demand generator is required to learn high-frequency

representation from the full-time teacher generator. We present a spatial knowl-
edge distillation method (Spatial KD) to model high-frequency knowledge from
the teacher net. Specifically, as shown in the left figure of Fig. 3, Spatial KD
shrinks the margin between the low-resolution domain and the high-resolution
domain to improve the performance of the student network. Spatial KD implic-
itly transfers spatial knowledge from the teacher net to the student net. Par-
ticularly, Spatial KD applies a knowledge distillation loss to mimic the visual
features of the teacher net, and the spatial knowledge distillation loss LSKD can
be written as:

LSKD =
1

T

T∑
t=0

[MSE(Yt, Y
′
t ) + Lper(Yt, Y

′
t)], (1)
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where tmeans the current timestamp, T is the total timestamps of the sequences,
Y is the output sequence of the teacher net and Y ′ is the predicted sequence
of the spatially low-demand generator. MSE represents a mean squared error
between two frames, and Lper denotes a perceptual loss [42].

3.4 Temporal Sequential Data Compression for Vid2Vid

Each video sequence consists of dense video frames, which brings an enormous
burden on computational devices. How to efficiently synthesize dense frames is
a difficult yet important issue for lightweight Vid2Vid models.

In Section 3.3, we obtain a spatially low-demand generator. To ease the bur-
den of generating dense frames for each video, we re-train the spatially low-
demand generator on sparse video sequences, which are uniformly sampled from
dense video sequences. The sampling interval is randomly selected in each train-
ing iteration. The original Vid2Vid generator is regarded as a full-time teacher
generator and the re-trained spatially low-demand generator is regarded as a
part-time student generator. To distill the temporal knowledge from the full-
time teacher generator to the part-time student generator, we propose a lo-
cal temporal-aware knowledge distillation method and a global temporal-aware
knowledge distillation method for temporal distillation, as shown in Fig. 4.

Both the full-time teacher generator and the part-time student generator
take the previous p − 1 synthesized frames {Y }p−1

1 and p semantic maps {X}p1
as input and generate the next frame. The previous frames are used to cap-
ture the temporal coherence of the sequences and generate more coherent video
frames. The generation process of the full-time teacher generator is the consecu-
tive generation. More generally, each generation iteration of the full-time teacher
generator can be formulated as follows:

Yk = fFG({X}kk−p, {Y }k−1
k−p), (2)

where Yk denotes the predicted current generative frame of the full-time teacher
generator. fFG denotes the generation function of the full-time teacher generator.
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{X}kk−p denotes p+1 frames of semantic maps, and {Y }k−1
k−p denotes the previous

p generated frames.
Different from the full-time teacher generator whose uniform sampling inter-

val is 1, the uniform sampling interval of the part-time student generator is g,
where 1 < g < T . g is a random number and randomly selected in each training
iteration. Similarly, the frame generation of the part-time student generator can
be formulated as follows:

Y ∗
k = fPG(f

d
R({Xt}∗kk−p), {Y }∗k−1

k−p), (3)

where Y ∗
k denotes the predicted current generative frame of the part-time stu-

dent generator. fPG denotes the generation function of the part-time student
generator, fd

R denotes the function of reducing the resolution into 1
(2d)2

, {X}∗kk−p

includes p frames of the sparse semantic sequences and {Y }∗k−1
k−p is the previous

frames of the synthesized sparse sequences. To better illustrate Temporal KD,
we set p = 1 in Fig. 4.

Because the full-time teacher generator is trained on sequences with dense
frames and is learned to generate dense coherent frames, the full-time teacher
generator cannot directly skip partial frames to generate sparse frames, lead-
ing to expensive computational cost. The part-time student generator generate
sparse frames and interpolate intermediate frames with the slight computational
cost. However, since the part-time student generator is trained on sequences with
sampled sparse frames, the low sample rate could be two times less than tempo-
ral motion frequency and thus leads to aliasing according to Nyquist–Shannon
sampling theorem. Our preliminary experiments also show that the large changes
between two non-adjacent frames cause remarkable inter-frame incoherence and
generate a bad result.
Local Temporal-aware Knowledge Distillation.We first introduce the local
temporal-aware knowledge distillation. Our goal is to distill the knowledge from
the full-time generator to the part-time student generator to reduce aliasing. A
straightforward idea is to align the outputs of the full-time generator and the
outputs of the part-time student generator and reduce the distances between the
corresponding synthesized frame pairs. The loss function of local temporal-aware
knowledge distillation loss LLTKD is given by

LLTKD =
1

T

T∑
t=0

[MSE(Y ∗
t , Yt) + Lper(Y

∗
t , Yt)], (4)

where Y ′ denotes the resulting frame of the spatially low-demand generator
and Y denotes the resulting frame of the teacher net. MSE represents a mean
squared error between two frames. Lper denotes a perceptual loss [42].
Global Temporal-aware Knowledge Distillation. Local temporal-aware
knowledge distillation allows the part-time student generator to imitate the lo-
cal motion of the full-time teacher generator. However, it does not consider the
global semantic consistency. Therefore, we further propose a global temporal-
aware knowledge distillation to distill global temporal coherence.
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It is observed that the current frame synthesis deeply relies on the results of
the previous synthesis. This indicates that the generated current frame implic-
itly contains information from the previous frames. The global temporal-aware
knowledge distillation exploits the generated non-adjacent frames generated by
the full-time teacher generator to distill the hidden information of temporal co-
herence. The frames generated by the full-time teacher generator at the same
timestamps as the non-adjacent frames by the part-time student generator are
extracted and concatenated into a predicted sequence {Y ∗} (Seq-s). Similarly,
the results of the full-time teacher generator are concatenated into a sequence
{Y S} (Seq-t) in time order, as shown in the right figure of Fig. 3. We intro-
duce a global temporal loss to minimize the distance between {Y ∗} and {Y S},
namely I3D-loss. The global temporal-aware knowledge distillation employs a
well-trained I3D [3] model, a well-known video recognition model, to extract the
time-series features of neighbor frames of {Y S} and {Y S}. The global temporal-
aware knowledge distillation loss is given by

LGTKD = MSE(fI3D({Y ∗}}), fI3D({Y S})), (5)

where MSE calculates the mean squared error between two feature vectors,
fI3D is the function of the pre-trained I3D model. Finally, we obtain a temporal
knowledge distillation loss, as written as,

LTKD = αLLTKD + βLGTKD, (6)

where α and β control the importance of local and global losses. We set α = 2
and β = 15 to enhance the global temporal coherence.

Full Objective Function. We integrate local temporal-aware and global temporal-
aware knowledge distillation into a unified optimization framework, which en-
ables the part-time student generator to imitate both global and local motions
of the full-time teacher generator. The full objective function is given by

LKD = σLSTD + γLTKD, (7)

where σ and γ control the weights of spatial and temporal KD losses, respectively.
In particular, σ is set as 1 and γ is set as 2 to learn more knowledge of the
temporal features from the teacher net.

3.5 Semantic-driven Motion Compensation for Interpolation
Synthesis

The temporal compression further greatly reduces the computational cost com-
pared with the original Vid2Vid generator. However, the part-time student gen-
erator can only synthesize sparse frames {Y ′}. To compensate for this problem,
we use a fast motion compensation method [33], a zero-parameter algorithm,
to complete the sequence. Motion compensation enables the synthesis of the in-
ter frames between key-frames. As the adjacent frames are with slight changes,
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the final results remain a reliable visual performance by reducing the tempo-
ral redundancy. During inference, another question is which frames should be
synthesized by the part-time student generator as sparse frames and how to de-
termine these key-frames without sufficient photo-realistic frames. In this paper,
we surprisingly find that we can distinguish key-frames {X ′

k|k ∈ K}, where K

is a set containing the numbers of key-frame, from semantic maps {X}′T
0 . With

the key semantic maps, the part-time student generator generates sparse frames
{Y ′

k|k ∈ K} and finally, we interpolate other inter frames to a full-size result
sequence {Y } ∈ RT×H×W by the fast motion compensation method.

4 Experiments

4.1 Experimental Setup

Models. We conduct our experiments using Vid2Vid[42] model. The original
Vid2Vid model uses a coarse-to-fine generator for high-resolution output. To
simplify the compression problem, we only retrain the first-scale Vid2Vid model
based on the official repository2. We also evaluate three compression methods for
image synthesis models, including NAS compression [27], CA compression [29]
and CAT [24]. Since Vid2Vid is a 2D-based generation framework, these three
methods can be easily transferred into this task with adjustments.
Datasets. We evaluate our proposed compression method on several datasets.
We pre-process the following datasets as the same as the settings of Vid2Vid,
including Face Video dataset [34], Cityscape Video dataset [8] and Youtube
Dancing Video dataset [42]. Since we only apply the first scale of the Vid2Vid
model, we re-size the datasets for convenience. Face Video dataset is re-sized
into 512 × 512, Cityscape Video dataset is re-size into 256 × 512, and Youtube
Dancing Video dataset is re-sized to 384× 512.
Evaluation Metrics. We apply three metrics for quantitative evaluation, in-
cluding FID [19], FVD [39] and pose error(PE) [41]. The lower score of the three
metrics represents better performance.
Key-frame Selection. We first calculate the residual maps between the ad-
jacent frames, and sum up each map to draw smooth statistical curves using
sliding windows. Thus, the peak ones of the curves represent the local maximum
of the difference between two adjacent frames and are used as keyframes. Note
that our keyframe selection only consumes about 0.5 milliseconds for processing
a video of 30 frames.
Motion Compensation.Motion compensation is to predict a video frame given
the previous frames and future frames in video compression. We adopt the over-
lapped block motion compensation (OBMC) [33] and the enhanced predictive
zonal search (EPZS) method [38] to generate the non-keyframes by “FFMPEG”
toolbox. EPZS and OBMC consumes about 0.0008146G MACs for a 512×512
frame, which is much less than our generative model part.

2 https://github.com/NVIDIA/vid2vid
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Table 1. Quantitative results of Fast-Vid2Vid. m.MACs represents the mean of the
total MACs of the calculation resources for a sequence of video.

Metric

Task Method m.MACs(G) FPS
FID(↓) FVD (↓) PE(↓)

original 2066 2.77 34.17 6.74 —
NAS 303 10.50 33.64 6.86 —
CA 290 11.07 35.82 6.95 —
CAT 294 10.89 33.90 6.43 —

Sketch2Face

Ours 282 18.56 29.02 5.79 —

original 1254 4.27 — 2.76 —
NAS 277 12.44 — 2.99 —
CA 187 15.48 — 3.98 —
CAT 178 13.29 — 3.44 —

Segmentation2City

Ours 132 24.77 — 2.33 —

original 1769 3.01 — 12.31 2.60
NAS 280 12.57 — 12.53 3.28
CA 253 13.92 — 15.89 4.85
CAT 257 12.48 — 15.75 4.18

Pose2Body

Ours 191 21.39 — 10.03 2.18

4.2 Quantitative Results

We compare our method with the state-of-the-art GAN compression methods,
NAS [27], CA [29] and CAT [24] on three benchmark datasets to validate the
effectiveness of our approach. For a fair comparison, we perform a decent pruning
rate by removing around 60% channels of the Vid2Vid model in CA and CAT,
and use NAS to find out the best network configuration with similar mMACs.

The experimental results are shown in Table 1. We can see that given the
lower computational budget, our method achieves the best FID and FVD on
three datasets. Specifically, other GAN compression methods have lower perfor-
mance than the full-size model while our method outperforms the original model.
Other compression methods speed up the original model by simply cutting the
network structures, but they ignore the temporal coherence. Meanwhile, the
original Vid2Vid model significantly accumulates losses during inference. Our
proposed motion-aware inference accumulates less losses since it only generates
several frames of the sequence. Such results show the advantage of our spatial-
temporal aware compression methods.

4.3 Ablation Study

We adopt Face Video as the benchmark dataset for our ablation study.
Effectiveness of Temporal KD Loss. Based on the spatially low-demand gen-
erator mentioned before, we analyze the temporal knowledge distillation for the
Vid2Vid model. We set 6 different distillation loss schemes as: (1) w/o TKD: the
spatially low-demand generator was retrained on the dataset; (2) TKD-local: the
spatially low-demand generator is transferred the only local knowledge from the
teacher net; (3) TKD-global: the spatially low-demand generator is transferred
the only global knowledge from the teacher net; (4) MMD: the spatially low-
demand generator is transferred the knowledge using MMD-loss [9]. (5) LSTM:
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Fig. 5. Ablation Study for Fast Vid2Vid. Left:Temporal Loss ablation study for tem-
poral loss. Right:The trade-off experiments for the windows of key-frames selector.
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Fig. 6. The comparison of the results of different knowledge distillation.

the spatially low-demand generator is transferred the knowledge based on LSTM
regulation [45]. (6) TKD: the spatially low-demand generator is transferred both
local and global knowledge from the teacher net;

As shown in the left figure in Fig. 5, the local knowledge distillation loss im-
proves the performance of the model without KD. The temporal KD loss glob-
ally further improves the performance of the common local KD loss, especially
in FVD. Our proposed KD loss outperforms MMD-loss and LSTM-based KD
loss. It indicates that the temporal KD loss effectively enhances the similarity of
distribution on the video recognition network between the videos generated by
the teacher network and the student network. We also provide the comparison
results in Fig. 6 and our STKD generates more realistic frame than others.

Effectiveness of Spatial KD Loss. We conduct an ablative study for Spatial
KD on the Sketch2Face benchmark. The spatial compression methods are used
together with our proposed Temporal KD to perform Vid2Vid compression.
Table 2 shows that our proposed Spatial KD performs better than other image
compression methods. Our Spatial KD does not destroy network structures of
the original GAN while other methods tweak the sophisticated parameters.

Effectiveness of Windows for Key-frame Selection. We investigate the
sliding windows to select the key-frames to find out the best trade-off between
the sliding windows and the performance. The larger sliding windows mean that
there are fewer key-frames selected and thus use less computational resources.
Interestingly, as shown in the right figure of Fig. 5, it rises significantly in FVD
when increasing the sliding windows, and achieves the best performance when the
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Table 2. Ablation study for spatial compression with the proposed Temporal KD.

Method MACs(G) FPS FID FVD

CA 331 17.00 36.65 6.76
CAT 310 18.02 35.64 6.85
NAS 344 16.78 32.41 6.71

Spatial KD 282 18.56 29.02 5.79

Table 3. Ablation study for the interpo-
lation.

Interpolation FID FVD

Linear Interpolation 31.55 6.45

Motion Compensation 29.02 5.79

Table 4. Ablation study for the time gap.

Gap FID FVD

Fixed time gap 32.21 6.85

Random time gap 31.43 6.22

Key-frames 29.02 5.79

sliding windows are three in three tasks. It indicates that the part-time student
generator needs enough independent motion to maintain decent performance.
Effectiveness of Interpolation. We apply two common interpolation methods
for completing the video, namely linear interpolation and motion compensation.
We also conduct ablative studies on interpolation methods. As shown in Table 3,
motion compensation outperforms the simple linear interpolation. Therefore, we
apply motion compensation as our zero-parameters interpolation method.
Effectiveness of Time Gap. We also study the ways of selected frames for
the generation of the part-time student generator. We use the same numbers of
the selected frames. Specifically, the fixed time gap strategy selects the frames in
fixed time intervals, the random time gap strategy chooses the frames in random
intervals, and the key-frame strategy selects the key-frames as the frames to be
synthesized by the part-time student generator. As shown in Table 4, the key-
frame strategy outperforms other strategies since the key-frames of a sequence
consist of all essential motions and texture.

4.4 Qualitative Results

We illustrate the output sequences of the mentioned methods in Fig. 7. The
generators in Vid2Vid synthesis would accumulate the visual losses sequentially
since the current frame relies on the previously generated frames. Compared
with other GAN compression methods, our proposed method generates more
realistic results. We have provided more details in supplementary materials.

5 Conclusion

In this paper, we present Fast-Vid2Vid to accelerate Vid2Vid synthesis. We
propose a spatial-temporal compression framework to accelerate the inference by
compressing the sequential input data stream but maintaining the parameters of
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Fig. 7. Qualitative results compared with the advanced GAN compression methods in
the task of Sketch2Face, Segmentation2City and Pose2Body.

the network. In the space dimension, we distill knowledge from the full-resolution
domain to the low-resolution domain. In the time dimension, we use temporal-
aware knowledge distillation for local and global knowledge to obtain a part-time
generator. Finally, the part-time generator is used for motion-aware inference
where it only generates the key-frames of the sequence and interpolates the
middle frames by motion compensation. By reducing the resolution of the input
data and extracting the key-frames of the data stream, Fast-Vid2Vid saves the
computational resources significantly.
Discussion.We discuss some future directions for this work. Recently, sequence-
in and sequence-out methods, like transformer, are challenging for model com-
pression. On the contrary, our Fast-Vid2Vid accelerates Vid2Vid by optimizing
a part-time student generator (via Temporal KD) and a lower-resolution spa-
tial generator (via Spatial KD), which is versatile for various networks. When
combined with seq-in and seq-out transformers like visTR [44], Fast-Vid2Vid
first synthesizes a partial video by a part-time transformer-based student gener-
ator (via fully parallel computation) and then recovers the full video by motion
compensation.
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