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Abstract. This document supplements our paper 3D-Aware GAN by providing
more details of the implementation, training, the proposed metric as well as the
additional experimental results on DeepFashion and another VITON dataset. Fi-
nally, we provide the detailed discussion about the training strategy and limita-
tions of the model.

1 Implementation details

Training. Besides the training details reported in Sec. 5 of the paper, here we add
that, in order to stabilize the training of G3D, the loss weight λ2 controlling the in-
fluence of ℓps (Sec. 4.4 of the main paper) is set to 0 for the initial 100,000 training
steps.

Dataset-specific parameters. The field of view is 10◦ for both datasets (Deep-
Fashion and VITON). The camera elevation is 10◦ on both datasets, and the object
rotation is 360◦ for DeepFashion and 72◦ for VITON. We estimated these parameters
from the empirical distribution of each dataset. More details about the parameters and
the network architecture can be found in our code. For the baselines, i.e., GRAF [9],
pi-GAN [2], GIRAFFE [6], ShadeGAN [7] and CIPS-3D [10], we used their publicly
available code and we trained all the models using the architecture and the configura-
tion corresponding to CelebA dataset [5]. The details of the CelebA configuration can
be found in corresponding paper or in the public code of each baseline. However, for a
fair comparison, we changed a few baseline parameters, such as the field of view, to be
consistent with our model.

Average Matched Points (aMP). And we propose the average Matched Points
(aMP) to evaluate the 3D-view consistency of the generated images based on local
region matching. Specifically, we use Patch2Pix [11] to compute a point-wise match-
ing between two generated images (Ĩ1, Ĩ2) of the same person with different viewpoints,
then we count the number of Matched Points MP (Ĩ1, Ĩ2). MP is applied to image pairs
with the same identity (texture) but different rotation angles. In more detail, for each
method, we randomly generate 500 samples by varying the texture content while keep-
ing fixed the other variation factors. Then, for each of these 500 samples, we change
the camera viewpoint in order to get 3 different random rotations. We can now compute
MP (Ĩ1, Ĩ2) for all the 6 possible pairwise combinations of these 3 samples (note that
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applying Patch2Pix to (Ĩ1, Ĩ2) gets slightly different results from (Ĩ2, Ĩ1)). Finally, we
average MP over the 500×6 pairs and we get a score which we call average MP score
(aMP).

2 Additional results

The VITON dataset. In addition to the DeepFashion dataset [4], used in the main
paper, we also compare our method with the baselines on the VITON dataset [3]. VI-
TON is composed of 16,253 front-view woman and top-body clothes image pairs and
it is widely used for virtual try-on tasks. We use the front-view woman images and we
divide the dataset into 14,221 training images and 2,032 testing images. The original
image resolution is 176× 256, but we resize all the images to 256× 256.

Unconditioned human image generation. Fig. 1 and Fig. 2 show a qualitative
comparison between image samples generated by all the models using both the datasets.
Our method generates more realistic human images than all the other baselines on both
datasets. Note that our model achieves results comparable with HumanGAN [8] in hu-
man generation on the DeepFashion dataset. However, HumanGAN is not a 3D-Aware
model, and it fails to control 3D factors. Note that HumanGAN [8] takes a source sam-
ple as input, from which most of the target appearance can be copied in the training
stage. Conversely, our images are generated from noise, which is an harder task. More-
over, despite HumanGAN is trained on DeepFashion, there is no public code for train-
ing, thus for our comparison we had to use the sample images available in the official
Web page (which are not generated unconditionally from noise, so probably the above
comparison is a bit in favor of HumanGAN).

The quantitative evaluation provided in Tab. 1 Tab. 2 using the user studies and
FID scores, shows that our approach significantly outperforms all the other methods
also on the DeepFashion and VITON dataset. Fig. 8 and Fig. 9 show additional image
generation results on both datasets, obtained using our method.

Table 1: User studies on the DeepFashion dataset.

Method 3D-SGAN HumanGAN GIRAFFE CIPS-3D pi-GAN ShadeGAN GRAF

User Study ↑ 55.2 % 41.2% 3.2% 0.2% 0.05% 0.0% 0.0%

Controllable human generation. Fig. 3 and Fig. 4 show a qualitative comparison
using controllable human generation where we interpolate the “Rotation” parameter.
Our method generates more realistic and more view-consistent results than the base-
lines. Moreover, Fig. 3 shows that GIRAFFE struggles to generate human images with
different viewpoints. This is probably due to the fact that the degree for the field of view
is small, and GIRAFFE may neglect the camera code and make the pose code learn most
of the variations of the human body. Additional controllable human generation results
are shown in Fig. 5 and Fig. 6.
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Table 2: A quantitative comparison using FID scores on the VITON dataset.
Method GRAF [9] pi-GAN [2] GIRAFFE [6] ShadeGAN [7] CIPS-3D [10] 3D-SGAN (Ours)

FID ↓ 67.300 121.15 26.750 110.02 48.919 14.060

Real human image editing. Fig. 7 shows real human image reconstruction and
editing results (see the main paper for the methodological details). Our model can re-
construct the real data with only minor differences with respect to the reference image
(Fig. 7, Column 2). The other columns of Fig. 7 show the results of our method using
latent code interpolations. Specifically, in top block of rows, we show semantics edit-
ing, in the second block, pose interpolation, and in last block, rotation editing. All the
interpolations preserve the identity of the generated persons.

Visualization of the learning geometry.
Our 3D generator is similar to GIRAFFE, from which we adopted the low resolution

feature rendering at 16× 16, thus also our 3D predictions are not very informative. As
shown in Fig. 10, we render the coarse normals from the density values.

3 Discussion

3.1 Separate training vs. joint training

As described in the main paper, G3D and Gt are trained separately using the seg-
mentation tensors as a bridge between the two generators. Note that a different solution,
in which G3D and Gt are jointly trained e.g., using adversarial learning, is possible.
However, in our preliminary results, this solution led to significantly lower FID scores.
Moreover, a solution in which the same generator is in charge of modeling both the 3D
structure and the texture of the data, is conceptually similar to GIRAFFE, whose results
are significantly inferior to our proposal in this full-body generation task. We presume
the reason is that both DeepFashion and VITON are relatively small and GIRAFFE
struggles to learn all the variation factors, including the human pose distribution, etc.
(see Sec. 1 of the main paper). In contrast, 3D-SGAN splits the problem and the archi-
tectural design in two stages. The advantages are that, this way, we can: (1) simplify
the learning problem, (2) use ground truth segmentation masks (automatically obtained
using [1]) as an additional supervision (e.g., used in ℓr). On the other hand, a potential
disadvantage in separate training is a possible domain gap between training and infer-
ence, since Gt, at inference time, is fed with segmentation tensors generated by G3D

which have not been observed at training time. Despite that, our empirical results show
that Gt is robust enough to this domain shift.

3.2 View-inconsistency

The largest limitation of our method is the lack of a full 3D consistency of the
generated textures with respect to multiple views of the same person. However, this
problem is shared by most 3D-aware GANs, because training does not include multiple
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Fig. 1: Unconditioned human image generation. A comparison between our 3D-SGAN
with all the baselines using the VITON dataset.

paired views of the same person or other similar supervision. Moreover, we inherit from
GIRAFFE (whose structure is adopted in our G3D) the “mirror symmetry” problem
[10], which depends on the way point coordinates are represented (γ(xxx)). Nevertheless,
3D-SGAN can alleviate the consistency issues to a large extent. Specifically, when we
generate multiple views of the same person, we change the camera pose zzzc keeping fixed
all the other latent codes. In particular, zzzt is fixed and it is sampled only once when,
e.g., we produce the “Rotation” results. This way we can generate multiview images
of the same person with the same overall texture (e.g., for the clothes). Moreover, 3D
consistency is further encouraged by the proposed consistency losses. Although we do
not fully solve the problem (e.g., we cannot control the face details), nevertheless we
can alleviate it, as empirically shown by the comparison with respect to the baselines.
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Fig. 2: Unconditioned human image generation. A comparison between our 3D-SGAN
with all the baselines using the DeepFashion dataset.
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Fig. 3: VITON dataset: controllable image synthesis by “Rotation” interpolation.
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Fig. 4: DeepFashion dataset: controllable image synthesis by “Rotation” interpolation.
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Fig. 5: VITON dataset: controllable person generation by interpolating different la-
tent codes: ‘Object Pose’, ‘Semantics’, ‘Texture’, ‘Translation’. For ‘Translation’, we
show generation results for ‘Horizontal Translation’, ‘Vertical Translation’, and ‘Depth
Translation’, respectively.
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Fig. 6: DeepFashion dataset: controllable person generation by interpolating different
latent codes: ‘Object Pose’, ‘Semantics’, ‘Texture’, ‘Translation’. For ‘Translation’, we
show generation results for ‘Horizontal Translation’, ‘Vertical Translation’, and ‘Depth
Translation’, respectively.
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Fig. 7: DeepFashion testing dataset: real data reconstruction and editing.
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Fig. 8: VITON dataset: additional randomly generated images using our method.
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Fig. 9: Deepfashion dataset: additional randomly generated images using our method.

Fig. 10: The visualization of 3D features using the normals.
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