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Abstract. Continuous one-to-many mapping is a less investigated yet
important task in both low-level visions and neural image translation.
In this paper, we present a new formulation called MonoPix, an un-
supervised and contrastive continuous modulation model, and take a
step further to enable a pixel-level spatial control which is critical but
can not be properly handled previously. The key feature of this work
is to model the monotonicity between controlling signals and the do-
main discriminator with a novel contrastive modulation framework and
corresponding monotonicity constraints. We have also introduced a selec-
tive inference strategy with logarithmic approximation complexity and
support fast domain adaptations. The state-of-the-art performance is
validated on a variety of continuous mapping tasks, including AFHQ
cat-dog and Yosemite summer-winter translation. The introduced ap-
proach also helps to provide a new solution for many low-level tasks like
low-light enhancement and natural noise generation, which is beyond
the long-established practice of one-to-one training and inference. Code
is available at https://github.com/lukun199/MonoPix.

Keywords: Pixel-level modulation, Continuous monotonic translation,
contrastive training

1 Introduction

Deep learning has significantly revolutionized the way we process and represent
images. Though in most high-level tasks, we may safely assume that the input-
ground truth pairs are deterministic and perfectly aligned [23,17,45] (e.g., class
labels, bounding boxes, and key points), it does not hold true in many low-level
scenarios. In low-light image enhancement [46,6] and natural noise generation
[9,32] for instance, the ever-changing environment makes it even impossible to
provide firm ground truth pairs. Directly adopting a one-to-one (O2O) mapping
on these pseudo labels can result in several problems: in the training stage, it
ignores the one-to-many (O2M) mapping property, and inherently invites certain
divergence and instability; for evaluation and deployment purposes, it incurs
large variance in different environments [38] and lacks certain scalability.

To enable O2M mappings, a direct solution is to introduce conditional gener-
ative models [29,7], or carry out a multi-branch ensemble on several sub-modules
[47,53]. The major obstacle comes from the lack of dense and varied discrete im-
age pairs to support the subsequent training. Some other methods approach
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continuous generation by interpolating between two models, or tuning an ex-
tra adaptation module [21,62,68,22,37]. Nevertheless, methods in this category
involve two correlated networks which are usually obtained from a fine-tuning
or re-training. As a result, they not only prevent an end-to-end training, but
also increase the storage burden and inference complexity. Moreover, all these
methods can suffer from a training-inference gap that, a discrete training is not
sufficient to provide a continuous modulation at inference stage.

On the other hand, through the content and style disentanglement [36,31,12],
it is shown that a single generative network is capable of handling varied styles
and attributes in an end-to-end manner, and provides a smooth generation by
style interpolation [31,13]. To better secure the intermediate generation quality,
works on continuous cross-domain translation further propose to constrain the
in-between samples by coordinating two domain discriminators [18,51], or intro-
ducing some extra constraints [71]. However, to obtain a desired output, a user
either has to change the random style noise at an unpredictable time complexity,
or is required to provide a proper reference style which may not always be plau-
sible. In addition, these methods are primarily focused on an image-level holistic
style translation, but not typically designed for many tasks where a pixel-level
modulation is preferred.

These limitations pique our interest; and we therefore devote to providing a
new solution that simultaneously enables an unsupervised, end-to-end, continu-
ous, and monotonic pixel-level image control. By injecting a spatial controlling
signal into the feature space, and benefiting from the inductive bias of convolu-
tions, we render it possible to directly manipulate from a fine-grained image-like
interface. The monotonicity control is inspired by the recent progress on con-
trastive learning [72,10] and image-to-image translation [18,51], where we further
devise a contrastive modulation scheme that connects the control monotonicity
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with the confidence level of a domain discriminator. In this way, one image more
“resembles” the target domain will get rewarded with a higher discriminator
score; and the training could proceed without any other style level supervisions.
A similar previous work CUT [54] introduces patchwise contrastive loss (on dif-
ferent patches) for image translation, while it does not support image editing and
O2M mapping. A schematic illustration of our approach can be found in Figure
1. Simple though these ideas are, they construct a competitive new solution for
continuous domain translation, typically those in conjunction with conventional
low-level tasks.

We summarize the contributions of this work:

– We investigate a new research area of continuous pixel-level image modu-
lation which has not been particularly investigated before, and provide the
corresponding solution. The surveyed topic enables an interesting unsuper-
vised continuous translation and provides a fine-grained image editing tool.

– We propose a new contrastive learning-based solution for continuous image
translation, which can be seamlessly integrated into existing GAN-based
one-to-one mapping schemes, and is both training and inference-efficient.
The proposed approach does not need any domain-specific labels and has no
training and inference gap.

– We provide several basic evaluation metrics for continuous generation, and
validate the state-of-the-art performance of the proposed model on both the
translation continuity and quality. Extensive results on low-level tasks also
demonstrate the effectiveness of our proposed approach.

– We are one of the first that revisit the long-established O2O mapping proto-
col in many low-level tasks. Our work suggests it is plausible and probably
more flexible to formulate them in an O2M or M2M manner instead.

2 Related Work

One-to-Many Mappings in Low-Level Task. O2M mapping commonly oc-
curs in low-level image processing. It is evidenced in recent literature that many
tasks, such as deraining [53], noise modeling [7,21,22], and low-light image en-
hancement [34,64,29] can be categorized into this scope. Data-guided approaches
model the diversity with synthesized one-to-many pairs (usually with physical
models) and generate them with the corresponding control signals [29,7,22,5,57].
As an alternative to the dense training pairs, image modulation methods address
this task in a two-stage training manner. Upchurch et al. [66] propose to train
two networks and implement feature interpolations. In CFSNet [67] the extra
network is further simplified into only a tuning branch. Inspired by the nor-
malization operations, He et al. [21] propose to insert a per-layer modulation
module and adjust them when trained on another enhancing level. Similarly,
DynamicNet [62] performs adaptation with several extra tuning blocks. Besides
feature interpolation, it is also shown that modulations can take place via inter-
polation on the network parameters [68] or image residuals [22]. There are also
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some efforts that attempt to perform consecutive enhancement [75,58], but the
increased complexity and lack of control range also limit their applications.

In contrast, we present a continuous modulation in a totally unsupervised1,
end-to-end, and inference-efficient manner by training a single network that ex-
ecutes all these tasks. There is no training and inference gap in the proposed
approach, which by design allows a continuous and realistic generation.

Image-to-Image Translation. CNN-based image translation mainly takes the
style representation as an auxiliary loss [16,39,30,63]. Different from designing
explicit style descriptors, it is observed by Dumoulin et al. [15] that incorporating
an affine transformation after the instance normalization (IN) [65] layer can
lead to a conditional style generation, which further inspires data-driven style
manipulation methods like AdaIN [25] and WCT [41]. StyleBank [8], on the
other hand models the style translation with a trainable bank that disentangles
the style representation. It is also shown in [76] and [40] that by injecting the
style information as part of the input, the model can generate varied samples
with the same set of parameters.

As another line of work, GAN [19] provides an important tool for image trans-
lation. Pioneering works like Pix2Pix [27] and CycleGAN [80] introduce adver-
sarial and unsupervised conditional generation, but are O2O mapping models.
To enable a diverse translation, non-one-to-one mappings are thereafter investi-
gated [12,48,26,3]. As one of the most popular and successful schemes, disentan-
gling the content and style representation exhibits a great success on a wealth of
attribute and style translation tasks [36,26,13,73,31], and enables a continuous
translation by interpolating between two latent vectors [31,13]. Recently, works
on continuous cross-domain translation further refine the quality of intermediate
images by introducing an interpolation discriminator [71,43], constraining the in-
termediate results with discriminators from both sides [18,51], or by exploiting
the path of interpolation and translation manifold [11,56,44].

Different from these existing works, the proposed approach eschews the need
for either any extra discriminator or a weighted bi-lateral supervision that can
hardly scale to model many-to-one mappings. Instead, we teach one discrimina-
tor by contrastively feeding two samples and modeling the consistency between
control signals and translation monotonicity.

Image Editing. Our work is also related to image editing. This task can be
achieved generally by learning a conditional image-level mapping [27,80,35,49]
or by exploring the latent semantic trajectories [2,79,14,60,82]. Modern image
editing methods prove to be effective in modeling multiple image-level features
such as semantic contents, geometric shapes, and styles [61,42]; but there are a
few that provide a spatial control [33,81,55], and typically in an unsupervised
manner. The proposed method, further, provides a fine-grained, unsupervised,
and spatial-level editing, whilst exhibiting both fidelity to inputs and a strong
scalability for style and content manipulation.

1 In this paper, we typically refer to methods that perform domain translation without
the need for paired images and intermediate domain intensity labels.
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3 Continuous Cross-Domain Pixel-Level Control

First we formalize a brief description of the newly examined task. Consider
two domains X and Y each with corresponding image samples i.e. {xi}Mi=1 and

{yi}Ni=1, together with a control signal c of the shape W ×H representing the
translation intensity of each pixel. We learn a mapping function GX 7→Y : X ×
C 7→ Y that translate from X to Y , and from Y to X if necessary. Moreover, the
translation is required to be monotonic. Thus, for each image or patch xi and
two control signals c1 and c2, we require the translated result GX 7→Y (xi, c2)
better belongs to the target domain Y than its counterpart if ci,j2 > ci,j1 for each
pixel position. In the following, we will elaborate on the detailed framework and
corresponding loss functions that lead to accomplishing this goal.

3.1 Pixel-Level Contrastive Generation

In existing works on unsupervised domain translation, the conditional style vec-
tor is usually constructed as a flat one [31,12] or with coarse spatial shapes
[33]. These approaches are moderately satisfactory when controlling the local
attributes, but can not enable a fine-grained control.

To tackle this problem, we first visit the pixel-level control signal. This idea is
plain and easy to implement, where we can directly formulate the control signal
as an extra input channel. Without loss of generality, we always assume that the
pixel-level control signal is bounded in [0, 1]. Then, the translated result ŷ of an
input x could be represented as (and vice versa from Y to X)

ŷ = GX 7→Y (concat(x, c)) for each ci,j ∈ [0, 1] (1)

However, to enable such a pixel-level training is non-trivial. First, modern
training schemes and datasets are only focused on holistic attributes, but there
are no pixel-level labels. Second, we do not have a gallery of domain-specific
intermediate labels that guide the modulation process, except for the coarse
binary tags - 0 or 1, which can not model the domain distribution and precludes
conventional absolute intensity-based training. To overcome these problems, we
propose to formulate a contrastive learning-based approach instead, that trains
the domain generator G by relative intensity. In the training stage, we first
randomly generate two pixel-level control signals c1 and c2 for each input patch,
then we encourage the discriminator to yield a higher domain-specific confidence
level for that with a higher translation strength. Since the discriminator D is
trained to examine both the quality and domain-specific features of generated
images, a higher confidence level for D means a better likelihood that the output
belongs to the target domain. This is different from DLOW [18], who needs to
train two discriminators and overlooks the underlying data distributions in the
source domain. Note that in the training stage, we empirically set a control signal
c as one filled with the same value (i.e., c1,1 = c1,2 = ... = cW,H), considering the
randomness of control signal and the inductive bias of convolutional operation.
On the contrary, assigning each ci,j with randomly generated numbers during
training is tedious, and also violates the smoothness of neighboring pixels.
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3.2 Normalization-Compatible Translator

Although concatenating the pixel-level control signal c can be direct and simple,
it is incompatible with commonly used instance normalization modules [65].
Denoted by {Ki}Ci=1 a convolution kernel where i represents the i-th channel,
Idx the channel index function and ⊗ the convolution operation, the convoluted
result for concat(x, c) can be calculated as x⊗Ki ̸=Idx(c) + c⊗Ki=Idx(c). As a
result, the numerical difference between two contrastive samples is expected to be
(c2−c1)⊗Ki=Idt(c), which becomes a constant when c is element-wise the same
(in convolutions, a kernel is shared across the spatial dimension). It could also be
concluded that any linear operation before instance normalization would cause
the same problem (for example adding the broadcast control signal to the input)
as the constant difference on two channels would be eliminated by IN. To prevent
this, we introduce a simple non-linear transformation like leaky ReLU [50] when
adopting instance normalization. Visualizations on the activated domain-specific
features (by identifying the positions where a non-linear transformation takes
place) can be found in the supplement. Batch normalization, on the other hand,
introduces certain contrastivity inside the training samples but does not impede
the overall monotonicity.

3.3 Objective Functions

Based on the proposed contrastive pixel-level modulation framework, we provide
the corresponding constraints steering towards a monotonic and cross-domain
control. Since the translation can be bi-directional, we will always take that from
X to Y as an example.
Monotonicity Loss. We employ the output value of target discriminator to
model the likelihood of belonging to this domain. Given an input image x and two
pixel-level control signal c1 and c2 where we assume ci,j2 > ci,j1 , the confidence
difference ∆tar

X 7→Y between translated results can be calculated as:

∆tar
X 7→Y = DY (GX 7→Y (x, c2))−DY (GX 7→Y (x, c1)) (2)

Under the monotonicity constraint ci,j2 > ci,j1 , we encourage the confidence
difference ∆tar

X 7→Y to be positive for any c1 and c2:

Lmono−X2Y = Ex∼X,c1,c2∼C∥max
(
ϵ−∆tar

X 7→Y , 0
)
∥22 (3)

where ϵ > 0 is a hyperparameter controlling the strength of monotonicity, which
we call amargin here. As illustrated in Figure 2, the above loss exerts a quadratic
punishment when ∆tar

X 7→Y < ϵ, and thus introduces not only a positive ∆tar
X 7→Y ,

but also a positive margin. Omitting ϵ can cause a trivial solution where the
confidence difference is only a little greater than zero and finally a weak control.
Domain Fidelity Loss. Although monotonicity loss enables a continuous cross-
domain control, there exists an asymmetry issue. As we know that a well-trained
discriminator can only produce a high confidence level for a real image, constrain-
ing the confidence level to be low, as in the case of c1, may not be promising.
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The discrepancy can lead to a biased control that lacks in the diversity and con-
trol quality. Though this can be mitigated by applying a weak paired loss (e.g.,
L1 or MSE ) between the input image and the translated one, a rigid identity
mapping also introduces certain instability for c2 and involves much parameter
tuning. As a surrogate, we not only require a higher confidence level for c2 from
the target domain discriminator, but also a higher confidence level for c1 from
the source discriminator. We formulate the domain fidelity loss as:

Ldf−X2Y = Ex∼X,c1,c2∼C∥max
(
ϵ−∆src

X 7→Y , 0
)
∥22 (4)

where ∆src
X 7→Y is defined as:

∆src
X 7→Y = DX(GX 7→Y (x, c1))−DX(GX 7→Y (x, c2)) (5)

GAN Loss. MonoPix also utilizes the adversarial loss [19] and cycle consistency
loss [80] to provide a proper gradient when training the bi-directional translation
network. GAN loss is specialized in constraining the overall quality:

minmax Ladv−X2Y = Ey∼Y [DY (y)] + Ex∼X,c∼C [1−DY (ŷ)] (6)

We adopt cycle consistency loss since in many low-level tasks we are more
concentrated on the intensity and stability of enhancement instead of the di-
versity of appearance. To this end, we expect that the input image could be
recovered from a reverse translation with the same intensity c:

Lcyc−X2Y = Ex∼X [∥GY 7→X(GX 7→Y (x, c), c)− x∥1] (7)

Overall Objective. To keep the presentation succinct, we take the transla-
tion from X to Y as an example when constructing these loss functions. Simi-
larly losses in the reverse direction could also be formulated. For the generator
G = {GX 7→Y , GY 7→X} and discriminator D = {DX , DY }, the overall training
objective is expressed as:

minG LG = Ladv + λcycLcyc + λmnLmono + λdfLdf

minD LD = Ladv + λmnLmono + λdfLdf

(8)

where λcyc, λmn and λdf are hyperparameters balancing different losses.
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3.4 Selective Inference

MonoPix naturally generates a gallery of candidate results for a given input
by constraining the monotonicity. However, a high translation intensity, and
hence a high domain discriminator’s confidence level does not necessarily yield
a satisfactory result. As shown in Figure 3, an image can much “resemble” the
target domain but is inconsistent with human perception (aesthetic score).

We assume there lies a perfect balance point p that yields the best aesthetic
score, where this score can be any reasonable metric, such as human perception,
and quantitative metrics like PSNR and SSIM [69] when a reference image is
available. To approximate p, MonoPix enables a variety of inference strategies
with different execution complexity:
Exhaustive Inference. Benefiting from the monotonicity, we can always sam-
ple N control signals and choose the best result. The complexity is O(N).
Ternary Search. Since the translation intensity - aesthetic score curve can be a
monotonically increasing one or consists of two continuous monotonic parts, it is
unimodal-like. Finding the local maxima can thus be efficiently solved by using
ternary search. The details of this method are described in the supplementary
material. It has the O(logN) complexity.
Guidance from Learned Expert. We can further decrease the complexity to
O(1) by introducing an expert network P that mimics target distribution. It can
be trained in a few-shot manner and even on unseen datasets for fast adaptation.

4 Experiments and Results

We carry out experiments on both the commonly used domain translation datasets
AFHQ cat-dog [13] and Yosemite summer-winter [80], and low-level tasks in-
cluding prevalent LOL low-light enhancement [70] and SIDD noise generation
[1]. For a fair comparison, we will always report the results when c is set to be
element-wise the same when not specified.

4.1 Metrics

For continuous cross-domain image generation, we evaluate both the dynamic
translation process and the quality of translated images:
AL/Rg: As we expect that an image should change monotonically from the
input one, the foremost concern comes from the absolute linearity (AL) and
control range (Rg). For an input image, we first modulate it by varying the
intensity level c from 0 to 1 with an interval of 0.1. Then, AL score can be
evaluated by the Pearson correlation coefficient between these intensity levels
and the LPIPS distances [77] against the input image. Rg score is calculated by
the range of these values, which reflects both the fidelity and difference.
RL/Sm: Besides absolute linearity, we follow [71] to measure the smoothness
of adjacent intermediate pairs. To both overcome the drawback of standard de-
viation as used in [71] (which is sensitive to the absolute input value), and keep
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in comparison with AL, we calculate relative linearity (RL) from the linearity of
cumulative adjacent LPIPS distances, where a high RL score indicates the trans-
lation is even between adjacent samples. The smoothness (Sm) can be evaluated
by measuring the maximum value of these adjacent LPIPS distances.
ACC/FID: Following [51,71], we adopt a pre-trained ResNet [23] binary classi-
fier to measure the success of translation. For each image, we report the highest
confidence level of the classifier among the consecutive modulation process. The
quality of translation can be evaluated by Fréchet inception distance (FID) [24]
between the whole trajectory (with interval of 0.1) and real images, as in [44].

We use the corresponding paired evaluation metrics in low-level tasks. For
low-light image enhancement, we adopt PSNR, SSIM, and LPIPS. For blind
noise generation, we leverage average KL divergence (AKLD) [74].

4.2 Implementation Details

Following [28], we use the U-net [59] structure as the generator and discriminator,
and Adam as the optimizer with β1 and β2 set to be 0.5 and 0.9 respectively.
LSGAN [52] is adopted to provide the basic GAN loss. As to the hyperparameter
settings, we always set λcyc as 10, as in CycleGAN, and λmn as 1, which is the
same as the weight of Ladv. λdf and ϵ, along with training epochs vary in different
datasets, which can be found in detail from the supplementary material. The
learning rate is set to be 10−4 initially and linearly drops to zero.
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4.3 Results on Continuous Cross-Domain Translation

We compare MonoPix with deep network interpolation method CycleGAN-DNI
[68], style interpolation method StarGANv2 [13], and recently proposed con-
tinuous cross-domain translation model Liu et al. [44] and SAVI2I [51]. For
style-guided methods, we randomly select their reference images from the target
domain to provide the style information and report the average scores in 5 ex-
periments (we call this variant “-Rdm”), and calculate the average target style
information (style centroid) so that they can generate deterministic interpola-
tions with O(1) complexity (we call this variant “-Cent”).

The visual and quantitative results can be found in Figure 4 and Table 1
respectively. We first notice that two-stage interpolation method CycleGAN-
DNI and our contrastive modulation approach MonoPix show a better fidelity
on the input images, while style-guided solutions bear an obvious distortion on
the original textures and attributes. Though CycleGAN-DNI exhibits the high-
est control range in Table 1, the intermediate smoothness is significantly worse
than the rest candidates. We also find that MonoPix provides a competitive ab-
solute linearity, but the modifications between adjacent translation intensities
are not strongly guaranteed to be evenly distributed, as in Yosemite scenario.
This is partially related to the non-linearity of domain discriminator, but is not
a key practical problem since we can execute a finer exploration in “intensity
of interests”, which we illustrate more in the supplementary material. As to
the realness and quality, MonoPix also performs favorably against other state
of the arts, and strongly demonstrates the benefits of introducing a contrastive
modulation scheme that helps to explore domain-specific features. Nevertheless,
we note that evaluating FID on the whole trajectory, or on a specific intensity
may produce different results for MonoPix, as we do not assume all input images
share the same optimal translation intensity. More discussions on the qualitative

Table 1: Quantitative results on cross-domain continuous translation

Methods
Summer 7→ Winter Winter 7→ Summer

AL↑/Rg↑ RL↑/Sm↓ ACC↑/FID↓ AL↑/Rg↑ RL↑/Sm↓ ACC↑/FID↓
CycleGAN-DNI [68] 0.969/0.286 0.937/0.067 0.766/35.0 0.979/0.279 0.911/0.079 0.834/42.8

StarGANv2-Rdm [13] 0.805/0.134 0.992/0.021 0.616/46.1 0.741/0.107 0.996/0.018 0.771/50.1

StarGANv2-Cent [13] 0.719/0.100 0.985/0.016 0.650/49.3 0.417/0.055 0.996/0.010 0.720/52.8

SAVI2I-Rdm [51] 0.959/0.185 0.994/0.013 0.680/44.5 0.939/0.168 0.995/0.013 0.706/47.6

SAVI2I-Cent [51] 0.934/0.145 0.988/0.010 0.718/47.5 0.873/0.111 0.993/0.009 0.721/49.2

MonoPix (Ours) 0.939/0.154 0.940/0.015 0.950/38.1 0.960/0.145 0.964/0.019 0.949/47.3

Methods
Cat 7→ Dog Dog 7→ Cat

AL↑/Rg↑ RL↑/Sm↓ ACC↑/FID↓ AL↑/Rg↑ RL↑/Sm↓ ACC↑/FID↓
StarGANv2-Rdm [13] 0.872/0.279 0.979/0.299 0.924/33.9 0.840/0.293 0.974/0.295 0.980/25.7

StarGANv2-Cent [13] 0.738/0.242 0.980/0.284 0.906/50.2 0.742/0.263 0.974/0.282 0.991/38.0

Liu et al. -Rdm [44] 0.930/0.281 0.967/0.174 0.956/37.1 0.933/0.313 0.956/0.216 0.997/27.5

SAVI2I-Rdm [51] 0.973/0.294 0.990/0.142 0.942/28.6 0.968/0.292 0.992/0.138 0.982/24.2

SAVI2I-Cent [51] 0.955/0.235 0.988/0.141 0.976/53.6 0.957/0.251 0.995/0.132 0.997/31.4

MonoPix (Ours) 0.986/0.398 0.990/0.050 0.970/41.1 0.983/0.407 0.984/0.076 0.997/14.4
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evaluations can be found in the supplementary material. It is also noteworthy
to mention that interpolating towards the style centroid leads to a smoother
and deterministic translation (variant “-Cent”), yet taking such a trajectory can
cause duplicated or unrealistic patterns for style-guided approaches.

4.4 Applications in Low-Level Image Processing

In addition to cross-domain continuous translation, we show how MonoPix, along
with the inference strategies can be used to facilitate low-level tasks.
Low-Light Image Enhancement.We integrate the proposed contrastive mod-
ulation approach with EnlightenGAN [28], a previous unsupervised one-to-one
mapping (US-O2O) method in this area, and compare the performance on LOL
test set with several state-of-the-art methods, including supervised one-to-one
mapping (SL-O2O) method TBEFN [47], and reference-guided supervised (SL-
Ref) approach KinD++ [78]. For fairness, we retrain EnlightenGAN on LOL
training set, which yields an improved performance. We choose PSNR to guide
the ternary search for this task unless specified.

To figure out the potential of our controllable generation scheme, we first
implement exhaustive inference (EI), whose results can be viewed as the up-
per bound. As can be found in Table 2, MonoPix yields an average PSNR
of 21.65, which is considerably higher than the one-to-one mapping baselines.
This is because a rigid O2O mapping is not sufficient to model the diversity of
data distribution. Interestingly, this result is even comparable to state-of-the-
art reference-guided supervised approach KinD++, but note that MonoPix can
produce competitive results without any expert knowledge or paired supervision,
and streamlines the enhancement pipeline notably. The superiority of MonoPix is
also supported from SSIM and LPIPS scores. When using a 7-times ternary
search, we observe a tiny and acceptable performance drop. This evidence not
only validates the monotonicity and continuity of the shaped generation man-
ifold, but also demonstrates the effectiveness of our inference strategy. Next,
we formulate a non-reference-guided variant by training an expert network with
10% of paired supervision (during training the backbone conditional generator
is frozen). Shown in the experiment named “LP”, the model then degrades to
an O2O mapping-based translator where the previous unsupervised contrastive
training stage now serves as a pre-text task. Though not competitive as the

Table 2: Quantitative results on LOL test-
set. ELGAN stands for EnlightenGAN

Method Type PSNR↑ SSIM↑ LPIPS↓
TBEFN [47] SL-O2O 17.35 0.777 0.210

KinD++ [78] SL-Ref 21.80 0.829 0.158

KinD++ [78] SL-O2O 17.75 0.758 0.198

ELGAN [28] US-O2O 19.01 0.709 0.274

Ours-EI US-Ref 21.65 0.731 0.273

Ours-TS US-Ref 21.55 0.731 0.273

Ours-LP Few Shot 19.75 0.725 0.272

Table 3: Quantitative results on
SIDD natural noise generation

Method Type AKLD↓
CBDNet [20]

SL

0.728

ULRD [4] 0.545

GRDN [32] 0.443

DANet [74] 0.212

Ours-EI
US

0.137

Ours-TS 0.139
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Low light 7→ Normal light

Input TBEFN KinD++ Ref EnlightenGAN MonoPix TS Reference

Clean 7→ Noisy

Input CBDNet ULRD DANet MonoPix TS Reference

Fig. 5: Visual comparisons on the LOL low-light enhancement task and SIDD
natural noise generation

+ = + =

+ = + =

Fig. 6: Examples on fine-grained pixel-level control. From left to right, we provide
the input image, spatial control signal, and the modulation result respectively

ternary search variant, it still produces competitive results, yet with a complex-
ity of only O(1). Visual comparisons on this task can be found in Figure 5.

Blind Image Noise Generation. Different from the commonly discussed task
of image denoising, noise generation takes the reverse consideration, and typically
is an O2M mapping task. We show in this part the potential and benefits of
introducing the proposed continuous modulation approach into this field, and
compare with state-of-the-art methods CBDNet [20], ULRD [4], GRDN [32],
and DANet [74]. Quantitative and visual results can be found in Table 3 and
Figure 5 respectively, where our model (“TS” variant is guided by AKLD) again
exhibits its superiority and generalization ability. To the best of our knowledge,
MonoPix is the first work that proposes to continuously model natural noise in
an unsupervised and spatially-controlled manner. More visual comparisons can
be found in the supplementary material.

Pixel-level Monotonic Control. In all the previous experiments, we change
the overall translation strength by assigning each pixel with the same intensity.
Recall that a fine-grained pixel-level control can be naturally obtained by cus-
tomizing ci,j , we here provide a few examples in Figure 6. Note that the linearity
of manifold further enables a slightly out-of-the-bound inference, especially for
uni-directional tasks like illumination and noise control.
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5 Discussion

5.1 Ablation Studies

To further examine the impact of the introduced method, we conduct ablation
studies on Yosemite summer-winter translation with two key components that
construct our approach: the monotonicity loss (carried along with the contrastive
training scheme) and domain fidelity loss. Shown in Table 4 (a) and Figure
7, the variant with none of these losses degrades to an O2O mapping, as we
have expected. Note that the AL score is near zero since Pearson correlation
coefficient can be negative. When we further add the monotonicity loss, the
model succeeds in catching confidence differences and produces a coarse yet
continuous translation. Our full model, as shown in variant (c), yields a better
fidelity and wider control range. We find the translation quality is also improved
under this setting, which is because fidelity loss also strengthens the translation
monotonicity and encourages to explore more domain-specific features.

5.2 Sensitivity Analysis

We provide the sensitivity analysis on the hyperparameter ϵ in Lmono and Ldf ,
robustness of guiding criterion in ternary search, and the impact of inference
complexity in this part. For better comparisons, we label the variants with varied
ϵ consecutively following Table 4(c). The results in experiment (d) illustrate
that merely asking the discriminator to produce a higher confidence level is
insufficient and easily collapses to a trivial solution. In contrast, if we set ϵ
to 1.0, as in experiment (e), the whole loss function is then largely dominated
by Lmono and Ldf , which ultimately leads to an unpleasant translation. Here
we note that variant (e) achieves a better FID score than (d), as the latter
suffers from a severe mode collapse issue; however considering the unrealistic
translation results, setting a high ϵ inevitably introduces a quality degradation
for our full model (c). Concluded from these experiments, hyperparameter ϵ
provides a balance for control intensity and visual quality, and is suggested to
increase from a small value. Typically, setting ϵ = 0.5 can yield acceptable
translations for most of the examined tasks. Figure 8 shows that MonoPix can
always produce pleasant results and correspondingly achieves the best score when

Table 4: Ablation studies on Yosemite dataset

Variant Lmono Ldf ϵ
Summer → Winter Winter → Summer

AL↑/Rg↑ RL↑/Sm↓ ACC↑/FID↓ AL↑/Rg↑ RL↑/Sm↓ ACC↑/FID↓
(a)

0.5

0.143/0.000 0.999/0.000 0.733/49.9 0.105/0.000 1.000/0.000 0.702/60.0

(b)
√

0.927/0.091 0.914/0.008 0.866/41.3 0.963/0.097 0.964/0.010 0.847/50.3

(c)
√ √

0.939/0.154 0.940/0.015 0.950/38.1 0.960/0.145 0.964/0.019 0.949/47.3

(d)
√ √

0.0 0.415/0.000 1.000/0.000 0.735/50.0 0.250/0.000 1.000/0.000 0.712/59.5

(e)
√ √

1.0 0.771/0.569 0.861/0.210 0.996/39.7 0.774/0.571 0.873/0.204 0.994/48.7
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Fig. 7: Visual comparisons on the ablation study and
sensitivity analysis. We label for each translated im-
age the LPIPS score against the original input to
provide a better comparision
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Fig. 8: Sensitivity anal-
ysis on the choice of
ternary search criterion
(top) and impact of
ternary search complex-
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guided with a specific criterion. Though not surprising, these results also provide
a strong evidence on the feasibility and robustness of our proposals. We have
also tested the impact of N which directly controls the inference complexity,
where a 5 to 7 times of ternary search is found sufficient to provide competitive
results.

6 Conclusions

We investigate in this paper an interesting yet important task - unsupervised
continuous pixel-level modulation, and present MonoPix, the first successful so-
lution by devising a novel contrastive modulation framework and the correspond-
ing constraints. MonoPix can be deployed with selective inference complexity,
and achieves a state-of-the-art performance on both the translation continuity
and quality. The proposed contrastive modulation approach also provides a new
alternative to paired or one-to-one mapping pipelines in low-level visions.

We also note that there are still several challenges under the current MonoPix
framework, such as pixel-level multi-modal and multi-attribute control, absolute-
relative linearity balance, better constraints and evaluation metrics etc. We hope
the proposed method could attract more research interest in continuous pixel-
level modulation, and help to shape our view on non-O2O mappings.
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