
Supplementary Material of
Scraping Textures from Natural Images for

Synthesis and Editing

Xueting Li1, Xiaolong Wang2,
Ming-Hsuan Yang1, Alexei A. Efros3, and Sifei Liu4

1 UC Merced 2 UC San Diego 3 UC Berkeley 4 NVIDIA

1 Overview

In this supplementary, we provide more details about the implementation and
experiental results of the proposed method. We start by describing implemen-
tation details including network architecture, objective details, data augmenta-
tion mechanism and hyperparameters in Section 2. We then validate our design
choices by carrying out ablation studies on different components of our method
in Section 3. In Section 4, we present a detailed comparison and differentiation
with other state-of-the-arts texture synthesis methods. More qualitative results
on arbitrary-sized texture synthesis and texture editing are demonstrated in
Section 6. Finally, we discuss limitations of our work in Section 7.

2 Implementation Details

2.1 Network Architecture

We show the detailed framework of our method in Fig. 1.

Encoder Our encoder shown in Fig. 1(a) is inspired by the encoder in [7], which
includes six residual blocks. It takes an image I ∈ R3×H×W as input and first
encodes it into a feature map F ∈ R3×H

8 ×W
8 . The grouping module shown in

Fig. 1(c) takes F as input and outputs the grouping mask M ∈ RK×H×W and
the texture code tk ∈ R256, k = 1, . . . ,K for each group.

Decoder The decoder shown in Fig. 1(b) takes each texture code tk as input
and predicts the frequency of the sine wave Sk for each group k. Then we con-
catenate the sine wave with a random Gaussian noise image of equal size and
feed the concatenation into a stack of SPADE residual blocks [11] for either
reconstruction or texture synthesis, as discussed in Section 3.3 and 3.4 in the
submission, respectively. We note that the sine wave is a rigorous periodic func-
tion, thus we concatenate it with a noise image before feeding into the SPADE
blocks such that the network can better fit for irregular textures (e.g., grass,
water, etc.)

2 Li et al.

2.2 Adversarial Loss with Masks

We provide a detailed mathematical formulation of integrating masks in the
adversarial loss in Section 3.5 in the manuscript. Given a synthesized texture
image and the texture segment in the input image, we use adversarial training
to encourage our model to synthesize more realistic texture images. We denote
the synthesized texture image as Ît, the foreground mask of the texture segment
as Mt and a VGG network [13] pretrained on the ImageNet dataset [4,9] as Φ.
We sum the Gram matrix matching loss on feature maps from multiple layers
(i.e., relu3 1, relu4 1, relu5 1) of the VGG together. At each layer l, we resize the
mask Mt to match the size of the feature map at layer l and denote the resized
mask as M l

t . The Gram matrix matching objective at layer l is computed as:

Ll
Gram =

∣∣∣∣∣ΦT
l (Ît) · Φl(Ît)

HlWl
− ΦT

l (I,M
l
t)Φl(I,M

l
t)∑

M l
t

∣∣∣∣∣ (1)

where Φl(Ît) ∈ RCl×Hl×Wl is the feature map of the synthesized texture at
layer l, Φl(I,M

l
t) represents extracting the features of the input image from only

the foreground region defined by M l
t , avoiding introducing irrelevant texture

features into the Gram matrix computation. The final Gram matrix matching
loss is computed as:

LGram =

3∑
l=0

Ll
Gram (2)

2.3 Training Details

Data Augmentation For each training image, we utilize random scaling and
cropping as data augmentation. During training, we randomly scale the image
such that its shorter edge is within the range of 224 ∼ 268. We then randomly
crop a 224 × 224 image as a training sample. During inference, our network is
able to synthesize arbitrary-sized texture image by extending the periodic sine
wave, as shown in Fig. 6, Fig. 7 and Fig. 8.

Hyperparameters For each input image, we use the SLIC [1] method to obtain
196 superpixels and cluster them into 10 groups. We represent the texture in each
group with a 256-dimensional texture code and a 32-channel parametric sine
wave. All objectives, including the L1, LPIPS, Gram Matrix matching, have
equal weight, i.e., 1.0. The temperature in the SoftMax is set to 23 to encourage
less ambiguous assignments. We start the training with a batch size of twelve
and decrease the batch size to four after adding the texture synthesis task to
fit the GPU memory. The training process takes about two days on four 12GB
GPUs. For each unseen image, we fine-tune the model for 5000 iterations with
the same objectives (i.e., L1, LPIPS, focal frequency loss, Gram Matrix matching
and patch GAN loss).

Scraping Textures from Natural Images for Synthesis and Editing 3

3 Ablation Studies

3.1 Different Group Number

input image 5 groups 10 groups 20 groups input image 5 groups 10 groups 20 groups

Fig. 2: Grouping mask visualization for different group numbers.

We compare models trained with different group number and show qualitative
and quantitative results in Fig. 2 and Table 1, respectively. With less group num-
ber, our model aggressively cluster similar pixels together. This produces more
clean an compact grouping masks. However, it may cluster pixels of different tex-
tures together, as shown in the red boxes in Fig. 2. This is also validated by the
Boundary Recall (BR) and Boundary Precision (BP) and Achievable Segmen-
tation Accuracy (ASA) score in Table 1. Given more groups, our model tends
to “over-segment” the input image. Pixels of the same texture may be clustered
into different groups due to lighting or color change. While this potentially in-
creases the BR, BP and ASA score as shown in Table 1, this may reduce the
size of texture segment and provide inferior supervision for the texture synthesis
learning.

Groups BR ↑ BP ↑ ASA ↑
5 0.61 0.28 0.61
10 0.68 0.28 0.67
20 0.72 0.24 0.71

Table 1: Ablation study on group number. “BR” stands for Boundary Recall,
“BP” stands for Boundary Precision and “ASA” stands for Achievable Segmentation
Accuracy.

4 Li et al.

3.2 Training on a Single Image from Scratch

input train from scratch test-time tune a pre-trained model

Fig. 3: Ablation study on model pre-training.

To resolve the capacity limitation of neural networks, few texture synthesis
works [12,8,14] train a separate network for different texture image. However,
we show in Fig. 3 that a single image does not provide sufficient prior knowledge
to learn a reasonable grouping model. As shown in Fig. 3, when we train the
model on a single image from scratch, the model fails to produce decent texture
segments for texture learning. Thus, we first train our model on a set of natural
images and then test-time adapt it to an unseen image for texture synthesis. We
note that the test-time adaptation process in our method is straightforward and
efficient to carry out since it does not require any form of supervision from the
unseen images.

4 Detailed Comparison with State-of-the-art Methods

Besides Fig.3 in the manuscript, we show more texture synthesis results by our
method and the baseline methods [10,8,6,2,12,14] in Fig. 4. The most significant
difference between the proposed method and all the baseline methods is that our
method directly learns texture synthesis from cluttered natural images without
any form of supervision, while all baseline methods require clean rectangular tex-
ture patches to synthesize high-quality texture images. We discuss and compare
to each baseline method in details in the following.

PSGAN The PSGAN [2] is a generative texture synthesis method. It takes the
concatenation of a global random noise vector, a spatial random noise image
and a sine wave as input to synthesize a texture image. Though PSGAN is able
to capture a handful of textures in a single image without supervision, it relies
on the strong assumption that the image is ultra-resolution and each randomly
cropped training patch only includes a single texture pattern. However, as shown
in Fig. 4, such strong assumption easily breaks for normal-sized images. Besides,
since PSGAN is a generative model, it is not fit for controlled texture synthesis
and the model may fail to capture all texture patterns in the image. On the
contrary, our model explicitly decomposes the image into K groups and model

Scraping Textures from Natural Images for Synthesis and Editing 5

the texture pattern in each group. We note that the PSGAN5 does not converge
when trained on cropped texture patches in Fig. 4 (e). Thus, we replicate the
texture patches to form a large image for training. This operation stabilizes
training but introduces repeated pattern artifacts as shown in Fig. 4(i).

Image Quilting As a non-parametric texture synthesis method, Image Quilt-
ing [6] sequentially synthesizes a texture image by searching and copying a patch
that best blends in the current local context. Such a mechanism bypasses the
challenging task of modeling inherent texture statistics and synthesizes realistic
texture images. However, as shown in Fig. 4(h), by only relying on the local
context, the method is venerable to the sampling process and may not be able
to recover from a badly sampled patch. On the contrary, our method captures
the statistics of a texture pattern by a texture code and a parametric sine wave,
thus it is more robust and stable for the texture synthesis task. We use a Python
implementation6 of the Image Quilting method to get all texture synthesis re-
sults.

WCT and DeepTexture The WCT [10] and DeepTexture [8] method maps a
random noise image to a texture image either by a closed form feature statistic
matching or iterative optimization. The WCT method produces inferior tex-
ture synthesis results (see Fig. 4(f)) because the covariance matrix used in the
whitening and coloring process cannot fully capture the texture pattern. The
DeepTexture method simply repeats the given texture patch randomly, as shown
in column five and six in Fig. 4(g). Both methods fail to capture regular texture
patterns (e.g., column three in Fig. 4) since the input noise image inherently
lacks structure information. We use PyTorch implementations of the WCT7 and
the DeepTexture8 to get the baseline results.

SinGAN The SinGAN [12] is a generative model trained on a single image.
Starting from a small random noise image, the model progressively learns to
synthesize an image that resembles the input. It essentially performs texture
synthesis when the input image is a texture patch. To compare with SinGAN,
we use the texture patches in Fig. 4(e) as training image and train a separate
model for each texture patch using the official code9. As shown by the third
image in Fig.2 4(e), SinGAN fails to model regular texture well since it takes
the structure-less noise image as input. Furthermore, since it only works with
rectangular texture patches, thus it cannot ignore irrelevant textures in the tex-
ture patch during synthesis. Quantitatively, it achieves a c-FID, c-FID (mask),
LPIPS, LPIPS (mask) score of 145.65, 114.84, 0.2981, 0.1776, which is worse
than the proposed method. Please see Table 1 in the manuscript for details.

5 https://github.com/zalandoresearch/famos
6 https://github.com/rohitrango/Image-Quilting-for-Texture-Synthesis
7 https://github.com/sunshineatnoon/PytorchWCT
8 https://github.com/honzukka/texture-synthesis-pytorch
9 https://github.com/tamarott/SinGAN

6 Li et al.

Non-stationary texture synthesis The non-stationary texture synthesis (Non-
Stat) method [14] takes a texture patch as input and expands it twice using
transposed convolutions. To obtain its best performance, we train a separate
model for each texture patch in Fig. 4(e) using its official code10. We note that
the model can only expand the input texture patch twice each network forward,
thus we recurrently feed the expanded image back to the model to obtain larger
texture images. Specifically, we start from a 64× 64 texture patch cropped from
Fig. 4(e) and recurrently feed it into the model three times to obtain a 512×512
synthesis result. However, as shown in Fig. 4(k), the model fails to synthesize
reasonable images. One possible reason is that the model requires high-resolution
texture images for training while the texture patches in natural images are nat-
urally small. The training patch we provide to NonStat have a size of 100× 100.
Providing larger training patches is possible but may introduce more irrelevant
textures.

5 Visualization

5.1 GCN Edge Weight Visualization

To demonstrate that similar nearby nodes (i.e., superpixels) share similar fea-
tures in the graph G = (V, E) (See Fig.2 of the manuscript), we visualize edges
in the graph neural network in Fig. 5. For each edge connecting two adjacent
superpixels, we compute its weight as the Cosine similarity of the adjacent su-
perpixel features. In Fig. 5 (b) and (f), we draw edges with weights less than 0.2,
i.e., edges that connect dissimilar adjacent superpixels. As we expected, these
edges mainly exist on the boundaries of different texture segments. In Fig. 5 (c)
and (g), we show edges with weights greater than 0.8, i.e., edges that connect
similar adjacent superpixels. These edges are mostly within a texture segment.
Furthermore, if we contract edges with weights greater than 0.85, we can already
get a decent grouping of the image as shown in Fig. 5 (d) and (h). These demon-
strations show that our graph neural network effectively learns similar features
for similar adjacent superpixels and vice versa. Thus, it provides good features
for the following convolution layer to predict the grouping of the input image.

6 More Qualitative Results
6.1 Arbitrary-sized Texture Synthesis

Our model captures a texture pattern by a compact vector texture code and a
parametric sine wave. Thanks to the inherent periodicity of the sine wave, we
can synthesize an arbitrary large texture image by simply extending the sine
wave. In Fig. 6, Fig. 7 and Fig. 8, the sizes of the synthesized texture images
has are 1000× 1000.

6.2 More Texture Editing Results

We show more texture editing results in Fig. 9. For each pair of mask and image,
we fill each region in the mask with textures from the reference image defined
by a user. More details can be found in Section 4.2 of the manuscript.
10 https://github.com/jessemelpolio/non-stationary texture syn

Scraping Textures from Natural Images for Synthesis and Editing 7

7 Limitations
w/o test-time oursinput image segment

Fig. 10: Performance on unseen images be-
fore and after test-time adaptation.

In this work, we target at a chal-
lenging task of scraping texture
from cluttered natural images
without any supervision. Though
our method performs comparable
if not better compared to state-
of-the-art methods, it has limita-
tions. As shown in Fig. 10, our method requires test-time tuning on unseen
images to synthesize high quality texture images. This is because we model the
texture pattern compactly via a vector texture code and a sine wave, but map-
ping the distribution of the texture code and sine wave to a diverse texture
distribution is non-trivial. Similar issues have been observed in employing gen-
erative neural networks to synthesize category agnostic images [3,5]. We leave
this limitation into future works.

8 Li et al.

Conv2d(3, 64, 3, 1, 1)

ResnetBlock

Conv2d(64, 64, 3, 2, 1)

ResnetBlock

Conv2d(128, 128, 3, 2, 1)

ResnetBlock

Conv2d(256, 256, 3, 2, 1)

ResnetBlock

ResnetBlock

AttentionBlock

ResnetBlock

Conv2d(512, 256, 3, 1, 1)

GroupNorm

Conv2d(64, 64, 3, 1, 1)

GroupNorm

Conv2d(64, 64, 3, 1, 1)

Conv2d(256, 256, 3, 1, 1)

Conv2d(256, 256, 3, 1, 1)

Conv2d(256, 256, 1, 1, 1)

Texture Feature:
! ∈ ℝ!"#×%×&

Upsampling

Input: $ ∈ ℝ'×%×&

Grouping

Grouping mask:
% ∈ ℝ()×%×&

Texon codes:
&* ∈ ℝ!"#, (= 1…10

Texon codes:
&* ∈ ℝ!"#, (= 1,… , 10

Conv2d(256, 256, 1, 1, 0)

Conv2d(256, 256, 1, 1, 0)

ReLU

-*

.*~0(0,23)5* = (-*6 + .*)

8~9(0,1)C

SPADEResnetBlock

SPADEResnetBlock

SPADEResnetBlock

SPADEResnetBlock

SPADEResnetBlock

SPADEResnetBlock

SPADEResnetBlock

Upsampling

Upsampling

Upsampling

Conv2d(16, 3, 3, 1, 1)

$′

Conv2d(256, 128, 3, 1, 1)

Conv2d (128, 128, 3, 1, 1

Conv2d (256, 128, 1, 1, 0

SPADE

SPADE

concatenate

(a) Encoder (b) Decoder

Texon codes:
&* ∈ ℝ!"#
(= 1,… , 10

! !′; = (<, ℰ)

GCNConv(256, 256)

GCNConv(256, 256)

Conv(256, 10, 3, 1, 1)

SoftM
ax

%

(c) Grouping

Fig. 1: Detailed network architecture.

Scraping Textures from Natural Images for Synthesis and Editing 9

(a) Input

(b) Grouping

(c) Chosen
group

(d) Ours

(e) Texture
patch

(f) WCT

(g) Deep
Texture

(h) Quilting

(i) PSGAN

(j) SinGAN

(k) NonStat

Fig. 4: Texture synthesis results and comparison with baseline models. (a)
Input Images. (b) Grouping mask produced by our method. (c) Chosen texture segment
for texture synthesis. (d) Texture synthesis by our method using the texture segment
in (c). (e) Texture patch cropped from the center of the segment in (c). (f) ∼ (k)
Textuer synthesis results byWCT [10], DeepTexture [8], Image Quilting [6], PSGAN [2],
SinGAN [12] and NonStat [14] using the texture patch in (e).

10 Li et al.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5: GCN edge weights visualization. (a)(e): Image. (b)(f): Edges with weights
less than 0.2. (c)(g): Edges with weights greater than 0.8. (d)(h): Grouping obtained
by contracting edges with weights greater than 0.85. Light grey lines in (b)(c)(f)(g)
outline the SLIC superpixels [1].

Scraping Textures from Natural Images for Synthesis and Editing 11

Fig. 6: Arbitrarily large texture image synthesis. We synthesize a 1000 × 1000
texture image resembling the chosen texture segment.

12 Li et al.

Fig. 7: Arbitrarily large texture image synthesis. We synthesize a 1000 × 1000
texture image resembling the chosen texture segment.

Scraping Textures from Natural Images for Synthesis and Editing 13

Fig. 8: Arbitrarily large texture image synthesis. We synthesize a 1000 × 1000
texture image resembling the chosen texture segment.

14 Li et al.

mask

im
ag
e

mask

im
ag
e

Fig. 9: Texture editing.

Scraping Textures from Natural Images for Synthesis and Editing 15

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic super-
pixels compared to state-of-the-art superpixel methods. TPAMI (2012) 2, 10

2. Bergmann, U., Jetchev, N., Vollgraf, R.: Learning texture manifolds with the pe-
riodic spatial gan. arXiv preprint arXiv:1705.06566 (2017) 4, 9

3. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 (2018) 7

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009) 2

5. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. NeurIPS
(2021) 7

6. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer.
SIGGRAPH (2001) 4, 5, 9

7. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image
synthesis. In: CVPR (2021) 1

8. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural
networks. NeurIPS (2015) 4, 5, 9

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. NeurIPS (2012) 2

10. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer
via feature transforms. In: NeurIPS (2017) 4, 5, 9

11. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with
spatially-adaptive normalization. In: CVPR (2019) 1

12. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: Learning a generative model from
a single natural image. In: ICCV (2019) 4, 5, 9

13. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)
2

14. Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D., Huang, H.: Non-stationary
texture synthesis by adversarial expansion. arXiv preprint arXiv:1805.04487 (2018)
4, 6, 9

	Supplementary Material of Scraping Textures from Natural Images for Synthesis and Editing

