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1 Ternary Search Implementations

We mention in Section 3.4 of the main paper the strategy of ternary search (TS).
Now we detail how it is implemented. Let f(c) be the aesthetic score function
where we tacitly assume it is concave, to find the maximum value of f(c), ternary
search iteratively updates two boundary points cjo, and cpign with the time
complexity of O(log N), as shown in Algorithm 1. Note that for monotonically
increasing aesthetic functions, ternary search also holds as the left boundary c¢;oq
will always yield a lower score than the right boundary point, thus resulting in
a monotonic approximation towards the global maxima.

Algorithm 1 Ternary Search for MonoPix

Input: Concave or monotonically increasing aesthetic function f(c), search range
[Cleft, Cright], iteration times N
Output: The best enhance intensity c.
1: set boundary point Ciow <= Cieft, Chigh < Cright
2: for epoch=1:N do
3: mid point ¢1 < Ciow + (Chigh — Clow)/3

4:  mid point ¢z < Chigh — (Chigh — Clow)/3
5:  if f(c1) < f(c2) then

6: Clow < C1

7. else

8: Chigh +— C2

9:  end if

10: end for

11: ¢y < (Clow + Chign)/2

2 Network Structure and Training Details

2.1 Structures and Parameters

As shown in Table [I} we use the U-net [I1] structure as the backbone for our
generator, which consists of four sets of up and down-samplings. Following [5],
we replace the original deconvolution with bilinear samplings to better mitigate
the checkerboard artifacts. Note that MonoPix has an extra pixel-level control
signal, so it only modifies the first convolution layer with marginal extra compu-
tations. The discriminator has three stride convolution layers, and is borrowed
from CycleGAN [I5]. Overall, the model has 8.6M parameters in generator, and
2.8M in discriminator, which is quite efficient compared with StarGANv2 [3]
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Table 1: The detailed structure of our generator and discriminator. We represent
the parameters of a convolution layer by (input channels, output channels, kernel
size, and stride). C, CLN, MP, UP, Cat denotes convolution, convolution with leaky
ReLU followed by a normalization layer, max pooling, bilinear upsampling, and
concatenation respectively

Generator

layer|operations

1 CLN(3+1, 32, 3, 1), CLN(32, 32, 3, 1), MP(2)]

2-4 |[CLN(C, 2C, 3, 1), CLN(2C, 2C, 3, 1), MP(2)] x3, from C = 32 to 128

5 CLN(256, 512, 3, 1), CLN(512, 512, 3, 1)]

6-9 |[UP(2), C(C, C/2, 3, 1), Cat, CLN(C, C/2, 3, 1), CLN(C/2, C/2, 3, 1)] x4, from C = 512 to 64
10 |c(32,3,1,1)

Discriminator

1 [CL[3, 64, 4, 2]

2-3 |[CNL(C, 2C, 4, 2)] x2, from C = 64 to 128
1 |CL(256, 512, 4, 1)

5 |c(512, 1,4, 1)

(33.9M and 20.8M), CycleGAN [I5] (11.4M and 2.8M), and SAVI2I [9] (6.9M
not including attribute encoder, and 26.6M).

By default, we set normalization layers in MonoPix as identity mappings,
which can be further adjusted for different tasks. We note that it is important
to introduce certain non-linearity before instance normalization, as we have dis-
cussed in Section 3.2 of the main paper. For LOL low-light enhancement task,
we integrate our contrastive modulation scheme into the authors’ code instead.

2.2 Training Details

We use the official training/testing split for all datasets. The detailed implemen-
tations are described as follows:

Yosemite Summer-Winter Translation. The training set contains 1231 sum-
mer photos and 962 winter photos. Following the author’s implementation, we
resize these images to 256, and implement random horizontal flip as the aug-
mentation. We set Agr as 0.25, and the margin € as 0.5. The whole model is
trained with a batch size of 8 (4x2 since we generate two ¢ for each patch) for
300 epochs, where the learning rate starts to drop linearly from epoch 200.
AFHQ Cat-Dog Translation. We train MonoPix with 5153 cat images and
4739 dog images. Agr is set as 0.5. The rest settings are exactly the same as in
Yosemite summer-winter translation, except for the training epochs which is set
to be 200. The learning rate drops from epoch 100.

LOL Low-Light Enhancement. We follow EnlightenGAN [5] to use the 485
LOL dark images as the source domain, and 1016 normal images as the target
domain. Note that this task is concentrated on enhancing dark images only, so
we train a unidirectional generator and discriminator and do not use the domain
fidelity loss. The margin € is set to be 0.33. For MonoPix, we train with a batch
size of 32 (16x2) while for EnlightenGAN we train with batch size of 16 (so that
the total iterations are the same). Both are trained for 200 epochs.
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Table 2: More experimental results. Variant (a) is the model adopted in the main
paper

Variant |Description

Summer — Winter Winter — Summer

ALT/Rgt |RL1/Sm| |ACCt/FID)|ALt/Rgt |RL1/Sm] |ACCt/FID]
(a) MonoPix |0.939/0.154]0.940/0.015|0.950/38.1 |0.960,/0.145(0.964,/0.019{0.949/47.3
(b) w/o Laf 0.927/0.091|0.914/0.008|0.866,/41.3 {0.963/0.097]0.964,/0.010|0.847/50.3
(c) Lagf — L1 ]0.896,/0.111]0.916,/0.010/0.893/39.8 |0.909/0.128|0.930/0.016|0.887/47.7
(d) Add IN 0.975/0.148|0.972/0.014|0.917/38.6  {0.981,/0.120{0.972/0.008/0.860/47.8
(e) Add BN ]0.861/0.086/0.918/0.012|0.830/41.1 |0.862/0.081|0.852/0.012|0.824/50.7

SIDD Noise Generation. We follow the setting in DANet [13] to process the
dataset. Differently, we train MonoPix in an unsupervised and unidirectional
manner, with a batch size of 16 (8x2) and patch size 128 for 200 epochs.

3 More Experimental Analysis

3.1 Domain Fidelity vs. Identity

In Section 3.3 and Section 5.1 of the main paper, we point out that merely
using monotonicity loss can lead to a biased control, and present the domain
fidelity loss L4r. Here we provide more analysis on this setting and compare
it with another naive alternative i.e., using a weak identity loss. As reported
in Table 2| (c), we first observe that adding an identity LI loss on variant (b)
does bring a wider control since it encourages the model to better preserve the
fidelity of inputs, which otherwise is not modeled when merely using monotonic-
ity constraint. However as a side effect of identity mapping, the GAN loss is
thereby sacrificed and causes certain degradation on the control linearity. Fur-
ther, through the comparison with our full model (a), using an identity loss
also produces an inferior result, which on the other hand reveals the benefits of
domain fidelity constraint, and supports our claims in the main paper.

3.2 Impact of Different Normalization Methods

We provide a theoretical analysis in Section 3.2 on the different normalization
methods. As part of the model, we complete our paper with a more detailed
analysis in Table [2[ (d-e). These models trained with additional normalization
layers, generally, exhibit better smoothness yet with slightly inferior but ac-
ceptable translation quality compared with variant (a). Typically we find batch
normalization (BN) leads to certain degradation on the linearity while IN on
the contrary brings a boost. This is probably because IN better helps to model
the style transition property in this task, while the inner contrastivity and de-
pendency on training batch size narrow the improvements of BN. Overall, the
choice of normalization layers serves as an option when implementing MonoPix,
which brings certain differences but does not impede the monotonic modulation
process.
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(a) Adding a non-linear activation solves the IN dilemma. Red and green shadows
denote the distribution of two feature maps obtained with varied modulation intensity

“Feature Intenm‘ :

(b) Visualization on the activated domain-specific features. The last but one picture
evaluates the intensity of feature maps, while the rightmost picture provides visualiza-
tion by locating where a non-linear transformation takes place

Fig.1: Illustration of the instance normalization-compatible modulation in
MonoPix, and the corresponding visualizations

3.3 Visualization on the Activated Features

In the main paper, we propose to inject the contrastive controlling signal via a
non-linear activation before adopting instance normalization (IN). Here we show
in detail how this solution works in Figure[l| (a), and the by-product of a visu-
alization of activated regions in Figure (1| (b). In the first sub-figure, we provide
the numerical distribution of two feature maps obtained from different enhance
levels of a same image. As can be found that a single non-linearity, combined
with the convolution kernel, injects the intensity signal by “pushing” the feature
distribution across non-linear activation regions and prevents a homogeneous
representation after IN. Based on this property, we can further visualize the
model’s attention by examining where a non-linear transformation takes place
(in leaky ReLU (LReLU) for example, we focus on the pixel entries that change
their signs when the modulation intensity changes, as the non-linearity in LReLLU
is at zero), as we show in the rightmost picture in Figure [1| (b). It provides a
more precise visualization than simply relying on the absolute value of feature
maps, whose result is provided in the last but one picture.

3.4 Intensity of Interest

As we mentioned in Section 4.3 of the main paper, MonoPix exhibits a consider-
ably better absolute linearity which shows the translation is loyal and monotonic,
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Fig. 2: llustration of Intensity of interest (IOI), where ¢ denotes the translation
intensity. A fine-grained continuous translation can be obtained on intensities
of interest selectively, for example to observe how whiskers and cats’ eyes grow
(the second row) and how a cat’s ear evolves to that of a dog (the last row)

but the adjacent modifications are not perfectly and evenly distributed. We note
that this is not a practical problem since we can, actually, provide a finer and
monotonic modulation among “intensity of interest” instead of relying on uni-
formly sampled intensities. In real scenarios, it is also expected in most cases
that a user modulates in a selective and attentive manner (such as employing
ternary search), where a high absolute linearity may count more than relative
linearity (a low absolute linearity incurs risk of non-unimodal aesthetic curve,
while a low relative linearity will not impede ternary search but degrades the
complexity). In Figure [2| we take the growth of whiskers and cats’ eyes, and
evolution of dog ears as examples to better demonstrate this point. A finer and
detailed modulation is provided next to the overall modulations.

3.5 Generalization on Latent Representation

Besides the main results, it is critical to examine the generalization ability of a
learned generator. In previous works, it is evidenced that a well-learned genera-
tor retains the robustness and generates meaningful results by style interpolation
[6], feeding unseen conditional inputs [I0], or out-of-the-bound inference [2]. In
the main paper, we have provided a detailed explanation on how a global in-
tensity training enables pixel-level manipulation in the inference stage, which
can be viewed as a spatial-level generalization. Here we provide more examples
on the out-of-the-bound (OOB) manipulation, which is only mentioned in Sec-
tion 4.4 (in the main paper) but not specifically presented. As can be found in
Figure 3] MonoPix is compatible with a slightly OOB inference and generates
natural-looking and acceptable results. Specifically, modulation with a negative
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input

Fig. 3: Out-of-the-bound (OOB) generalization. MonoPix retains its robustness
and generates realistic domain-specific images in a wider control range

modulation intensity can usually yield a better fidelity while those with higher
intensities more resemble the target domain. This evidence suggests that the
derived model does not merely memorize the input intensities, but learns to
represent them in a linear and smooth latent space.

4 More Qualitative Evaluations

4.1 Image Quality over the Modulation Trajectory

One major difference between MonoPix and prevalent generative models is that,
MonoPix does not assume ¢ = 1 is the optimal translation intensity, instead it
learns through relative “reward” from domain discriminator. As a result, the op-
timal translation intensities vary for different input samples and are determined
(hopefully) by ternary search. An example can be found in Figure i} Though
we are able to collect the highest accuracy (ACC) across the whole generation
trajectory, calculating FID on a specific, and fixed intensity for MonoPix can
lead to an underestimation. In Table [3| we provide an example of evaluating
FID on the last translation intensity ¢ = 1, from which we can observe a rela-
tively poor performance than on the whole trajectory. Nevertheless, we notice
that evaluating FID on the whole, evenly-spaced intensities may not provide an
ideal metric, as it discourages the model from exploring mixed-style intermediate
samples, which can be identified from a poor relative linearity.

x l X I X l x I . l N J l N 2 li 2 ll \‘.'l‘!‘\.ﬁllﬁlﬁl}ﬂlﬁl
T =00 <=u01 =02 =03 =01 =06 =07 - g
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input c=05

Fig. 4: Discrepancy between single-image and overall quality. MonoPix does not
assume that images with the highest translation intensities are best candidates
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Table 3: More FID comparisons. We report FID with the highest translation in-
tensity (last modulation result) and across the whole trajectory (overall). Trans-
lation from Summer to Winter is denoted as S2W, and Cat to Dog as C2D

last overall
Directions S2W|W2S|C2D|D2C|S2W [|W2S|C2D (D2C
CycleGAN-DNI [15] [60.2 [66.0 |- |-  [35.0 [428 |- |-

StarGANv2-Rdm [3](71.7 [68.9 |53.9 [17.7 |46.1 |50.1 [33.9 |25.7
StarGANv2-Cent [3](78.8 [67.7 |115 [69.4 |49.3 |52.8 [50.2 |38.0
Liu et al. -Rdm [7] |- - 72.8123.1 |- - 37.1|27.5
SAVI2I-Rdm [9] 70.7 |74.1 |44.1 |16.6 |44.5 |47.6 (28.6 |24.2
SAVI2I-Cent [9] 75.9 [70.1 {158 [63.7 |47.5 |49.2 |53.6 |31.4
MonoPix 63.5 |74.7 |87.4|27.1|38.1 |47.3 |41.1 |14.4

4.2 Subjective Consistency Analysis

We further carry out subjective consistency analysis to both check the tenabil-
ity of our metrics and provide complementary evaluations. The results are listed
in Table [4l We first notice that the linearity, fidelity, and smoothness metrics
are fairly consistent with quantitative scores in the main paper. However, the
quality of translation (i.e., success and quality) differs in Yosemite and AFHQ
datasets. The primary reason behind this lies in the fact that MonoPix is now in-
tegrated with a CycleGAN-style translation framework, where the shape-related
attributes are not particularly taken into consideration (compared with Star-
GANv2). Consequently, MonoPix shows a better fidelity and low-level style ma-
nipulation capability, but may not behave well in multi-attribute modulations.
We also notice that the performance degradation is also related to the property
we mention in Section 4.1 (in the supplementary material. Also in Section 4.3
of the main paper), where in some cases MonoPix provides unrealistic images
near ¢ = 1. Though evaluating FID (typically on the whole trajectory) does
not particularly reveal this issue, human critics are more sensitive to the final
translated results.

Table 4: User study on MonoPix versus SAVI2I and StarGANv2. We show user
preferences in percentages

Yosemite AFHQ
Queries vs. SAVI2I|vs. StarGANv2|vs. SAVI2I|vs. StarGANv2
Linearity 43.3 48.0 41.3 70.2
Fidelity 84.0 84.7 81.9 81.0
Smoothness 60.0 56.8 78.4 87.9
Success 63.2 60.4 27.4 30.4
Quality 65.9 67.4 26.3 37.9
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5 More Visual Results

Winter — Summer

StarGANv2  CycleGAN-DNI

saviat
]

StarGANvZ

3

input c=0.0 c=0.1 c=02 c=03 c=04 c=05 c=0.6 c=0.7 c=038 c=09 c=10

Fig.5: More qualitative resutls on Yosemite winter to summer and AFHQ dog
to cat translation
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Low light — Normal light

Input TBEFN [§]  KinD-++ Ref [14] EnlightenGAN [5]  MonoPix TS Reference

' WE N

Clean +— Noisy

Input CBDNet [4] ULRD [1] DANet [13] MonoPix TS Reference

Fig.6: Visual comparisons on the LOL low-light enhancement task and SIDD
natural noise generation. In MonoPix, “T'S” denotes “ternary search”
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left low +— left high — top low — top high +—
Input

right high right low bottom high bottom low

Fig. 7: More results on pixel-level spatial control. From left to right, we show the
input image, continuous pixel-level modulation with intensities changing from
left low to right high, left high to right low, top low to bottom high, top high to
bottom low respectively
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