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Fig. 1. Reconstruction quality demonstration of the proposed Temporal-MPI for the
testing sequences from the Nvidia Dynamic Scene dataset [37]. The dynamic visual
effects can be viewed in Adobe PDF Reader.

Abstract. Novel view synthesis of static scenes has achieved remarkable
advancements in producing photo-realistic results. However, key chal-
lenges remain for immersive rendering of dynamic scenes. One of the
seminal image-based rendering method, the multi-plane image (MPI),
produces high novel-view synthesis quality for static scenes. But mod-
elling dynamic contents by MPI is not studied. In this paper, we propose
a novel Temporal-MPI representation which is able to encode the rich
3D and dynamic variation information throughout the entire video as
compact temporal basis and coefficients jointly learned. Time-instance
MPI for rendering can be generated efficiently using mini-seconds by lin-
ear combinations of temporal basis and coefficients from Temporal-MPI.
Thus novel-views at arbitrary time-instance will be able to be rendered
via Temporal-MPI in real-time with high visual quality. Our method is
trained and evaluated on Nvidia Dynamic Scene Dataset. We show that
our proposed Temporal-MPI is much faster and more compact compared
with other state-of-the-art dynamic scene modelling methods.
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1 Introduction

Recent advancements on novel view synthesis have shown remarkable results
on immersive rendering of static scenes using neural scene representations, such
as Multi-plane Images (MPI) [40,35,17] and Neural Radiance Fields (NeRF)
[18,4]. Neural basis expansion [35] and Plenoctree structures [38] have been
recently proposed to further improve the rendering quality and efficiency. However,
challenges still remain in modelling dynamic scenes, which require additional
capacity to capture variations along time dimension.

To model dynamic contents, efforts have been made in training time-conditioned
NeRF models [11,10,24]. Although photo-realistic view-synthesis results can be
produced by these time-conditioned neural rendering methods, they normally
require millions of ray-casting style queries during rendering, resulting in serious
rendering delay and low frame rate. So, there is a popular branch of research on
improving the rendering efficiency of neural scene representations by extracting
the learned content into compact data structure, such as tree-based structure [38],
or with occupancy priors [14] stored for efficient sampling. Another line of image-
based rendering research, the MPI, focuses on rendering real-world forward-facing
contents. MPI is highly efficient for real-time rendering due to its pre-computed
2.5D RGB-α volumes. In order to render dynamic scenes via MPI, pre-calculating
and saving all time-instance MPIs is a straight-forward but engineering-oriented
solution for time-space rendering. However, this method lacks temporal coherence
and is expensive to save the bulky data incurred. 3DMaskVol21 [12] renders an
image at a given timestamp by fusing a background MPI and instantaneous MPI
using a 3D mask volume, which takes temporal-coherent information learned to
be the background MPI. But generating these three volumes causes delay on
rendering and heavy work-load on caching. In comparison, our proposed method
can generate arbitrary time-instance MPIs from one Temporal-MPI within mini
seconds, which is much more efficient for real-time rendering and compact in
storage.

In this paper, we propose a novel efficient representation for dynamic scenes,
Temporal-MPI, for space-time immersive rendering. Different from previous
methods [11,12,37] which rely on pre-trained optical flow model [6], ground-truth
background images [12], pre-trained depth estimation model [25] or dynamic-static
masks [37] as additional premise, we aim at creating a self-contained pipeline. In
addition, our method does not need to explicitly store time-instance MPIs, which
greatly decreases the requirement for storage space and being computationally
efficient.

2 Related Work

Novel view synthesis. Novel view synthesis is a long standing research issue that
aims at synthesising novel views of a scene given arbitrary captured images, and
has become one of the most popular classes of research topics in computer vision.
Early researches on Light fields (LF) [21] represented the scene as a 4D Plenoptic
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Function [16] L(x, y, s, t), where (x, y) represents spatial coordinates and (s, t)
represents angular coordinates. The spatial-angular correlations embedded in
LF images can be exploited for applications of depth estimation [7,20], super-
resolution [8] and novel view rendering [30,9]. With recent advancements in deep
learning, different learning-based scene representations were proposed. Novel
views can be synthesized from monocular input, they are SynSin20 [34], 3D
Photo20 [28], WorldSheet21 [5] and MPIs20 [33]. They share a common rationale,
which is integrating the learning of geometry and appearance from rendering loss.
The second branch of research is using multi-view inputs that allow machine
learning models to reason the scene’s geometry using epipolar geometry and
triangulation, the scene can be learned as a volume representation either explicitly
or implicitly. Neural/implicit volume representations can encode the scene as
a continuous volumetric function, they are Deep Voxels [29] and NeRF [18]. In
addition to above continuous volumetric functions, a scene can be decomposed
into a layered representation [27], they are MPI [40] and its followers [17,33,35,12].
Although these methods can produce photo-realistic results, they can only model
and render static scenes. The next key step of view rendering is rendering dynamic
scenes.

Neural spatial and temporal embedding for novel-view synthesis. A
successful novel view synthesis requires accurate modeling of a scene’s geometry.
Modeling the geometry of non-rigid scenes with dynamic contents are ill-posed,
and were tackled by reconstructing dynamic 3D meshes where priors like temporal
information [1,32] or known template configurations [2,19]. Yet, these methods
require 2D-to-3D matches or 3D point tracks. Thus, limiting their applicability
to real world scenes or simulated scenes with complex textures.

Under the context of space-time view synthesis, adding time parameters to
the input of static scene’s representations is a straightforward implementation.
There are time-conditioned warping fields in D-NeRF21 [24], scene flow fields in
NeuralFlow21 [11] and radiance fields in Neural3DVideo21 [10]. More specifically,
D-NeRF21 [24] added a time-conditioned deformation network to predict the
time-dependent positional offsets to deform the canonical NeRF into a time-
instance shape. NeuralFlow21 [11] used temporal photometric consistency to
encourage the time-conditioned NeRF to be learned from monocular videos.
Neural3DVideo21 [10] also transformed NeRF into a space-time domain, and
achieved frame-interpolation by interpolating time latent vectors. However, the
time-consuming rendering process of above NeRF-style methods limit their
capabilities to real-time applications. Directly warping images to novel views
according to depth is an efficient view-synthesis pipeline. DynSyn20 [37] combined
multi-view and single-view depths to generate temporal consistent depths for
dynamic views warping. However, their method has two drawbacks: first, it
requires foreground masks that separate static and dynamic contents; second,
their method can not handle occlusions well. 3DMaskVol21 [12] proposed a
method of generating dynamic MPI with a 3D mask volume to alleviate artifacts
around the integration boundary of background and instantaneous MPIs. However,
their method requires two-step training and background images. Thus, limiting
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Fig. 2. Overall pipeline. The proposed Temporal-MPI contains three parts: low-
frequency component Kc

0, temporal basis B and high-frequency coefficients {Kn}Nbasis
n=1 .

The alpha and color values in time-instantaneous MPI Mt are recovered as linear
combinations of bases B and high-frequency coefficients {Kn}Nbasis

n=1 , and adding low-
frequency component Kc

0 from Temporal-MPI M̂. The color in the corresponding
frame is rendered from time-instantaneous MPI Mt as MPI’s alpha composition in
Equation (1). The overall pipeline is differentiable and optimized per scene by pixel
rendering loss.

their general capabilities. Compared with NeRF-style methods, DynSyn20 and
3DMaskVol21, our method is efficient on rendering and compact on storage.
Neural learnable basis. Our method is closely related to basis learning [13]. In
signal processing, data often contains underlying structure that can be processed
intelligently by linear combinations of subspaces. Tang et al. [31] learned sub-
space minimization for low-level vision tasks, such as interactive segmentation,
video segmentation, optical flow estimation and stereo matching. PCA-Flow[36]
predicted video’s optical flows as a weighted sum of the basis flow fields. We take
inspiration from these works, and learn coefficients to combine globally shared
time-wise subspace to draw instantaneous MPIs.

3 Approach

Given a set of synchronized multi-view videos {Ikt } of a dynamic scene, where
t = 1, 2, . · · · T are the frame number, and k = 1, 2, · · ·,K are camera indices,
our goal is to construct a compact 3D representation which enables real-time
and novel-view synthesis of the dynamic contents at a given time t ∈ [1, T ].
To achieve the goal, one naive option is to calculate and save a set of separate
MPI M = {Mt ∈ RH×W×D×4}Tt=1 for every video frame. This, however, will be
extremely memory- and computation-inefficient (generating M incurs more than
225×T MB data and around 2 seconds delay when rendering at VGA resolution
[12]). As such, rather than having to calculate and save MPIs for all video frames
in advance or having to calculate an MPI on-the-run, we investigate a novel
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Temporal-MPI representation with learned temporal basis to compactly encode
high-frequency variation throughout the entire video. An overall pipeline of our
approach is shown in Fig. 2.

In the following, we will first briefly introduce the vanilla MPI representation
in Section 3.1. Then, the temporal basis formulation will be elaborated in Section
3.2, and the novel-view temporal reconstruction in Section 3.3.

3.1 The Multi-plane Image Representation

Being one of the seminal representation frameworks for 3D content embedding
and novel-view synthesis, Multi-plane Images (MPI) learn a layered depth de-
composition of the scene from a set of multi-view references [40,17,40]. Following
the MPI’s illustration in Nex [35], let D denote the number of depth layers in a
MPI, with the dimension of each layer being H ×W × 4, where H and W denote
the height and width of the MPI layers, 4 denotes 3-channel RGB and 1-channel
alpha α. So we denote an MPI representation as M = {Cd,Ad}Dd=1, where
Cd ∈ RH×W×3 are multiple layers of 3-channel RGB images and Ad ∈ RH×W×1

are one-channel alpha images, d denotes the depth plane index.
Synthesizing novel-views Î based on the MPI M involves two steps: first, warp

all depth planes in the MPI homographically from a reference view to a source
view; and second, render pixels using alpha-composition [23] over each layer’s
color:

Î = O(W(A),W(C)), (1)

here W denotes the warping operator, and O denotes the compositing operator.
The compositing operator O is defined as:

O(A,C) =

D∑
d=1

CdTd(A), (2)

Td(A) = Ad

D∏
i=d+1

(1−Ai). (3)

where
∏D

i=d+1(1−Ai) are accumulated transmittance, Td are opacity. The output
of O(A,C) are final rendered colors. Both the composition O and the warping
W operations are differentiable, thus allowing the representation M to learn the
geometry and color information from final pixel rendering loss.

3.2 Temporal Basis Formulation

At a given time instance t ∈ [1, T ], we denote the time-instance MPI as Mt. In
order to render the entire novel view sequence at sequential timestamps, a set of
time-instance MPIs M = {Mt ∈ RH×W×D×4}Tt=1 are needed to generate. Based
on the afore-analyzed reasons, we cannot exhaustively calculate and save M.
We propose a novel Temporal-MPI representation which is able to encode the



6 Xing et al.

rich 3D and high-frequency variation information throughout the entire video as
compact temporal basis, and in the meantime, preserve high rendering efficiency
for real-time novel-view synthesis. To achieve this, we divide the goal into two
tasks, i.e., (i) learning the low-frequency color components as explicit parameters,
and (ii) learning the high-frequency variation over a set of temporal basis.

Explicit Parameter Learning for Low-frequency Component Low-frequency
contents in a video constitute the low-frequency part of the total energy along
the time dimension, which can be well-captured and modeled explicitly by time-
invariant parameters. By treating all the frames of the multi-view video {Ikt }t,k as
source views equally and ignoring their respective frame indices, we can directly
learn the multi-plane time-invariant RGB color parameters Kc

0 ∈ RH×W×D/8×3

using the pixel rendering loss. Kc
0 models the low-frequency energy of the video,

with possible blur over the dynamic area. Such an explicit modelling scheme for
the low-frequency component proves to be important [35] and let the subsequent
dynamic modelling to better focus on the temporal variation.

Temporal Basis Learning for High-Frequency Contents Compared with
low-frequency components, the high-frequency contents in M constitute the
high-frequency energy along the time dimension. Being high-dimensional and
with dynamic variations, the high-frequency contents still constitute a highly
regularized manifold, considering the fact that (i) the video length is limited (we
model video with 24 frames in length, although these frames could be extracted
from longer video sequences), and (ii) time-variant pixels within a scene usually
show consistent motion in clusters. This motivates us to compactly represent the
high-frequency components based on a few learned time-variant temporal basis.

We denote the temporal basis as B ∈ R4×T×Nbasis which span the temporal
variation space for M. Here Nbasis denotes the total number of basis. The
first dimension of B is set to 4 which is reserved for modelling both the MPI
color component (with 3 channels): Bc = {bc

n}
Nbasis
n=1 , and the alpha component

Bα = {bα
n}

Nbasis
n=1 (1 channel). Therefore B = [Bc,Bα].

In our proposed framework, the temporal basis will be estimated by two
time-dependent functions which are Multi-Layer Perceptron (MLP) networks Vc

and Vα:

{bc
n(t)}

Nbasis
n=1 = Vc(E(t)) : R 7→ R3×Nbasis , (4)

{bα
n(t)}

Nbasis
n=1 = Vα(E(t)) : R 7→ R1×Nbasis . (5)

Here E(·) is a time-encoding function which encodes time-sequential information
into a high dimensional latent vector [10]. The temporal basis B learns a par-
simonious frame that efficiently spans the temporal variation manifold. With
a pixel-specific coding coefficient (to be elaborated in the next section), B can
efficiently model the MPI pixel’s temporal variation throughout the entire video.
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3.3 Temporal Coding for Novel-view Synthesis

For an arbitrary frame index t ∈ [1, T ], a time-instance MPI Mt = [At,Ct] can
be constructed based on the temporal basis B according to:

Ct(x) = Kc
0(x) +

Nbasis∑
n=1

Kc
n(x)× bc

n(t), (6)

At(x) =

Nbasis∑
n=1

Kα
n(x)× bα

n(t). (7)

Here Kα
n(x) and Kc

n(x) are the coding coefficients for the respective temporal
basis at a given MPI spatial location x ∈ R3 (the 3 dimensions of x include its
2D coordinates and the depth plane index in Mt). These coding coefficients are
estimated by another set of MLPs Kc and Kα:

{Kc
n(x)}

Nbasis
n=1 = Kc(R(x)) : R3 7→ R3×Nbasis , (8)

{Kα
n(x)}

Nbasis
n=1 = Kα(R(x)) : R3 7→ R1×Nbasis . (9)

Similarly, here R(·) is a position-encoding function which encodes the spatial
information x into high-dimensional representations [18].

Based on Equation (6) and (7), the time-instance MPI Mt can be warped
and composited to any arbitrary viewing angles according to Equation (2) and
(1). In addition, by querying all elements t = 1, · · ·, T along the temporal basis,
we can construct the time-instance MPI for each video frame.

Remarks. (i) our proposed temporal MPI representation composes of an
explicitly learned low-frequency multi-plane color componentKc

0 ∈ RH×W×D/8×3,
and a dynamically coded time-variant component via simultaneous basis and
coefficient learning. We have achieved compression along the temporal dimension
via the temporal basis, which compactly encodes time-variant color and geometry
variation information throughout the entire video.

(ii) To maintain rendering efficiency and save storage-space, spatial-temporal
information is efficiently encoded and propagated among different components in
the Temporal-MPI. First, the low-frequency component Kc

0 is temporally shared
among all time frames, this ensures overall reconstruction quality and enables
the high-frequency components to focus on time-dependent variations only; and
second, the high-frequency coefficients, i.e., {Kc

n(x)}
Nbasis
n=1 and {Kα

n(x)}
Nbasis
n=1 , are

point-wisely coded/learned, however, over a common set of temporal basis. This
helps to remove the redundancy in modelling dynamic variation, and also helps
to remove motion ambiguities for some pixels.

3.4 Training Loss Function

To let the Temporal-MPI focus on reconstruction quality, we ignore the sparsity
of coding coefficients for this task. Coefficients and the temporal basis are jointly
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(a) Only low-frequency (b) w/o (c) Full (d) w/o (e) Full

Fig. 3. Low-frequency scene representation ablation study. The low-frequency com-
ponents are rendered in (a); color output from the high-frequency components are
rendered in (b) and (d); full rendering are visualised in (c) and (e).

learned and optimized. The whole system is optimized via the following loss
function L:

L = ||Îkt − Ikt ||2 + λ1||∇Îkt −∇Ikt ||1 + λ2TVC(K
c
0), (10)

where Îkt is the rendered image at time t for the camera k, Ikt is the ground truth
image from the same view. The first term in L calculates the L2 reconstruction
loss. The second term penalises edge inconsistencies, with ∇ denoting the gradient
operator. In the third term, TVC denotes total variation loss [3]. λ1 and λ2 are
balancing weights for different loss terms.

4 Experiments

4.1 Implementation Details

Our model is implemented in PyTorch 1.10, using Adam as optimiser. The initial
learning rate is set as 0.001, and decay by 0.1 every 2000 steps. The model takes
16 hours to be trained on one Nvidia Geforce RTX 2070 Super GPU with a batch
of 1500 rays, using 5.3 GB memory. The output resolution is 576 × 300. The
position-encoding method in [18] is formulated as R(p) = [sin(20 π

2 p), sin(2
0 π
2 p),

. . . , sin(2l π2 p), cos(2
l π
2 p)] where the input location of scene point is normalised

to [-1, 1] and l is the index of encoding level set as 3. The index of time is
embedded into a latent vector in size of 32 using dictionary learning as in [10].
For networks that parameterise Kc and Kα, we use MLP networks with 8 layers
and 384 hidden nodes. Networks for Vc and Vα are using MLP with 4 layers
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and 64 hidden nodes. The shape of high-frequency coefficients {Kc
n(x)}

Nbasis
n=1 and

{Kα
n(x)}

Nbasis
n=1 in Temporal-MPI is 320× 596× 32× 4× 5 where 32 is the number

of planes D, 596 and 320 are width W and height H including marginal offsets
set as 10, 4 includes 3 channels of colors and 1 channel of alpha, and 5 is the
number of basis Nbasis. The shape of temporal basis B is 4× 5× 24 where 5 is
the number of basis Nbasis, 24 is the total number of timestamps and 4 includes
3 channels for color and 1 channel for alpha. Low-frequency component Kc

0 is in
the shape of 320× 596× 4× 3 before the repetition along depth dimension.

4.2 Dataset

Our model is trained and evaluated on the Nvidia Dynamic Scenes Dataset [37]
that contains 8 scenes with motions recorded by 12 synchronized cameras. Nvidia
Dynamic Scenes Dataset captures a dynamic scene with static background via
stationary cameras which suit our goal of separately learning low- and high-
frequency components well. We extract camera parameters for every camera
using COLMAP [26]. We extracted 24 frames from the video sequence, and used
multi-view images in selected frames for training. We select camera views 1-11
for training, and camera 12 for testing. So the total number of training images is
264. The camera location arrangement is shown in Fig. 4.

Fig. 4. Camera indexes in camera array.

Temporal-MPI
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Next MPI

Pre-loading 
24 MPIs 

using 5.4 Gb

Warping
0.00594s Rendering

Next MPI

warping
0.003s

Angle 
change?

Rendering

Y

N

Fig. 5. Rendering pipeline comparison.
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Table 1. Ablation study on PSNR vs. total number of timestamps. With D as 32
Planes.

Scene/PSNR
Number of timestamps

8 16 24 32 40 48 60

Skating-2 30.323 28.813 28.575 28.612 27.324 25.431 25.012
Truck-2 28.441 28.174 28.056 27.951 27.591 25.332 24.963
Jumping 25.850 25.661 25.486 25.301 25.001 24.759 23.854
Balloon2-2 25.775 25.381 25.171 24.893 24.557 24.474 23.945

4.3 Ablation Study

In this section, we investigate the effectiveness of our main contributions in
Temporal-MPI: high-frequency coefficients, temporal basis and low-frequency
component.

Video Length We evaluate the performance of our model trained with different
length of videos. As shown in Table 1, We found performance degradation
when the total number of timestamps T increased. This is due to reaching the
representation threshold of temporal basis and high-frequency coefficients.

Low-frequency Colors and High-frequency Coefficients To validate the
contributions of low-frequency component Kc

0, high-frequency components and
time-serial basis ({Kc

n(x)}
Nbasis
n=1 , {Kα

n(x)}
Nbasis
n=1 , B), we performed experiments

without these modules. As shown in Table 2, without low-frequency component or
high-frequency components will lead to a worse result than the full model. We sep-
arately render the low-frequency and high-frequency parts of the Temporal-MPI
to prove their individual contributions. The visualization of separate rendering
settings are shown in Fig. 3. The low-frequency component in Fig. 3 is calcu-
lated by directly summing Kc

0 across depth planes. We wish to highlight that
it is designed to facilitate the MLP to focus on modelling the high-frequency
residual by explicitly modelling the low frequency content. It can be seen that
the low-frequency components successfully capture the low-frequency energy of
the video, while the high-frequency components complement the low-frequency
ones to produce high quality rendering for dynamic scenes.

Inference Speed In this section, we investigate the relationships between
inference speed and the size of Temporal-MPI. From Table 3, we can find that
the computations of linear combinations of basis are efficient, and a big volume
size of Temporal-MPI will not affect its real-time performance. Inference speed
experiments are conducted on one Nvidia Tesla V100 GPU.
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Table 2. Ablation study of low-frequency and high-frequency components.

Methods No. Planes
Metrics

SSIM (↑) PSNR (↑) LPIPS (↓)

w/o low-frequency 32 0.192 10.3 0.726
w/o high-frequency 32 0.611 22.6 0.213

Full 32 0.859 24.87 0.196

Table 3. Inference time vs. shape of Temporal-MPI.

Resolution No.Basis No.Planes Inference Time (seconds, ↓)

596×320 5 32 0.002
596×320 13 32 0.003

1038×1940 5 32 0.025
1038×1940 13 32 0.029
1038×1940 5 192 0.030

4.4 Evaluation and Comparison

To prove the efficiency and compactness of our method, we first compare our
method with state-of-the-art algorithms, 3DMaskVol21 [12] and NeuralFlow21 [11],
in terms of storage space and inference speed. Then, we evaluate the view synthesis
quality with other methods.

Evaluation on Compactness of Representation One of the main objectives
of our approach is to learn a compact representation of a dynamic scene. So we
evaluate the compactness of Temporal-MPI by comparing the number of network
parameters and storage space with these two methods. As shown in Table 5,
modeling a dynamic scene with 24 timestamps, Temporal-MPI only occupies 481
Mb for storage, which is 11 times smaller than 3DMaskVol21 on storage space.
So our approach is extremely fast and compact for real-time rendering.

Evaluation on Efficiency From Table 5, we can find that i) rendering Neu-
ralFlow21 requires querying MLP exhaustively, so it is the slowest on rendering.
ii) our rendering time is much faster than 3DMaskVol21: as shown in Fig. 5,
3DMaskVol21 requires per-frame warping, which is not a mandatory step of ours;
it also requires per-frame MPI loading, but we only need to load once for the
entire sequence, therefore longer sequence will bring more advantages to our
efficiency. Considering both loading and rendering time, ours are much faster on
rendering than both NeuralFlow21 and 3DMaskVol21 (on a T=24 frame video).
But 3DMaskVol21 is a generic method that generalizes to novel scenes, so it saves
the cost of per-scene training. NeuralFlow21 has the highest rendering quality
due to its advantages on dense sampling in depth dimensions.
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Table 4. Quantitative evaluation of novel view synthesis on the Dynamic Scenes dataset.
MV denotes whether the approach uses multi-view information or not, Ind. Src denotes
the index of source views used to train the model. Ours (D=32) denotes using 32 planes
in MPI.

Methods Ind. Src MV
Metrics

SSIM (↑) PSNR (↑) LPIPS (↓)

SynSin20 [34] 3 No 0.488 16.21 0.295
MPIs20 [33] 3 No 0.629 19.46 0.367
3D Ken Burn19 [22] 3 No 0.630 19.25 0.185
3D Photo20 [28] 3 No 0.614 19.29 0.215
NeRF20 [18] 1− 11 Yes 0.893 24.90 0.098
ConsisVideoDepth20 [15] 3 Yes 0.746 21.37 0.141
DynSyn20 [37] 1− 11 Yes 0.761 21.78 0.127
NeuralFlow21 [11] 3 Yes 0.928 28.19 0.045
D-NeRF21 [24] 1− 11 Yes 0.334 17.05 0.545
3DMaskVol21 [12] 3, 9 Yes 0.603 20.10 0.285

Ours (D=32) 1− 11 Yes 0.859 24.87 0.196

Evaluation on View-Synthesis Quality We evaluate the effectiveness of our
approach by comparing it to baseline methods quantitatively and qualitatively.
We compare our approach with state-of-the-art single-view or multi-view novel
view synthesis methods. For monocular methods, we compare with SynSin20
[34] and MPIs20 [33] trained on RealEstate 10K dataset [40]. 3D Photo20
[28] and 3D Ken Burns19 [22] were trained by wild images. For multi-view
methods, we compare with NeRF20 [18], ConsisVideoDepth20 [15], DynSyn20
[37], NeuralFlow21 [11], 3DMaskVol21 [12] and D-NeRF21 [24]. Results are
referenced from recent publications [11,12]. We document the rendering quality
in three error metrics: structural similarity index measure (SSIM), peak signal-to-
noise ratio (PSNR), and perceptual similarity through LPIPS [39]. From Table
4, our algorithm has competitive average score across three metrics. Per-scene
breakdown results are shown in Table 6.

Qualitative comparisons can be seen in Fig. 6, which show that our method
achieves competitive rendering quality in both low- and high-frequency parts. The
visual results of 3D Photo20 in Fig. 6 (a), NeRF20 in Fig. 6 (b) and DynSyn20
in Fig. 6 (c) are referenced from [11]. Observed from above images, D-NeRF21
in Fig. 6 (e) produces blurry results, DynSyn20 has great artifacts on thin
structures, 3D Photo20 generates distortions, 3DMaskVol21 produces ghosting
effects around the object’s boundary given scenes with forward moving motions,
such as Jumping and Umbrella.

4.5 Baseline for Brute-force Scenario

To compare with brute-force scenario where an MPI is calculated for each time
frame. We have tested LLFF19 [17] that includes all views 1-11 in a local fusion
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Table 5. Comparison on real-time rendering/inference speed, output resolution and
storage space. We assume the length of the modeled dynamic video is 24 frames.
3DMaskVol21 will require pre-loading 24 MPIs for real-time rendering of the whole
sequence. NeuralFlow21 is impossible for real-time tasks.

Time/Methods NeuralFlow21 3DMaskVol21 Ours

MPI Generation Time (sec,↓) - 2 0.002
MPI Loading Time (sec,↓) - 0.043 0.083/T

Warping Time (sec,↓) - 0.00594 0.003
Rendering Time (sec/frame,↓) 6 0.049 0.008(T=24)
Output Resolution(pixel,↑) 512 × 288 640 × 360 576× 300

Network Parameters (million, ↓) 5.26 1.17 6.00
Storage Space (Mb,↓) – 225×T (24)=5400 481 × 1(D=32)

Training Time (hour, ↓) 48† 120 16†

† denotes scene specific training.

Table 6. Per-scene breakdown results from DynSyn20 ’s Dynamic Scenes dataset.

Skating-2 Balloon1-2 Jumping Playground Balloon2-2 Truck-2 Average

PSNR(↑) 28.575 21.309 25.486 20.594 25.171 28.056 24.865
SSIM(↑) 0.925 0.802 0.886 0.7211 0.885 0.937 0.859
LPIPS(↓) 0.163 0.239 0.202 0.253 0.171 0.150 0.196

manner, and view 12 for testing. It takes 39.5649 seconds to infer MPIs for a
single frame, with average PSNR and SSIM 35.41 and 0.95, compared to 31.94
and 0.917 of the Temporal-MPI. Note that the baseline calculates and fuses
several static MPIs for each frame, while we only calculate one neural MPI for
the entire sequence.

5 Concluding Remarks

5.1 Limitations

Modeling dynamic scenes is challenging due to complex motions of dynamic
objects over time, and specular surface and occlusions on angular domain. Our
method makes the first attempt to use a compact temporal representation to
reproduce dynamic scenes in time-sequences. Similar to NeRF20, our method
requires optimization for each scene. Additionally, the output resolution is limited
due to limited GPU memory. Furthermore, the rendering quality degrades when
the length of sequence increases given default model parameters. Our approach is
also only applicable to dynamic scenes without large camera motions that cause
the change of background.
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Fig. 6. Qualitative comparisons on the Dynamic Scenes dataset.

5.2 Conclusion

We have proposed a novel dynamic scene representation on top of Multi-plane
Image (MPI) with basis learning. Our representation is efficient in computing,
thus allowing real-time rendering of dynamics. Extensive studies on public dataset
demonstrate the competitive rendering quality and efficiency of our approach.
We believe using basis learning for temporal recovery and compression can be
applied to the general problem of modeling dynamic contents and not limited to
MPI. Using hierarchical encoding method to improve the learning power of MLP
on modeling long-time-serial data could be a future extension of our work.
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