
Scraping Textures from Natural Images
for Synthesis and Editing

Xueting Li1, Xiaolong Wang2,
Ming-Hsuan Yang1, Alexei A. Efros3, and Sifei Liu4

1 UC Merced 2 UC San Diego 3 UC Berkeley 4 NVIDIA

(a) Texture Synthesis (b) Texture Editing

Fig. 1: Texture synthesis and editing. (a) Scraping textures from a natural image
(upper left) to synthesize texture images. (b) Scraping textures from one image (left)
to transfer onto another image (right).

Abstract. Existing texture synthesis methods focus on generating large
texture images given a small texture sample. But such samples are typ-
ically assumed to be highly curated: rectangular, clean, and stationary.
This paper aims to scrape textures directly from natural images of ev-
eryday objects and scenes, build texture models, and employ them for
texture synthesis, texture editing, etc. The key idea is to jointly learn
image grouping and texture modeling. The image grouping module dis-
covers clean texture segments, each of which is represented as a texture
code and a parametric sine wave by the texture modeling module. By en-
forcing the model to reconstruct the input image from the texture codes
and sine waves, our model can be learned via self-supervision on a set
of cluttered natural images, without requiring any form of annotation or
clean texture images. We show that the learned texture features capture
many natural and man-made textures in real images, and can be applied
to tasks like texture synthesis, texture editing and texture swapping.

Keywords: Texture Synthesis; Segmentation and Grouping

Project page: https://sunshineatnoon.github.io/texture-from-image/.

https://sunshineatnoon.github.io/texture-from-image/

2 Li et al.

1 Introduction

Texture synthesis aims at generating a texture image of arbitrary size given a
small texture example. Existing texture synthesis approaches [13,30,58,65,42]
rely on carefully curated texture datasets [6,8,10], where each image is rectangu-
lar and only includes a single texture pattern. Collecting such datasets requires
tedious human effort. At the same time, most natural images already contain
abundant textures found on most objects and materials (e.g., the starfish, the
corn, and the snake in Fig. 1). A question ensues – can we scrape textures directly
from natural images, i.e., learn texture models in an unsupervised fashion?

This is a highly challenging task since: a) a natural image usually includes
multiple different texture regions that cannot be readily used as supervision for
texture feature learning, and b) the shapes of these texture regions are difficult to
discover without segmentation annotation. This is why existing texture synthesis
methods [13,12,16,17,33,37,65,58] require clean, rectangular texture patches as
training data. Yet, even with clean texture patches, modeling and synthesizing
diverse real world texture patterns is non-trivial. Contemporary methods mainly
have two ways to synthesize texture given texture patches: a) encoding texture
statistics in spatial features and resorting to transpose convolution for synthe-
sis [45,42] or b) map a Gaussian distribution to a texture manifold [58,37,65].
However,the former method can only synthesize new texture image of limited
size while the latter method fails to capture structural textures (e.g., the grid
pattern in Fig. 3) due to a lack of structure in the Gaussian noise input. Fur-
thermore, the limited representation capacity of neural networks may preclude
the model to generalize to unseen images and produces inferior texture synthesis
results.

To resolve these issues, we introduce a texture encoder that decomposes an
image into a small number of clean texture segments and encode the texture pat-
tern in each segment with a relatively low-dimensional vector texture code. We
then use a decoder to reconstruct the input image given these texture codes. Our
key insight is, by limiting the number of texture codes, we create an information
bottleneck. In order to reconstruct the input image from this information bot-
tleneck, our model is forced to group pixels of the same texture together without
any segmentation annotation. Overview of our method is shown in Fig. 2.

Furthermore, to faithfully model the more structured textures in natural
images, we introduce a parametric sine wave for each texture segment, besides
the vector texture code. The periodicity of this sine wave allows our model to
capture both regular (e.g., the corn in Fig. 3) and irregular (e.g., the zebra
in Fig. 3) texture patterns, as well as enables arbitrary-sized texture synthesis
during inference. To efficiently generalize our model to unseen images, we first
train the model on a natural image dataset such that the encoder can learn
grouping prior from divergent samples. We then generalize the model to unseen
images with test-time adaptation [35,38,57].

During inference, our model can be readily applied for arbitrary-sized texture
synthesis, editing and swapping as shown in Fig. 1. Besides, it also produces
texture segments that often adhere nicely to object boundaries as shown in Fig. 6.

Scraping Textures from Natural Images for Synthesis and Editing 3

!

Grouping

…

" Σ…

Input ! Image
grouping -

texture code
{$$, … , $%}

reconstructed
segments/synthesis

reconstructed
image

Graph
Convolutions

Convolution

SoftM
ax

! !′
= (&, ℰ)

Fig. 2: Overview. Given a natural image I, the grouping module (blue box) produces
a grouping mask M . For each group, we reconstruct the corresponding texture seg-
ment (shown inside the yellow contour) and extend it through texture synthesis. The
reconstructed image is composited from all reconstructed texture segments and shown
in the last column. Detailed illustration can be found in the supplementary.

The key contribution of our work is a method for jointly learning image grouping
and texture modeling from natural images using an autoencoder formulation.
The rest of the paper will discuss prior work, describe our method in detail, and
present results.

2 Related Work

Texture synthesis aims to generate a texture image conditioned on a given tex-
ture exemplar, while image grouping attempts to cluster pixels into segments
based on their appearance. Since our work learns the two tasks jointly, we dis-
cuss the related work in both domains.

2.1 Texture Synthesis

Scraping Textures from Natural Images. Most existing texture synthe-
sis methods require a rectangular and clean texture patch as exemplar. As a
result, large amount of efforts have been made to collect and clean texture
datasets [6,8,10]. A few methods tried to overcome this limitation and learn
texture synthesis directly using natural images by making strong assumptions
of the training images. For instance, Bergmann et al. [5] proposed PSGAN to
encode few texture patterns in a natural image by learning a model with small
patches cropped from an ultra-resolution image. However, the strong assump-
tion in PSGAN – small patches cropped from ultra-resolution image only include
one texture pattern easily breaks for normal sized natural images. Closest to our
work, Rosenberger et al. [52] propose to decompose an image into different tex-
ture layers and synthesize larger texture images layer by layer. However, their
model is only applicable to a very specific type of natural textures, where group-
ing process can simply be carried out by clustering on raw pixels.

Texture Synthesis from Well-cropped Patches. Most existing texture syn-
thesis methods learn from well-cropped texture patches. Existing methods can
roughly be categorized into non-parametric [13,12,60] and optimization-based
[17,29,58,65,42,5,63].

4 Li et al.

The non-parametric methods sequentially search and copy a pixel [13] or a
patch [12] from the given texture exemplar that best fits for the current location.
By bypassing the challenging task of analysing and modeling the complex struc-
ture and statistics of texture patterns, the algorithm produces realistic results
that resemble the given exemplar. However, the sequential texture growing pro-
cess can be unstable – it may start to produce “garbage” texture should it fail
to find a suitable patch fitting the current location. It also takes a long time for
high-resolution texture image synthesis without a specially designed mechanisms
for efficient searching [60,4].

One line of optimization-based methods [22,50,62,33,30,17,54,23] try to map
a prior distribution (e.g., a Gaussian noise) to a texture manifold by repeatedly
modifying an initial noise image until it presents the same pattern as the given
texture exemplar. For instance, the seminal work from Gatys et al. [17] starts
with a random noise image and iteratively updates it by comparing the Gram
matrices of the output and the exemplar. However, these methods suffer from
the slow optimization process that has to be carried out for each given exem-
plar. They are also weaker at modeling structured textures than non-parametric
methods due to a lack of structure in the noise image.

Another line of optimization-based works learn deep neural networks to
speed up the synthesis process. They either encode the statistics of a single tex-
ture [29,58,68,55], or a limited number of textures [36,2,5,16,27,65] in a model
while failing to generalize to unseen textures. Recently, two works [45,42] success-
fully produced a single model to synthesize unseen textures. They represent tex-
ture patterns by spatial feature maps and either pose texture synthesis as image
upsampling in the Fourier domain or formulate texture expansion as transposed
convolutions. However, all these texture synthesis methods require well-cropped
texture patches as exemplar images and can only expand the texture to a limited
size.

2.2 Perceptual Grouping and Image Segmentation

Perceptual grouping refers to the principles, first outlined by the Gestaltists [61]
by which the visual system groups elements of the visual world into higher-order
perceptual units (i.e. image regions). In computer vision, the area of image seg-
mentation has been focused on operationalizing these principles, but despite
some early successes, e.g. the classic Normalized Cuts algorithms [56], this prob-
lem still remains largely unsolved. Indeed, most subsequent methods gave up
on partitioning an image into large, perceptual segments and instead focused
on over-segmenting an image into superpixels [51], based on either hand-crafted
low-level features such as color [1,14,15], texture and brightness [51,56] or deep
features learned by neural networks [26,64,59]. The produced superpixels are
compact and preserve sufficient local image structure that can be utilized for
downstream tasks. Some later image segmentation approaches focus on produc-
ing larger segments by merging the pre-computed superpixels [51,25,49,44,39,40].
For example, the MCG method [49] produces region proposals by aligning seg-
mentation from the normalized cuts algorithm [56] at different resolutions. The
DeepGrouping method [39] learns a hierarchical graph neural network [53] and

Scraping Textures from Natural Images for Synthesis and Editing 5

utilizes the features from the low- to high-level for texture, material, part, and ob-
ject segmentation, respectively. In this work, we learn image grouping to produce
texture segments that we then use as supervision for texture model learning. Our
model learns to group pre-computed superpixels [1] into large texture segments
without using any segmentation or grouping annotation as supervision.

2.3 Shape and Appearance Disentanglement

Disentangling an image into shape and appearance has been extensively studied
in the past decades. Classical methods [19,20] such as the Primal Sketch [19] de-
composes an image into “sketchable” and “non-sketchable” components, which
essentially capture the structure and texture of the image respectively. More re-
cent works [47,69,34] disentangle an image into structure and texture represented
as deep features. The structure component is either represented as a spatial fea-
ture map [47] or approximated by a set of primitives [69,34]. The texture is
encoded as a vector feature [47] or simply RGB values [34] or pre-defined stroke
patterns [69]. Our model explicitly decomposes an image into structure repre-
sented as image grouping and texture captured by vector texture codes and sine
waves.

3 Method

We propose a texture-based image auto-encoder that decomposes a natural im-
age into a set of clean texture segments, each of which is represented by a 256-
dimension texture code and a parametric sine wave. Our key idea is to create a
information bottleneck with low-dimensional representations, so that when they
are used to reconstruct the input images, the model is encouraged to: (i) cluster
pixels belonging to the same texture, and (ii) learn compact texture representa-
tion for each segment.

In the following, we first provide a high-level overview of the proposed frame-
work in Section 3.1, then, we describe the encoder that is responsible for texture
grouping and representation learning in Section 3.2. In Section 3.3, we intro-
duce the decoder that reconstructs the input image from the compact texture
representations. We describe how to employ our model for texture synthesis
in Section 3.4. Finally, the self-supervised training objectives are discussed in
Section 3.5.

3.1 Overview

The framework of the proposed algorithm is shown in Fig.2. Given an input
image I ∈ R3×H×W , the encoder E maps it to a per-pixel feature map F ∈
RCF×H×W . The grouping module (blue box in Fig. 2) takes the feature map F as
input and produces a grouping mapM ∈ RK×H×W that assigns each pixel to one
ofK groups. Each group represents a texture pattern in the image and is encoded
by a vector texture code tk ∈ RCT and a learnable sine wave Sk, k = 1, . . . ,K.
For each texture segment, the decoder D is tasked to simultaneously learn to
reconstruct it and synthesize a similar texture image.

6 Li et al.

3.2 Texture Encoder

The texture encoder aims to discover a set of clean texture segments from a
highly cluttered natural image and encode their texture patterns for texture
synthesis. To this end, we propose to build a graph neural network on top of
superpixels [51,1,64,26] to group superpixels of the same texture together. The
rationale of using superpixels instead of pixels is that superpixels are compact,
consistent with boundaries between different texture regions while preserving
sufficient receptive field for feature learning. Meanwhile, a graph neural net-
work allows nearby superpixels to share or differentiate features depending on
their similarities and yields features fit for the final grouping mask computation.
We note that an alternative solution to obtain texture segments is by directly
utilizing readily available semantic segmentation masks obtained by manual an-
notation [67,41,3] or pre-trained models [43,7]. However, these masks are defined
based on semantic prior, where each region may contain several different texture
patterns, e.g., a human face includes hair, skin, eyes, etc. Our encoder further
encodes the texture pattern in each segment compactly using a texture code
and a parametric sine wave. We introduce the details of the image grouping and
texture modeling module in the following.

Image Grouping. The detailed structure of the grouping module is illustrated
in the blue box in Fig. 2. First, we introduce a CNN backbone E to produce per-
pixel feature vectors F, which is then input to the grouping module that contains
the GNN. Each vertex v ∈ V in the graph G = (V, E) is a superpixel, whose
feature is computed as the averaged F of all pixels within the superpixel. The
weight of each edge e ∈ E connecting two superpixels in the graph is computed
as the cosine similarity of two adjacent superpixel features. Given such a graph,
we first employ two graph convolution layers [32] to propagate information from
each superpixel to its neighboring superpixels. Then a per-pixel feature map
F ′ ∈ RCF×H×W is recovered by setting the feature of each pixel as the feature of
the superpixel it belongs to. Finally, a convolution layer followed by a SoftMax
layer is applied to group all pixels into K segments. The predicted grouping
mask M ∈ RK×H×W decomposes the input image into K different groups, each
includes a unique texture pattern and is captured by a vector texture code and
a parametric sine wave discussed next.

Texture Code Computation. Given the per-pixel feature F ′ ∈ RCF×H×W

and the grouping mask M ∈ RK×H×W from the grouping module discussed
above, we first compute the features FK ∈ RK×CF for all groups as FK =
flatten(M)× flatten(F ′)

T
, where flatten(M) ∈ RK×(HW) and flatten(F ′) ∈

RCF×(HW) are the flattened version of M and F ′ respectively. The kth row of
FK thus stores the feature of group k. The texture code tk for each group is
computed by two linear layers, taking FK

k as input.

Parametric Sine Wave Computation. Besides the texture code, we intro-
duce a parametric sine wave to improve texture modeling. Our key insight is that
the periodic sine wave well fits for the repetitive nature of textures, especially

Scraping Textures from Natural Images for Synthesis and Editing 7

for regular patterns that resemble strong periodicity. Inspired by PSGAN [5], we
formulate the parametric sine wave with learnable frequency P k as:

Sk = sin(P kC + Φk), k = 1, . . . ,K (1)

where d is a hyperparameter indicating the channel number of the sine wave, C ∈
R2×(HW) is a standard 2D coordinate grid, and Φk is a shift randomly sampled
from [0, 2π) to mimic random positional shift of texture segments. Intuitively,
the frequency parameter P k determines the repeating period of a texture and
thus is predicted by applying two linear layers on the statistic texture code tk.

3.3 Decoding Texture Codes and Sine Waves into RGB Images

Given the texture code and sine wave of each segment, we adopt a decoder
to reconstruct the input image by taking the sine wave composition of different
texture segments as input and modulating the feature at each layer by the texture
code). Specifically, given the feature map Fl from layer l of the decoder, a pixel
Fl(i, j) assigned to group k is modulated by its corresponding texture code tk

as:

γkFl(i, j)− µk

σk
+ βk (2)

where the modulation parameters γk and βk are projected from the texture
code tk by linear layers and µk, σk are the mean and standard deviation in each
channel of Fl.

3.4 Texture Synthesis

Next, we task our decoder for texture synthesis to enhance texture feature learn-
ing. Specifically, we randomly choose a texture segment q ∈ {1, . . . ,K} from the
K groups and synthesize a corresponding texture image resembling the chosen
texture segment. To this end, we feed the corresponding sine wave Sq into the
decoder and modulate all pixels in the feature maps at each decoder layer us-
ing the texture code tq. As a result, the decoder synthesizes a texture image
that presents the same pattern resembling the chosen texture group q. More
importantly, thanks to the inherent periodicity of the sine wave, our model can
synthesize an arbitrary-sized texture image by simply extending the input sine
wave during inference.

However, the segments produced by the grouping module may be noisy (e.g.,
a texture segment that includes more than one texture pattern), especially at the
early training stage. To clean up the texture segments and provide better super-
vision for texture features learning, we split each group into spatially connected
regions [26]. The texture segment used as the supervision for synthesis is then
chosen from these spatially connected regions. This is based on the intuition that
spatially connected regions are more likely to be clean texture segments with a
single texture pattern, introducing less noise for texture features learning.

3.5 Objectives

Reconstruction Objectives. For each texture segment, we apply the L1, the
VGG-based perceptual [29,66] loss and the focal frequency loss [28] between the
input and the reconstructed segment.

8 Li et al.

Texture Synthesis Objectives. Since there is no direct supervision for the
regions outside the given texture segment, we apply the Gram matrix match-
ing objective [17,18,42] and a patch discriminator [47]. The former ensures the
synthesized texture match the statistics of the texture segment while the latter
encourages realistic texture synthesis.

As discussed in Section 1, texture segments in natural images often have
irregular shapes. Thus we utilize the grouping mask produced by the grouping
module to mask out irrelevant regions in both objectives. Specifically, when
computing the gram matrix of a texture segment, we only take the pixels within
the texture segment to calculate the correlation matrix. A detailed mathematical
formulation can be found in the supplementary material.

For the patch discriminator, we randomly crop ten patches from the corre-
sponding texture segment in the input image as real data and ten patches from
the synthesized texture image as fake data. To ensure patches cropped from the
synthesized texture images are comparable with those cropped from input im-
ages, we fill irrelevant areas in the former with corresponding pixels from the
latter. The objective of the patch discriminator is:

LPGAN = EI,Ît
[− log(Dp(crops(Ît) ·m+ crops(I) · (1−m), crops(I)))] (3)

where Dp is the patch discriminator [47], crops(·) is the operation that randomly
crops patches from an image and m is the mask patch from Mt corresponding
to the cropped patches from the input image (i.e., crops(I)).

3.6 Generalization to Unseen Textures

To generalize our model to an unseen image, we first train our model on a small
image dataset and then fine-tune it on a single image. Importantly, we make
the following differences during test-time tuning compared to the main network
training: a) we do not include any form of data augmentation, i.e., the training
image is cropped once and fixed. b) we sample one texture code and synthesize
two images from it. One image using a sine wave with zero offset and the other
using a random offset. c) we apply reconstruction loss on the former synthesis
and gram matrix matching and patch GAN to the later. d) we use Meanshift [9]
to allow each image to have different group numbers. The rationale of these
differences is that our model has to reconstruct the given texture segment well
before extending it. By fixing the offset and the training image, we allow the
model to achieve such a goal.

4 Experimental Results

4.1 Experimental Settings

Implementation Details Our encoder is composed of multiple Residual blocks
[21] and two graph convolution layers. The decoder is the same as the generator
in [47]. We cluster pixels in each image into K = 10 groups for the main network
training if not otherwise specified. Empirically we find that progressive training

Scraping Textures from Natural Images for Synthesis and Editing 9

stabilizes the process and yields the best performance. Specifically, we train
the model without the grouping module for 100 epochs and fine-tune with the
grouping module for another 100 epochs. The texture synthesis objective is then
added, and the entire pipeline is jointly trained until convergence. For each
unseen image, we fine-tune the model for 5000 iterations with the same objectives
introduced in Section 3.5.We use the Adam optimizer [31] with an initial learning
rate of 5 × 10−5. More details of the network architecture and optimization
hyperparameters can be found in the supplementary material. The proposed
model is implemented in PyTorch [48].

Datasets We use the BSDS500 dataset [46,3] as our training dataset. Com-
pared to other datasets such as COCO [41] or the ImageNet [11], the BSDS500
dataset provides larger and richer texture regions that are more fit for our tex-
ture synthesis task. For texture synthesis evaluation, we compose a dataset of
104 texture-abundant images not included in the training dataset from the Ima-
geNet dataset [11]. Although our main focus is on texture synthesis, we validate
the learned grouping masks by evaluating the image grouping module on the
testing dataset from the BSDS500 dataset [46,3], which includes 200 testing im-
ages with grouping annotations. We note that these grouping annotations maybe
semantic and include multiple textures in a single segment.

Baselines We quantitatively evaluate our model on the task of texture synthesis
and compare with theWCT [37], DeepTexture [17], PSGAN [5], and Image Quilt-
ing [12]. None of the baseline models can generalize to unseen texture images,
nor can they synthesize texture directly from natural images or even irregular-
shaped texture segments. Thus, to ensure best performance of the baselines,
we provide texture patches that are as clean as possible for the baseline model
training and train a separate baseline model for each testing image. As shown
in Fig. 3 (e), for each target texture segment, we crop a 100× 100 texture patch
at the center of the texture segment to serve as the training exemplar for the
baseline methods. The cropped texture segment maximally suppresses irrelevant
textures. We emphasize that the proposed method does not require clean texture
patches for training, thus avoids such a clean process.

4.2 Texture Synthesis, Swapping and Editing

Texture Synthesis We present texture synthesis results as well as compar-
isons with baseline methods in Fig. 3. Compared to the WCT and DeepTexture
method, our model is able to capture both regular (e.g., the grid in the first row
of Fig. 3) and irregular texture patterns thanks to the parametric sine wave.
The texture images produced by our method are also more realistic and uniform
compared to the DeepTexture method, which naively repeats the texture region.
Furthermore, by introducing the grouping module, our method is able to synthe-
size texture images from a texture segment. Instead, both the Image Quilting [13]
and PSGAN [5] method require clean texture patches as exemplar and cannot
automatically ignore other irrelevant textures in the exemplar. Arbitrary-sized
texture synthesis by our method can be found in the supplementary material.

10 Li et al.

(a) Input

(b) Grouping

(c) Chosen
group

(d) Ours

(e) Texture
patch

(f) WCT

(g) Deep
Texture

(h) Quilting

(i) PSGAN

Fig. 3: Texture synthesis. (a) Input image. (b) Grouping mask predicted by our
encoder. (c) A randomly chosen texture segment. (d) Texture synthesis by our method
from the chosen texture segment in (c). (e) A patch cropped at the center of the
chosen texture segment that serves as texture exemplar for the baselines models. (f)∼(i)
Texture synthesis results by WCT [37], DeepTexture [17], Image quilting [12] and
PSGAN [5].

Quantitative Evaluation on Texture Synthesis We use the Fréchet Incep-
tion Distance (FID) [24,55,47] and the Perceptual Similarity Distance (LPIPS)
[66] to quantitatively evaluate how realistic the generated texture images are.

Since we only have access to texture segments of irregular shapes, we compare
patches cropped from the texture segments in input images and synthesized
texture images similarly as [42]. Specifically, we synthesize three different texture

Scraping Textures from Natural Images for Synthesis and Editing 11

Metric c-FID c-FID (mask) c-LPIPS c-LPIPS (mask)

WCT [37] 149.47 82.65 0.3576 0.3547
DeepTexture [58] 151.91 107.34 0.3930 0.3825
Quilting [13] 76.80 63.64 0.3519 0.3568
PSGAN [5] 128.80 83.32 0.3810 0.3697
Ours 72.36 60.91 0.2838 0.3193

Table 1: Quantitative evaluation of texture synthesis results. All metrics are
the lower the better.

(a) Mask

(b
) I

m
ag

e

Fig. 4: Texture editing. Given the mask drawn by a user in (a) and a reference image
in (b), we fill each region in the mask with textures from the reference image. The lines
show the corresponding texture specified by the user that fills each region in the mask.

images from the texture segments of each testing image. We then randomly
crop ten 64 × 64 patches from the corresponding texture segment in the input
image defined by the grouping segment mask and ten corresponding patches from
the synthesized texture image. The patch-based FID score (denoted as c-FID)
as well as LPIPS score (denoted as c-LPIPS) are computed between patches
cropped from the input image and synthesized texture images. Note that we use
a dimension of 2048 for c-FID as opposite in [42] since we have sufficient number
of cropped patches for evaluation. Furthermore, since the cropped patches in
the input images may include irrelevant textures, we also mask the irrelevant
textures in both the input image patches and the synthesized texture patches
using our grouping masks. The FID and LPIPS metric of this setting are shown in
the third and fifth column of Table 1. As shown in Table 1, the proposed method
achieves lower c-FID and c-LPIPS score, indicating that it can synthesize more
realistic textures from natural images.

Texture Editing We further apply the learned model to texture editing and
show results in Fig. 4. In this task, a user draws a mask (Fig. 4(a)) and chooses
the texture segments in the input image (Fig. 4(b)) to provide texture codes.
A texture feature map is composed by filling each region in the mask with the
texture code of the chosen segment. The decoder combines the composed texture

12 Li et al.

(a) Input (c) Swapping(b) Grouping (d) Input (f) Swapping(e) Grouping

Fig. 5: Texture swapping. Given a pair of images, our model predicts their groupings
in (b)(e). We swap the texture codes of segments in each image chosen by a user. The
yellow line indicates the swapped regions in the two images.

Input Ours SuperpixelFCN NormalizedCut Input Ours SuperpixelFCN NormalizedCut

Fig. 6: Image Grouping. We show image grouping results by our method, the super-
vsied SuperpixelFCN [64] and the unsupervised Normalized Cuts [56] method visually.

feature map with random noise to produce the final editing image. As shown in
Fig. 4, each texture can be successfully transferred and realistically synthesized
onto the corresponding region in the mask, demonstrating the flexibility of the
learned texture codes in controlled texture editing tasks.

Texture Swapping We also show the application of texture swapping in Fig. 5.
Given a pair of images, we first predict their grouping masks as shown in
Fig. 5(b)(e). A user defines which segments to be swapped out in each image
(yellow lines in Fig. 5(b)(e)), the swapping is then carried out by swapping the
texture codes of corresponding regions. The final swapped image (Fig. 5(c)(f))
is obtained by feeding the spatial code together with the swapped texture codes
to the decoder.

4.3 Image Grouping Evaluation

Although our work focuses on texture synthesis, we validate the quality of the
predicted segment boundary by comparing it with ground truth grouping anno-
tations using the Boundary Recall (BR) and Boundary Precision (BP) metric.
Additionally, we measure the upper bound performance of any segmentation
model on top of our predicted segments using the Achievable Segmentation Ac-
curacy (ASA) metric. The definition and detailed explanation of all these three
metrics can be found in [26]. We compare the proposed algorithm against a su-
pervised superpixel method [64] trained with ground truth grouping annotations

Scraping Textures from Natural Images for Synthesis and Editing 13

(a) input (b) superpixel (c) w/o grouping (d) segment (e) w/o sine (f) ours

Fig. 7: Ablation study. (a) Input image. (b) A superpixel predicted by the SLIC
method [1]. (c) Texture synthesis result by the baseline model using the superpixel in
(b). (d) A texture segment predicted by our grouping model. (e) Texture synthesis by
a baseline model learned with noise instead of sine waves. (f) Texture synthesis of our
full model.

and the unsupervised Normalized Cuts [56] method. As discussed in Section 4,
our model predicts K = 10 segments for each image. For fair comparisons, we
adjust the hyper-parameters (i.e., the input image size in [64] and the merging
threshold in [56]) such that these baselines produce a similar amount of groups
(i.e., around ten groups). Table 2 shows the performance comparison and av-
eraged group numbers by different methods. Fig. 6 demonstrates the predicted
grouping by each method visually. Both the proposed method and the Normal-
ized Cuts [56] approach do not require ground truth grouping annotations. Yet,
the proposed method achieves better boundary recall and serves better as a
segmentation pre-processing step as it has a higher ASA score. On the other
hand, the Normalized Cuts method aggressively merges superpixels when set-
ting group number small (i.e., setting lower merging threshold), as shown in
Fig. 6(d). This is also why the Normalized Cuts method has higher BP since it
misses many boundaries in the image. Although self-supervisedly learned, our
method achieves a comparable BP score with fewer groups than the supervised
superpixel method [64]. The superpixel method achieves a higher ASA score since
it has access to the ground truth grouping annotations during model training.

Metric BR ↑ BP ↑ ASA ↑ Groups

SuperpixelFCN [64] 0.35 0.25 0.83 16
NormalizedCut [56] 0.3 0.38 0.58 14
Ours 0.67 0.27 0.68 10

Table 2: Image grouping evaluation on the BSDS500 [46,3] dataset

4.4 Ablation Studies

Image Grouping. To validate the contribution of image grouping in texture
features learning, we introduce a baseline model that takes the SLIC superpix-
els [1] as texture segments instead of learning image grouping together with
texture modeling. We show qualitative comparison with the full model in Fig. 7
(c) and (f). The baseline model is limited by the small receptive field of super-
pixels and cannot fully capture the texture in each segment (e.g., the grid and
corn kernel in Fig. 7). While our method is able to synthesize realistic textures
that resemble the chosen texture segment.

14 Li et al.

Sine Wave. The inherent periodicity of the sine wave helps our model to syn-
thesize regular pattern such as the grid shown in the first row of Fig. 7. On the
contrary, if we feed a noise instead of a sine wave into our decoder, the baseline
model fails to capture stationary pattern as shown in Fig. 7 (e).

5 Conclusion

In this work, we propose a framework to scrape textures from natural images by
decomposing an image into a set of texture segments and represent each texture
segment with a vector texture code. By reconstructing the input image from
these texture codes, our model learns to group pixels of the same texture without
any supervision. Through encoding each texture segment by the texture code,
along with a parametric sine wave, we can learn texture representations directly
from cluttered images without requiring any well-cropped texture patches. We
demonstrate that these texture representations can be used for texture synthesis
and editing, and the emergent image segments are often consistent with object
boundaries. While our paper demonstrates some promising results, plenty of
work remains in both texture modeling as well as image segmentation. The lesson
of our work is that these two tasks would likely benefit from being considered
jointly.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic super-
pixels compared to state-of-the-art superpixel methods. TPAMI (2012) 4, 5, 6,
13

2. Alanov, A., Kochurov, M., Volkhonskiy, D., Yashkov, D., Burnaev, E., Vetrov,
D.: User-controllable multi-texture synthesis with generative adversarial networks.
arXiv preprint arXiv:1904.04751 (2019) 4

3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. TPAMI (2011) 6, 9, 13

4. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A ran-
domized correspondence algorithm for structural image editing. ACM Transactions
on Graphics (Proc. SIGGRAPH) 28(3) (Aug 2009) 4

5. Bergmann, U., Jetchev, N., Vollgraf, R.: Learning texture manifolds with the pe-
riodic spatial gan. arXiv preprint arXiv:1705.06566 (2017) 3, 4, 7, 9, 10, 11

6. Brodatz, P.: Textures: a photographic album for artists and designers. New York:
Dover Pub. (1966) 2, 3

7. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. TPAMI (2017) 6

8. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , Vedaldi, A.: Describing textures
in the wild. In: CVPR (2014) 2, 3

9. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. TPAMI (2002) 8

10. Dai, D., Riemenschneider, H., Van Gool, L.: The synthesizability of texture exam-
ples. In: CVPR (2014) 2, 3

Scraping Textures from Natural Images for Synthesis and Editing 15

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009) 9

12. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer.
SIGGRAPH (2001) 2, 3, 4, 9, 10

13. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV
(1999) 2, 3, 4, 9, 11

14. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
IJCV (2004) 4

15. Fiedler, M., Alpers, A.: Power-slic: Diagram-based superpixel generation. arXiv
preprint arXiv:2012.11772 (2020) 4

16. Frühstück, A., Alhashim, I., Wonka, P.: Tilegan: synthesis of large-scale non-
homogeneous textures. TOG (2019) 2, 4

17. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural
networks. NeurIPS (2015) 2, 3, 4, 8, 9, 10

18. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: CVPR (2016) 8

19. Guo, C.e., Zhu, S.C., Wu, Y.N.: Primal sketch: Integrating structure and texture.
Computer Vision and Image Understanding (2007) 5

20. Han, F., Zhu, S.C.: Bottom-up/top-down image parsing with attribute grammar.
TPAMI (2008) 5

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 8

22. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proceed-
ings of the 22nd annual conference on Computer graphics and interactive tech-
niques. pp. 229–238 (1995) 4

23. Heitz, E., Vanhoey, K., Chambon, T., Belcour, L.: A sliced wasserstein loss for
neural texture synthesis. In: CVPR (2021) 4

24. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. NeurIPS
(2017) 10

25. Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In:
Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1.
vol. 1, pp. 654–661. IEEE (2005) 4

26. Jampani, V., Sun, D., Liu, M.Y., Yang, M.H., Kautz, J.: Superpixel sampling
networks. In: ECCV (2018) 4, 6, 7, 12

27. Jetchev, N., Bergmann, U., Vollgraf, R.: Texture synthesis with spatial generative
adversarial networks. arXiv preprint arXiv:1611.08207 (2016) 4

28. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction
and synthesis. In: ICCV (2021) 7

29. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: ECCV (2016) 3, 4, 7

30. Kaspar, A., Neubert, B., Lischinski, D., Pauly, M., Kopf, J.: Self tuning texture
optimization. In: Computer Graphics Forum (2015) 2, 4

31. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 9

32. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016) 6

33. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-
based synthesis. In: SIGGRAPH (2005) 2, 4

34. Li, T.M., Lukáč, M., Gharbi, M., Ragan-Kelley, J.: Differentiable vector graphics
rasterization for editing and learning. TOG (2020) 5

16 Li et al.

35. Li, X., Liu, S., De Mello, S., Kim, K., Wang, X., Yang, M.H., Kautz, J.: Online
adaptation for consistent mesh reconstruction in the wild. NeurIPS (2020) 2

36. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Diversified texture syn-
thesis with feed-forward networks. In: CVPR (2017) 4

37. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer
via feature transforms. In: NeurIPS (2017) 2, 9, 10, 11

38. Li, Y., Hao, M., Di, Z., Gundavarapu, N.B., Wang, X.: Test-time personalization
with a transformer for human pose estimation. NeurIPS (2021) 2

39. Li, Z., Bao, W., Zheng, J., Xu, C.: Deep grouping model for unified perceptual
parsing. In: CVPR (2020) 4

40. Lin, Q., Zhong, W., Lu, J.: Deep superpixel cut for unsupervised image segmenta-
tion. In: ICPR. pp. 8870–8876 (2021) 4

41. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014) 6, 9

42. Liu, G., Taori, R., Wang, T.C., Yu, Z., Liu, S., Reda, F.A., Sapra, K., Tao, A.,
Catanzaro, B.: Transposer: Universal texture synthesis using feature maps as trans-
posed convolution filter. arXiv preprint arXiv:2007.07243 (2020) 2, 3, 4, 8, 10, 11

43. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR (2015) 6

44. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple
segmentations. In: British Machine Vision Conference (BMVC) (September 2007)
4

45. Mardani, M., Liu, G., Dundar, A., Liu, S., Tao, A., Catanzaro, B.: Neural ffts for
universal texture image synthesis. NeurIPS (2020) 2, 4

46. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: ICCV (2001) 9, 13

47. Park, T., Zhu, J.Y., Wang, O., Lu, J., Shechtman, E., Efros, A.A., Zhang, R.:
Swapping autoencoder for deep image manipulation. In: NeurIPS (2020) 5, 8, 10

48. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. NeurIPS (2019) 9

49. Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale
combinatorial grouping for image segmentation and object proposal generation.
TPAMI (2016) 4

50. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics
of complex wavelet coefficients. IJCV (2000) 4

51. Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV
(2003) 4, 6

52. Rosenberger, A., Cohen-Or, D., Lischinski, D.: Layered shape synthesis: auto-
matic generation of control maps for non-stationary textures. ACM Transactions
on Graphics (TOG) (2009) 3

53. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks (2008) 4

54. Sendik, O., Cohen-Or, D.: Deep correlations for texture synthesis. TOG (2017) 4
55. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: Learning a generative model from

a single natural image. In: ICCV (2019) 4, 10
56. Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI (2000) 4, 12,

13
57. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with

self-supervision for generalization under distribution shifts. In: ICML (2020) 2

Scraping Textures from Natural Images for Synthesis and Editing 17

58. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: Feed-
forward synthesis of textures and stylized images. In: ICML (2016) 2, 3, 4, 11

59. Wang, Y., Wei, Y., Qian, X., Zhu, L., Yang, Y.: Ainet: Association implantation
for superpixel segmentation. arXiv preprint arXiv:2101.10696 (2021) 4

60. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quanti-
zation. In: SIGGRAPH (2000) 3, 4

61. Wertheimer, M.: Laws of organization in perceptual forms. Psycologische
Forschung 4 (1923) 4

62. Wu, Q., Yu, Y.: Feature matching and deformation for texture synthesis. TOG
(2004) 4

63. Wu, Z., Lin, D., Tang, X.: Deep markov random field for image modeling. In:
ECCV (2016) 3

64. Yang, F., Sun, Q., Jin, H., Zhou, Z.: Superpixel segmentation with fully convolu-
tional networks. CVPR (2020) 4, 6, 12, 13

65. Yu, N., Barnes, C., Shechtman, E., Amirghodsi, S., Lukac, M.: Texture mixer: A
network for controllable synthesis and interpolation of texture. In: CVPR (2019)
2, 3, 4

66. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018) 7, 10

67. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: CVPR (2017) 6

68. Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D., Huang, H.: Non-stationary
texture synthesis by adversarial expansion. arXiv preprint arXiv:1805.04487 (2018)
4

69. Zou, Z., Shi, T., Qiu, S., Yuan, Y., Shi, Z.: Stylized neural painting. In: CVPR
(2021) 5

	Scraping Textures from Natural Images for Synthesis and Editing

