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Abstract. Progress in GANs has enabled the generation of high-res-
olution photorealistic images of astonishing quality. StyleGANs allow
for compelling attribute modification on such images via mathematical
operations on the latent style vectors in the W/W+ space that effec-
tively modulate the rich hierarchical representations of the generator.
Such operations have recently been generalized beyond mere attribute
swapping in the original StyleGAN paper to include interpolations. In
spite of many significant improvements in StyleGANs, they are still seen
to generate unnatural images. The quality of the generated images is
predicated on two assumptions; (a) The richness of the hierarchical rep-
resentations learnt by the generator, and, (b) The linearity and smooth-
ness of the style spaces. In this work, we propose a Hierarchical Semantic
Regularizer (HSR)1 which aligns the hierarchical representations learnt
by the generator to corresponding powerful features learnt by pretrained
networks on large amounts of data. HSR is shown to not only improve
generator representations but also the linearity and smoothness of the
latent style spaces, leading to the generation of more natural-looking
style-edited images. To demonstrate improved linearity, we propose a
novel metric - Attribute Linearity Score (ALS). A significant reduction
in the generation of unnatural images is corroborated by improvement in
the Perceptual Path Length (PPL) metric by 16.19%% averaged across
different standard datasets while simultaneously improving the linearity
of attribute-change in the attribute editing tasks.

1 Introduction

Recent years have seen tremendous advances in Generative Adversarial Network
(GAN) [16] architectures and their training methods to produce highly photo-
realistic images [8, 30]. Progress in the StyleGAN family of GAN architectures
has shown promise by improving both the image quality, as well as the quality
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Fig. 1. Hierarchical Semantic Regularizer (HSR) improves the latent space to semantic
image mapping to produce more natural-looking images. Top: We show latent interpo-
lation for images from bottom 10%-ile image pairs ranked by PPL, a metric to measure
smoothness of latent space. Bottom: Latent space using HSR mitigates artefacts in
images during attribute edit transition and can transition smoothly (young to old (SG2-
ADA) vs. young to middle-age to old (SG2-ADA+HSR), in continuous attributes like
“Age”). Zoom in to observe the effects.

of latent space representations which enables controlled image generation. This
is achieved by transforming an input noise space Z to a latent style space W
which modulates a synthesis network at various levels of representation hierar-
chies to generate an image with that style. This enables generation of compelling
synthetic images with novel styles as well as practically useful applications such
as GAN-based image attribute editing, style mixing, etc. [3, 23, 43, 44, 47, 48].
Nonetheless, such networks still often produce unrealistic images (ref. Fig. 1).

These quality issues in StyleGANs can have the following sources: (a) the
hierarchical representation spaces in the synthesis network, (b) the latent style
space, in particular the linearity and smoothness of such spaces, and (c) the func-
tions used to transform the representation spaces in (a) using the corresponding
hierarchical style vectors in (b). Our work seeks to address some of these issues.

We take inspiration from the recent advances in self-supervised and super-
vised learning [9, 11, 20, 51] which have allowed for the learning of semantically
rich image representations translating into significant performance improves on
image classification and other vision tasks [15,33,51]. Training on large datasets
of natural images, like ImageNet [13], allows these techniques to learn hierar-
chically organized feature spaces capturing richer statistical patterns in natural
images: shallower layer capturing low-level image features and the deeper lay-
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ers abstract features highly correlated with visual semantics. Such pre-trained
representations can be harnessed to enhance the representational power of Style-
GANs.

In fact, we demonstrate that transferring rich pretrained representations
mentioned above allow us to mitigate simultaneously the challenges associated
with both the representation spaces in the synthesis network as well as the la-
tent style spaces modulating these representations. To allow for such a transfer,
we propose to use a regularization mechanism, called the Hierarchical Semantic
Regularizer (HSR) which aligns the generator’s features to those from an ap-
propriate, state of the art, pretrained feature extractor at several corresponding
scales (levels) of the generator network. The architecture is shown in Fig. 3.

Karras et al. [29] introduced the Perceptual Path Length (PPL) metric to
measure the smoothness of mapping from a latent space to the output image and
showed its correlation with the generated image quality. We demonstrate that
HSR regularization in StyleGAN training leads to 16.19% relative improvement
in PPL over StyleGAN2, leading to more realistic interpolations (refer Fig. 1).

A standard approach for controlled synthesis of novel images is via linear
(convex) interpolation between attributes4 corresponding to real images. Appli-
cations such as image editing utilize such capabilities under the presumption
that style spaces are both linear as well as decorrelated allowing for desired con-
trolled edits. Since, PPL does not measure linearity, we propose a novel metric,
Attribute Linearity Score (ALS), to measure linearity in the attibute space. We
demonstrate that HSR simultaneously improves linearity leading to smoother
edits with significantly reduced editing artifacts (Fig. 1). A mean relative im-
provement of 15.5% over StyleGAN2-ADA is achieved on the ALS metric.

Our contributions are: (a) A novel Hierarchical Semantic Regularizer (HSR)
improving the generation of natural-looking synthetic images from StyleGANs.
HSR is presented in (Sec. 3 with an analysis of design choices 3.3). (b) Extensive
bench-marking of improvements by HSR regularization on popular datasets,
especially when utilizing linear interpolations for attribute editing (Sec. 4). (c)
Since linearity of the latent attribute space is very important for performing
controlled edits, we propose a new metric, Attribute Linearity Score (ALS), in
(Sec. 4.3) and demonstrate improved linearity over the baselines.

2 Related Works

Generative Adversarial Networks. GAN proposed by Goodfellow et al. [16]
a combination of two neural networks, i.e. generator G and discriminator D.
For image synthesis the goal of D is to differentiate between real and generated
images, whereas the G tries to fool the discriminator into classifying generated
images as real. In the recent years several improvements in architecture [18,28,31,
39,46], optimization objectives [5,7,36,37] and regularization [19,38] have made
GANs an ubiquitous choice for image synthesis. It has been observed that GANs

4 We use style and attributes interchangeably.
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developed for large scale datasets, suffer mode collapse when trained on limited
data. Augmentation methods like DiffAugment [63], ADA [27], ContraD [24] ,
APA [25] etc. mitigate the collapse by reducing the discriminator’s overfitting.
Hierarchical Representations. In classical vision, methods which decompose
image into a hierarchy have been exploited for the tasks of image stitching,
manipulation and fusion [2, 12]. Building on this motivation Shocher et al. [49]
develop an image translation and manipulation method, which exploits hierar-
chical consistency of features of generator and a classifier. However this method
is restricted to single image translation and manipulation. In contrast our work
we aim to train a smooth and generalizable GAN which can simultaneously
generate diverse images, by using semantic hierarchical consistency of features.
Knowledge Transfer Using Pre-Trained Features. Using pre-trained fea-
tures trained on large scale datasets (e.g. ImageNet etc.) [21,52] have been useful
for various downstream tasks across applications [14,22,54,58]. The recent devel-
opment of the self-supervised approaches for representation learning [10, 17, 46]
have further immensely improved the quality of features learnt. These features
are being used in various applications like part segmentation, localization etc.
without being explicitly trained on such tasks [9], which motivates our work
which aims to transfer these semantic properties to G’s feature space. Currently
much work for transfer learning for GANs has focused on the fine-tuning large
GANs using a few images for adapting it to a different domain [35, 40–42]. Re-
cently a concurrent work [34] also aims to use pre-trained features to improve
GANs. However their goal is to improve discriminator. On contrary we aim to
enrich GAN feature space by imparting it with semantic properties, leading to
a disentangled and smooth latent space.
Image Editing Using Latent Space Interpolations. Latent space of pre-
trained StyleGAN models is highly structured [47] and is popularly used to
perform realistic image edits in the generated images [1, 4, 23, 47, 48, 56, 60].
The primary idea in most of these approaches is to find a direction in the the
extended latent space W+ for editing attributes and transforming a latent code
by moving in that direction to perform edits. StyleCLIP [44] learns the directions
for attribute editing by getting the guidance from pretrained CLIP [45]. On the
contrary, our work imposes constraints so that latent space has more naturally
interpretable directions when used by the GAN-based image editing methods.

3 Approach

In this section, we first describe the objective of GAN framework, properties
of StyleGAN, and its evaluation in Sec. 3.1. Then, we describe Hierarchical
Semantic Regularizer (HSR) (Sec. 3.2) and discuss its design in Sec. 3.3.

3.1 Preliminaries

Generative Adversarial Networks. GAN involves two competing networks,
namely a Generator G and a Discriminator D. Taking a noise z sampled from
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a distribution Pz as input, G generates an image G(z) ∈ R3×H×W . Whereas, D
takes an input image x ∈ R3×H×W , and tries to classify it as real or generated.
The objective of G is to fool D into making it classify the generated image as a
real one. Formally, the learning objective can be written as:

max
D

LD = E
x∼Pr

[log(D(x))] + E
z∼Pz

[log(1−D(G(z)))]

min
G

LG = E
z∼Pz

[log(1−D(G(z)))]
(1)
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Fig. 2. Distribution of PPL over 50k im-
ages from SG2-ADA and SG2-ADA+HSR.
HSR improves the perceptual quality of top
and bottom 10%-ile images, thus leading to
more natural-looking images.

StyleGAN. In StyleGAN, an ar-
chitectural modification is introduced
where z is transformed into a seman-
tic latent space through a sequence
of linear layers called Mapping Net-
work Gm, before generating the im-
age I through a Synthesis Network
Gs as I = Gs(w). Hence, G =
Gs ◦ Gm. The space learnt by Gm is
known as W+-space. It is observed
that W+ is more meaningful in terms
of attributes learned from the train-
ing data as compared to noise space
Z. Several methods [23,47,48] propose
ways to find attribute-specific direc-
tions in W+ latent space.
Perceptual Path Length. To mea-
sure the smoothness of the mapping from a latent space to the output image,
Karras et al. [30] proposed Perceptual Path Length (PPL). The requirement
for this metric arises due to generation of unnatural images by GAN despite
having low FID [30]. PPL aims to quantify the smoothness of latent space to
output space mapping by measuring average of LPIPS [61] distances between
two generated images under small perturbations in the latent space. A smoother
latent space should have lesser PPL when compared to an uneven latent space.
It is shown [30] that PPL correlates well with image quality, i.e. good quality
images pairs will have less PPL, while if any one of the image is of bad quality,
the PPL would be high. The images are sampled randomly without any trun-
cation trick [8, 32] to compute PPL. As observed in Fig. 6, the bottom 10%-ile
by PPL (sorted in increasing order) among the generated images appear as out-
of-distribution images. Hence, the mean PPL score can be used to quantify the
extent of non-smooth regions of latent space which produce unnatural images.
Hence, we will be using this metric as a primary metric for comparison of the
smoothness of latent space learnt by the models.

3.2 Hierarchical Semantic Regularizer

Feature extractors of networks pretrained on large datasets (e.g. ImageNet etc.)
of natural images using classification or self-supervised losses store strong priors
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Fig. 3. Hierarchical Semantic Regularizer: We use a pre-trained network to ex-
tract features at various resolution hierarchically. We then train linear predictors over
generator features to predict the pre-trained features hierarchically. This transfers the
semantic knowledge to generator feature space, making it’s latent space meaningful,
disentangled and editable.

about the data, that are organized hierarchically. Each level of hierarchy captures
a different semantic feature of data. The statistics of wide variety of natural
images are captured by these networks [6,21,53]. Due to the inherent differences
in the nature of tasks, discriminative models capture different kinds of features
compared to generative ones. Therefore, we seek to enrich the G’s intermediate
feature space with guidance from a pretrained feature extractor.

We first give a general idea of the proposed regularizer and then dive into
various design choices made in it’s formulation. Given an image x as input,
the feature extractor F returns semantically meaningful features from it. We
attempt to make the generator aware of this explicit semantic feature space. To
this end, we freeze the feature extractor and treat it as a fixed function that
maps from image space to a semantically meaningful feature space.

Given such a mapping of the generated image, we try to align the Generator’s
features of this image through a set of feature predictors. This alignment is
inspired by BYOL [17]. As illustrated in Fig. 3, we attach a predictor branch q
to the Generator G. The objective of q is to learn a mapping from generator’s
intermediate feature map Gπi

G(z) to pretrained feature extractor’s intermediate

feature Fπi
F (G(z)), where πG in πF denote the ordered set of layer numbers in

the G and F at which we attach the predictors (ref. Eq. 2). We attach multiple
such predictor networks qi at different scales of generator.

LG = E
z∼Pz

[log(1−D(G(z)))] +

|πi
G|∑

i=0

E
z∼Pz

∥q(Gπi
G(z))− Fπi

F (G(z))∥22 (2)
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3.3 Design Choices

We analyse the effect of our Hierarchical Semantic Regularizer (HSR) against
different design choices. For this purpose, we choose AnimalFace-Dog dataset
which consists of 389 images. Since this is a low-shot dataset, we use StyleGAN2-
ADA as our baseline. We perform all our experiments on 256× 256 resolution.
What should be the choice of feature extractor? For this analysis, we
choose 5 different feature extractors. We take combinations of CNN or trans-
former based networks trained using either self-supervised or supervised clas-
sification objective. We take ResNet-50 as the CNN backbone for both self-
supervised (DINO) and supervised networks. For transformer-based networks,
we use ViT-DINO and DeiT. Apart from trained networks, we also consider a
randomly initialized ViT for baseline comparison.

We find that all pretrained feature extractors when used through HSR loss
lead to introduction of meaningful semantic features in the intermediate latent
spaces of the Generator. This is evidenced by reduction of PPL Score in Table 1,
which signifies reduction in non-meaningful generations from the GAN. The
reduction in PPL also implies improved disentanglement [30] and linearity in the
W space of the Generator, which is a desired property for many applications.
We get ≥ 6.2% improvement in the PPL score when guided by these networks.
ViT DINO’s features stand apart, by improving the PPL score by 19% over the
baseline. This is also supported by recent findings of Amir et al. [6], where they
show several inherent properties of features from ViT-DINO, that are useful for
computer vision tasks. With these results, we fix ViT DINO as the choice of the
feature extractor for the rest of the experiments.
Which layers of Generator are more important? The StyleGAN generator
G generates images using 7 synthesis blocks: starting from 4 × 4, up to full
resolution of 256×256. Of these, we consider synthesis blocks having features of
resolution 8, 16, 32, 64. This corresponds to scaling down of resolution r to r

32 ,
r
16 ,

r
8 , and

r
4 . We choose these scales as it largely corresponds to the scales of

downsampling by each block in SoTA CNN architectures [20,51]. The first block
of G (which have low resolution, but are responsible for high-level semantics) are
supervised by the last block of the feature extractor (as they also are responsible
for high-level semantics). Similarly, other blocks ofG are supervised by the blocks
of the feature extractor that bring out similar level of semantics.

To decide which layers contribute the most to the improvement in PPL, we
divide the 4 blocks into 3 groups. The 3 groups specialize in high ( r

32 ,
r
16 ),

mid ( r
16 ,

r
8 ), and low ( r8 ,

r
4 ) level of semantics. We observe, in Table 2, that

it is the supervision at low-level semantics which is most useful for the G. We
observe a gradation in the improvement over the baseline, as high-level semantic
supervision is least useful, followed by middle, and low. Overall, supervision at
all levels turns out to cause the highest improvement.
Does Path Length Regularizer (PLR) complement HSR? Path Length
Regularizer (PLR) was introduced in StyleGAN2 [30]. The intuition behind PLR
is to promote fixed magnitude non-zero change in the resulting image when mov-
ing by a fixed step size in the W+-space. As reported in Table 4, we find that
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Table 1. Feature space ablation:
Ablating over different feature extrac-
tors for usage in HSR. HSR with ViT-
DINO’s features gives best results.

FID ↓ PPL↓

StyleGAN2-ADA 53.28 59.27

+ ViT (RandInit) 53.65 56.97
+ ResNet50 DINO [9] 54.33 55.6
+ DeiT [53] 53.22 54.71
+ ResNet50 [20] 52.88 52.23
+ ViT DINO [9] 51.58 48.02

Table 2. Level of semantics: A gradation in
the improvement over the baseline is observed as
we supervise from high-level semantics to low-
level semantics. Best results are obtained when
all the levels are supervised.

FID↓ PPL↓

StyleGAN2-ADA 53.28 59.27

+ High-level ( r
32
, r

16
) 53.15 57.73

+ Mid-level ( r
16
, r

8
) 52.91 54.18

+ Low-level ( r
8
, r

4
) 53.66 51.77

+ All levels 51.58 48.02

Table 3. FFHQ-140k Results: We report FID,
Precision, Recall and PPL for different methods.
With large data our method (SG2+HSR) produces
better results even compared to SG2-ADA.

FFHQ-140k FID↓ Precision↑ Recall↑ PPL↓

SG2 3.92 0.68 0.45 175.09
+ HSR 3.74 0.68 0.48 144.59

SG2-ADA 4.30 0.69 0.40 163.11
+ HSR 5.26 0.70 0.38 131.41

Table 4. Performance wrt
PLR. PLR and HSR complement
each other, while being equally ef-
fective individually.

PLR HSR FID↓ PPL↓

✗ ✗ 57.97 75.63
✓ ✗ 53.28 59.27
✗ ✓ 52.98 58.60
✓ ✓ 51.58 48.02

HSR itself gives slightly better improvement than the PLR over the baseline.
While the best effect is noted when both, PLR and HSR, are applied together.
Insight. PLR’s objective is to improve latent space smoothness, which leads
to better PPL. Since PPL and image quality (natural-ness of image) are corre-
lated, applying PLR improves the image quality. Whereas in HSR, we enforce
the generator to predict in a feature space learnt from natural images using a
pretrained feature extractor as prior. We observe that this objective, which tar-
gets bringing feature space of generator closer to a “natural” feature space also
leads to improvement in the smoothness of latent space, as measured by PPL.
This shows that image quality and latent space smoothness are complementary
and related concepts. Therefore, optimizing for both gives better PPL score.

4 Experiments

In this section, we demonstrate the effectiveness of HSR experimentally. We first
describe the experimental setup for all our experiments. Then, we evaluate the
quantitative performance on several real-world datasets of varying sizes. Finally,
we show improved linearity of latent space through attribute editing.
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Table 5. Results on Limited Data We present results on different limited data cases
for FFHQ (left) dataset and on real-world datasets (right). We apply our regularizer on
the strong baseline of StyleGAN2+ADA which is designed for limited data. We observe
a significant decrease in PPL over baselines which implies a smooth, disentangled and
meaningful latent space, while preserving photorealism (comparable FID).

Dataset Method FID↓ PPL↓

FFHQ-1k
StyleGAN2-ADA 19.14 98.79
+ HSR 21.76 90.39

FFHQ-2k
StyleGAN2-ADA 14.74 136.14
+ HSR 15.53 115.38

FFHQ-10k
StyleGAN2-ADA 7.16 164.21
+ HSR 8.08 126.35

Dataset Method FID↓ PPL↓

AnimalFace StyleGAN2-ADA 53.28 59.27
Dog + HSR 51.58 48.02

AnimalFace StyleGAN2-ADA 39.50 50.76
Cat + HSR 40.25 40.75

CUB
StyleGAN2-ADA 5.78 265.46
+ HSR 6.15 237.81

4.1 Experimental Setup

Datasets.We run our experiments on FFHQ [26] (70k images), AnimalFace-Dog
(389 images), AnimalFace-Cat (160 images) [50], CUB200 (12k images) [55],
and LSUN-church [59] (126k images) (ref. supl. mat.) datasets. We augment the
datasets by taking the horizontal flip of every image, doubling the number of
images in the original dataset. Implementation Details. We use StyleGAN2-
ADA (SG2-ADA) as the baseline GAN, with its architecture for 256×256 images,
with batch size of 16. Predictors q contain Conv1x1-LeakyReLU-Conv1x1, with
hidden dimension of 4096. We make use of 2 A6000 GPUs for training our models.

4.2 Results

On standard full dataset of FFHQ, we compare over both StyleGAN2 [30] (SG2)
and StyleGAN2-ADA [27]. This is because StyleGAN2 shows slightly better
performance against the ADA variant on large datasets. We also evaluate our
method for limited data sizes. Traditionally, GANs have shown to perform poorly
on smaller datasets, until recently several approaches [25,27,57] have been pro-
posed which enables GANs to learn well on limited data. We observe that irre-
spective of dataset size, asking the generator to be predictive of semantic features
of rich feature extractors via HSR improves the smoothness of the latent space,
as it is evident by an average relative improvement in PPL scores of about 14.2%
on average in Table 5, while that of 17.42% in case of full FFHQ. This is also
evident qualitatively in Fig. 4 and 6, where we observe an improved latent-to-
image mapping even in bottom 10%-ile images, when ranked by PPL scores. We
also present images sampled randomly in Fig. 5, where we observe the mitiga-
tion of the unnatural faces and artefacts (highlighted images) upon application
of HSR. Thus, HSR raises the lower bound for the natural-ness of the images
produced by a generator (also ref. Fig. 2).
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SG2-ADA

SG2-ADA + HSR

Fig. 4. Latent space interpolation of top 10-%ile images, ranked by PPL score. SG2-
ADA images show traces of artifacts which are absent after applying HSR.

4.3 Analysis of Linearity of Latent Space

Motivation. Latent space of a pre-trained StyleGAN has meaningful directions
embedded in it. Shen et al. [47] shows that W+ latent space is disentangled with
respect to image semantics and there exist linear directions d in this space that
control specific semantic attributes in the generated images. This is an important
property of the latent space which is commonly used in controlled image synthe-
sis [44] and image editing [1], as it leads to smooth interpolation between any
two generated images. Furthermore, it is observed that the magnitude of latent
transformations linearly correlates with the magnitude of the attribute changes
in generated images [62]. Although, multiple works [1,23,44,47,56] are built upon
this property to generate desired image transformations, there is no established
metric to evaluate the extent of this linear correlation in the latent space. To
this end, we propose a new metric called Attribute Linearity Score (ALS) for
quantifying this linear correlation between the extent of latent transformations
and the attribute changes.
Attribute Linearity Score (ALS). Let the attribute strength be given by
attribute score (logit value) from a pretrained attribute classifier C [29]. Consider
two latent codes w0 and w1 ∈ W+ and their corresponding generated images
G(w0) and G(w1) (using the generator G). Convex combinations of w0 and w1

generate interpolated latent codes wt (Eq. 3) on the line segment joining the two
latent codes w0 and w1. Let the corresponding generated images be denoted by
G(wt). Linearity of the latent space [62] with respect to the attribute strength C
implies that the attribute score for the image G(wt) should be the same convex
combination of the attribute strengths of G(w0) and G(w1) (Eq. 4).

wt = w0 + t ∗ (w1 −w0), t ∈ (0, 1) (3)

C(G(wt)) ≈ C(G(w0)) + t ∗ (C(G(w1))− C(G(w0))), t ∈ (0, 1) (4)
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StyleGAN2 StyleGAN2+HSR (Ours)

Fig. 5. Comparison over uniformly random sampled images from StyeGAN2 and Style-
GAN2+HSR. StyleGAN2 produces unnatural faces and artefacts over it such as pecu-
liar eyeglasses (as shown in the highlighted images).

Consider the example shown in Fig. 7a, where we depict the transformation of
the smile attribute. On the left, we show the plot of attribute scores with the
interpolation parameter t using smile classifier Cs and on the right we show the
image samples G(wt) for t ∈ (0, 1). A model with a linear latent space structure
should have this plot close to the “ideal” (shown in dotted) straight line between
the two end points. Similar plots are shown for the “smile” and “male” attributes
in Fig. 7b. In both cases, we observe a significant departure from linearity.

The ALS score quantifies the deviation from the line segment defined in
Eq. 4 using the mean squared error metric. To compute this, we first define a set
of equally-spaced interpolation points t ∈ {0, 1

N , 2
N , . . . , 1}. For each attribute

j ∈ {1, . . . ,M}), the squared difference (∆tj) is computed using Eq. 5. The
ALS score (∆T ) is defined as the mean of ∆tj over all M attributes and N

interpolation points (i.e. ∆T = 1
NM

∑N
t=1

∑M
j=1 ∆tj).

∆tj = ||Cj(G(wt))− Cj(G(w0))− t ∗ (Cj(G(w1))− Cj(G(w0)))||2 (5)

In the following sections, we first evaluate effect of linearity on appplying
HSR, by measuring ALS. Then we show it’s application in measuring edits in
images. We use StyleGAN2-ADA model as the baseline trained on FFHQ-10k
for results in the rest of this section.
ALS Evaluation. Our proposed HSR is able to provide a smooth structure
to the latent space which is evident by the lower ALS scores of our model. To
further analyse the structure of the latent space we perform latent space in-
terpolations and generate a sequence of images. To quantitatively evaluate the
interpolation results, we used the proposed ALS scores for the interpolations.
The lower ALS score represent the latent space is well structured and the mag-
nitude of the attributes are linearly correlated with the latent transformation.
The ALS scores for our model and baseline model in Table. 8 for following set
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SG2-ADA

SG2-ADA + HSR

Fig. 6. Latent space interpolation of bottom 10-%ile images, ranked by PPL score.
SG2-ADA latent space accommodates more unnatural images, leading to increase in
PPL score. The latent space maps to more natural face-like images in SG2-ADA-HSR.

of popular attributes {gender, smile, age, hair, bangs, beard} [23, 47, 48]. Ad-
ditionally, Fig. 8 (right) shows the variation of the mean attribute delta (∆t,·)
with the interpolation parameter t. We can observe that in the middle region
t ∈ [0.4, 0.8] the baseline model has high deviation from linear behaviour, which
is significantly less in our HSR regularized model. This is also seen quantitatively
through proposed ALS-attribute score, in which our model outperforms baseline
by 15% of relative improvement. We can observe that the interpolations gen-
erated using the HSR results in smooth transitions and has high visual quality
throughout the interpolation. The StyleGAN2+ADA model without HSR has
sudden transitions in between and has some artifacts present (ref. Fig. 1).

Editability. The semantically rich structure of the latent space is widely used
for performing semantic edits on the generated images [1, 4, 44, 47, 56, 60]. For
instance, if we have to add the attribute smile to the generated face image, one
can edit the latent code as wedit = w+αd where α is edit strength and d is the
direction for the smile attribute edit operation. However, often, the attribute
scores of the edits performed by such methods does not change linearly with
the edit strength parameter α as observed in Fig. 9. To this end, we perform
the following experiment: Given an input source image I0, we first perform at-
tribute edit on it using latent space transformation to obtain I1 using an existing
approach [47]. Then, we use the latent code optimization to find the correspond-
ing latent codes w0 and w1 in the latent space. Finally, we followed the same
approach explained in Sec. 4.3 to generate intermediate images It using wt for
t{∈ 0, 1

N , 2
N , ...1}. The results of the interpolation for edits are shown in Fig.

9. We compared StyleGAN2-ADA with and without HSR in this experiment.
One can observe that in all the cases, adding HSR resulted in added linearity
in the attribute scores plots. This property is highly desired in editing methods
as it provides a fine-grained control over the attributes in the generated im-
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Fig. 8. ALS score comparison upon adding HSR.
(Right): Mean ALS computed for each value of
the interpolation variable t. HSR is able to achieve
a lower value of ALS supporting the linearity in-
duced by ALS. (Bottom): ALS score computed for
all the face attributes separately.

Gender Smile Age Hair Bangs Beard Mean

SG2-ADA 1.38 1.48 1.18 1.96 1.95 1.60 1.59
+HSR 1.12 0.99 1.15 1.87 1.62 1.16 1.32
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ages. Also, observe that both the models evaluated are following the linear line
closely in the first two examples. This suggests that the transitions along the
age attribute is much more interpretable as it follows linearity. In all the three
examples the model with HSR is able to approximate the linear line the better
than the baseline without HSR. From the images, we can visually observe that
the interpolations produced smooth transitions and their is no sudden jump in
the attribute when using HSR. Also note that, the first and last images from
both the models do not match “pixel perfectly”, as they is generated by opti-
mization of latent code by different models (with and without HSR). Note that
HSR improves the reconstruction quality of real images when embedded in the
latent space using projection (ref. supl. mat.).

5 Conclusion

We proposed a novel, hierarchical semantic regularizer called HSR which allows
us to regularize the latent representations in StyleGANs by aligning them to se-
mantically rich ones learnt by state-of-the-art classifiers trained on large datasets.
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Fig. 9. Applying HSR improves the linearity of change in attributes. Here
we show improved linearity for “Young” and “Smile” attributes. Plots show attribute
score on Y-axis, interpolation variable t on X-axis.

HSR is shown to significantly improve the quality of the generated images, espe-
cially those created via linear interpolation between attributes corresponding to
real images. It further has a desirable property that the latent attribute space
becomes more linear. To measure linearity, a novel metric Attribute Linearity
Score (ALS) was introduced. Copious experiments on standard benchmarks val-
idate the benefits of HSR and demonstrate statistically significant improvement
in the quality of synthesized images. This leads us to interesting avenues for the
future work: Enforcing structural priors (e.g. linear) in the latent space while
training a GAN, which can lead to easier and fine-grained attribute editing.
Acknowledgements. This work was supported by MeitY (Ministry of Elec-
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17. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doer-
sch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.: Bootstrap your own
latent-a new approach to self-supervised learning. Advances in Neural Information
Processing Systems (2020) 4, 6

18. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. Advances in neural information processing systems
30 (2017) 3

https://arxiv.org/abs/2112.05814
https://arxiv.org/abs/2112.05814


16 Karmali et al.

19. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: NeurIPS (2017) 3

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 2, 7, 8

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 4, 6

22. Huh, M., Agrawal, P., Efros, A.A.: What makes imagenet good for transfer learn-
ing? arXiv preprint arXiv:1608.08614 (2016) 4

23. Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: Ganspace: Discovering inter-
pretable gan controls. In: Proc. NeurIPS (2020) 2, 4, 5, 10, 12

24. Jeong, J., Shin, J.: Training GANs with stronger augmentations via contrastive
discriminator. In: International Conference on Learning Representations (2021) 4

25. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Deceive D: Adaptive Pseudo Augmentation
for GAN training with limited data. In: NeurIPS (2021) 4, 9

26. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. In: ICLR (2018) 9

27. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training
generative adversarial networks with limited data. In: Proc. NeurIPS (2020) 4, 9

28. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila,
T.: Alias-free generative adversarial networks. In: NeurIPS (2021) 3

29. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: CVPR (2019) 3, 10

30. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020) 1,
5, 7, 9

31. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: CVPR (2020) 3

32. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolu-
tions. In: Advances in Neural Information Processing Systems (2018) 5

33. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In:
CVPR (2019) 2

34. Kumari, N., Zhang, R., Shechtman, E., Zhu, J.Y.: Ensembling off-the-shelf models
for gan training. arXiv preprint arXiv:2112.09130 (2021) 4

35. Liu, B., Zhu, Y., Song, K., Elgammal, A.: Towards faster and stabilized gan training
for high-fidelity few-shot image synthesis. In: International Conference on Learning
Representations (2020) 4

36. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares gener-
ative adversarial networks. In: CVPR (2017) 3

37. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for gans do actu-
ally converge? In: ICML (2018) 3

38. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018) 3

39. Miyato, T., Koyama, M.: cgans with projection discriminator. In: ICLR (2018) 3
40. Mo, S., Cho, M., Shin, J.: Freeze the discriminator: a simple baseline for fine-tuning

gans. In: CVPRW (2020) 4
41. Noguchi, A., Harada, T.: Image generation from small datasets via batch statistics

adaptation. In: ICCV (2019) 4
42. Ojha, U., Li, Y., Lu, J., Efros, A.A., Lee, Y.J., Shechtman, E., Zhang, R.: Few-shot

image generation via cross-domain correspondence. In: CVPR (2021) 4



Hierarchical Semantic Regularization of Latent Spaces in StyleGANs 17

43. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: Styleclip:
Text-driven manipulation of stylegan imagery. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021) 2

44. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: Styleclip:
Text-driven manipulation of stylegan imagery. In: ICCV (2021) 2, 4, 10, 12

45. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021) 4

46. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. In: ICLR (2016) 3, 4

47. Shen, Y., Yang, C., Tang, X., Zhou, B.: Interfacegan: Interpreting the disentangled
face representation learned by gans. IEEE TPAMI (2020) 2, 4, 5, 10, 12

48. Shen, Y., Zhou, B.: Closed-form factorization of latent semantics in gans. In: CVPR
(2021) 2, 4, 5, 12

49. Shocher, A., Gandelsman, Y., Mosseri, I., Yarom, M., Irani, M., Freeman, W.T.,
Dekel, T.: Semantic pyramid for image generation. In: CVPR (2020) 4

50. Si, Z., Zhu, S.C.: Learning hybrid image templates (hit) by information projection.
PAMI 34(7), 1354–1367 (2011) 9

51. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015) 2, 7

52. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: ICML (2019) 4

53. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning (2021) 6, 8

54. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: CVPR (2017) 4

55. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: Caltech-ucsd birds-
200-2011 (cub-200-2011). Tech. Rep. CNS-TR-2011-001, California Institute of
Technology (2011) 9

56. Wu, Z., Lischinski, D., Shechtman, E.: Stylespace analysis: Disentangled controls
for stylegan image generation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2021) 4, 10, 12

57. Yang, C., Shen, Y., Xu, Y., Zhou, B.: Data-efficient instance generation from
instance discrimination. In: Advances in Neural Information Processing Systems
(2021) 9

58. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: NeurIPS (2014) 4

59. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: Lsun: Construction of a large-
scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365 (2015) 9
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