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Abstract. The automatic generation of floorplans given user inputs has
great potential in architectural design and has recently been explored in
the computer vision community. However, the majority of existing meth-
ods synthesize floorplans in the format of rasterized images, which are
difficult to edit or customize. In this paper, we aim to synthesize floor-
plans as sequences of 1-D vectors, which eases user interaction and design
customization. To generate high fidelity vectorized floorplans, we propose
a novel two-stage framework, including a draft stage and a multi-round
refining stage. In the first stage, we encode the room connectivity graph
input by users with a graph convolutional network (GCN), then apply
an autoregressive transformer network to generate an initial floorplan
sequence. To polish the initial design and generate more visually appeal-
ing floorplans, we further propose a novel panoptic refinement network
(PRN) composed of a GCN and a transformer network. The PRN takes
the initial generated sequence as input and refines the floorplan design
while encouraging the correct room connectivity with our proposed ge-
ometric loss. We have conducted extensive experiments on a real-world
floorplan dataset, and the results show that our method achieves state-
of-the-art performance under different settings and evaluation metrics.

1 Introduction

House design is essential yet challenging work for professional architects, usually
requiring extensive collaboration and multi-round refinement. Floorplan design
is a crucial part of house design, which involves designing the room layouts and
their connectivities such as walls and doors. With the availability of several large-
scale floorplan benchmarks [4,5,24] and advance in generative models such as
generative adversarial networks (GANs) [6], generating floorplans automatically
has recently attracted the attention and interest of architects as well as computer
vision researchers [10,19].
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(a) Previous rasterized meth-
ods [17,18].

(b) Previous vectorized
methods [20].

(c) Our proposed vectorized
method.

Fig. 1: Comparisons between different floorplan generation pipelines.

Motivated by the interactive design process, previous works generated floor-
plans with different input constraints, such as building boundaries [9,24], room
dimensions [22], or bubble diagrams that describe room numbers, room types,
and adjacency or connectivity information [17,18]. There is also work which ex-
plores floorplan generation from scratch in an unconditional way (e.g., [20]).
Since architects usually preset room categories and their connectivities before
designing the floorplans, we find the setting by HouseGAN [17] to be the clos-
est to the design practice. We thus follow their setup throughout this paper for
interactive floorplan generation.

Current state-of-the-art methods with conditional inputs [17,18] use graph-
based GANs to generate room layouts as rasterized images. Although they have
shown superior generation realism, we argue that GAN-generated rasterized im-
ages have several limitations in representing floorplan layouts. First, it is chal-
lenging for GANs to learn geometric layout properties such as axis-aligned walls.
Second, some input conditions such as room numbers cannot be explicitly ex-
pressed in the rasterized floorplans. Last but not least, rasterized masks are
irregular representations, which have restricted the options for users or archi-
tects to refine or customize the generated floorplans. In this paper, we propose
to represent floorplan layouts as sequences of 1-D vectors describing the room
bounding box coordinates, and generate vectorized floorplans in an end-to-end
fashion. With a concise and user-friendly representation, generating vectorized
floorplans enables efficient inference, more accessible user interactions, and con-
nected space representation.

Mimicking the floorplan design process, we propose a novel two-stage frame-
work conditioned on input bubble diagrams and gradually refine the generated
floorplan through multiple steps. Fig. 1 illustrates the difference between our
proposed framework and previous methods. In the first stage (i.e., draft stage),
we apply graph convolutional networks (GCNs) to encode the room connectivity
from the bubble diagram, then an initial room sequence is generated with an
autoregressive self-attention transformer network following previous layout gen-
eration works [7,20]. However, the generated draft result may be unsatisfactory
since the autoregressive models cannot access the global information from the
entire sequence at each generation timestamp. Thus, in the second stage (i.e.,
refining stage in Fig. 2), we propose a panoptic refinement network (PRN) to
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refine the draft floorplan design for a more visually appealing appearance while
keeping the correct room connectivity. Taking the entire floorplan sequence from
the draft stage as input, a GCN in the panoptic refinement network first pro-
cesses the generated sequence to refine the connectivity relationship. Another
transformer is further applied to exploit the contextual information of the whole
sequence. In addition, a novel geometric loss based on layout overlapping is pro-
posed to encourage the correct layout of the generated floorplan.

The main contributions of our paper can be summarized as follows:

– We propose a novel two-stage framework to generate vectorized floorplans
from user inputs. To the best of our knowledge, our work is the first to allow
the end-to-end conditional generation of vectorized floorplans.

– In the draft stage, we integrate GCNs into a transformer-based autoregres-
sive model and show how to effectively capture the room connectivity rela-
tionships provided in the user inputs.

– In the refining stage, we propose a panoptic refinement network for multi-
round refinements of the draft floorplans, while encouraging the correct room
connectivity with our proposed geometric loss.

– Extensive experiments on a real-world floorplan dataset show that our method
outperforms previous state-of-the-art approaches under most settings.

2 Related Work

Data-driven floorplan generation Various data-driven approaches have been
proposed in recent years for automatic floorplan generation. Mainstream meth-
ods primarily focused on generating floorplans as rasterized images. RPLAN [24]
created a large-scale annotated dataset from residential buildings and proposed
a two-stage approach to generate rooms from a given boundary. Graph2Plan [9]
proposed to first generate layout-constrained floorplans as rasterized images via
convolutional neural networks (CNNs) and graph neural networks (GNNs), then
applied an offline optimization algorithm to align the rooms and transform them
into a vectorized floorplan, given the boundary and graph-constrained layout as
input. HouseGAN [17] took the bubble diagram of the rooms as user input, and
introduced a GAN-based architecture to generate each room. HouseGAN++ [18]
was the extension of HouseGAN and the authors proposed an improved GAN-
based network, using a GT-conditioning training strategy as well as a list of
test-time meta-optimization algorithms.

While previous rasterized floorplan generation methods have achieved promis-
ing results, their applicability is often limited by the rasterized representations.
In practice, architects mostly work with vectorized representation [25] of floor-
plans due to its flexibility and geometric compatibility. To leverage vectorized
representations, existing methods [18,24] often converted rasterized floorplans
into vectorized representations via postprocessing steps [3]. However, the repre-
sentation power is yet limited by the originally generated rasterized images. To
this end, we directly represent the floorplan rooms as vectorized bounding boxes
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in our method. More recently, Para et al. [20] also utilized vectorized represen-
tation to generate floorplans using an autoregressive model and focused more
on unconditional generation. More specifically, a transformer was used to pre-
dict elements including room coordinates and sizes in an autoregressive manner,
followed by another transformer to generate edges such as walls and doors. A
post-processing optimization step was adopted to refine the output from the net-
works to obtain final layouts. Despite using the same floorplan representations,
our work has several essential differences from [20]. First, our model enables
interaction with graph-based user input, which satisfies the room connectivity
constraints. Second, we encode constraints such as doors into the learning ob-
jectives of the same network, skipping the need to use a separate model to learn
constraints as in [20]. Moreover, unlike [20] which applied linear programming
regularization to optimize network output, we propose a panoptic refinement
network that refines the draft floorplan while encouraging the correct room con-
nectivity in an end-to-end fashion.

Autoregressive models for layout generation Floorplan generation can
be interpreted as a special case of layout generation. In the literature, the au-
toregressive model has been widely used in layout or shape generation tasks
[2,7,11,15,16] due to its superior representation ability to model sequential re-
lationships. LayoutVAE [11] proposed a variational auto-encoder (VAE) [13]
architecture conditioned on priors such as element numbers and types. Lay-
outTransformer [7] applied a transformer-based architecture to learn layout at-
tributes autoregressively in an unconditional manner. VTN [2] instantiated the
VAE framework with a transformer network and generated layouts in a self-
supervised manner. However, there are two potential limitations for transformer-
based autoregressive models in layout generation [15]. First, the information flow
is unidirectional and immutable in the autoregressive model since the model only
has access to previously generated results during the iterative generation. Sec-
ond, most existing transformers only considered unconditional layout generation
without user inputs and thus are not suitable for an interactive generation. To
mitigate such limitations, we enable interactive generation by integrating GCNs
into the transformer for draft floorplan generation. Unlike existing refinement
method for scene layout generation which only refines the output once [26], we
resolve the unidirectional generation issue by applying another panoptic refine-
ment network that utilizes the whole vectorized floorplan sequence and perform
multi-round refinement for the draft floorplan.

3 Methodology

Given a bubble diagram input from the user which encodes the number of rooms,
room types, as well as their connections through doors, our proposed framework
generates vectorized floorplans in two stages. In the draft stage, we employ a
GCN for the layout coordinate embeddings to encode the connectivity relation-
ship between rooms and their connecting doors. The GCN-processed embeddings
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Fig. 2: Overview of our method. User inputs are first processed by a GCN and
room elements are generated by a transformer in the draft stage. The layouts
are further refined by a panoptic refinement network in the refining stage.

as well as the category embeddings are then passed into an autoregressive trans-
former network to generate room layout elements. In the generated floorplan,
each room or door is represented by a set of bounding box coordinates. In the
refining stage, we apply another transformer network to integrate the global in-
formation from the entire floorplan sequence to refine the layouts of the initial
floorplan generated in the draft stage. An overview of the proposed framework
can be found in Fig. 2. More details are introduced in the remaining part of this
section and implementation details can be found in the supplementary materials.

3.1 Draft stage with GCN-constrained autoregressive transformer

Layout representation Previous layout generation works [7,15] represented
each object with 5 attributes (c, x, y, w, h), where c ∈ C is the category, (x, y)
is the center location and (w, h) is the object size. We adopt a similar setting
but with the exception of c since in our work, c is given as part of the input
conditions encoded in the input bubble diagram therefore there is no need to
generate c. c can be directly obtained for each room from the input, where doors
are treated as special cases of rooms. As illustrated in Fig. 2, we use the geometric
representation (xL, yT , xR, yB) for an object, where (xL, yT ) is the top-left corner
and (xR, yB) is the bottom-right corner. We then discretize the continuous x- and
y-coordinates with 8-bit uniform quantization (from 0 to 255) [7,16] for the ease
of representation. Following the convention of autoregressive generation [7], we
include an additional starting token and an ending token for the layout sequence.
We flatten the whole layout with a sequence of 1-D vectors as:

S = [⟨BoS⟩, r1, r2, ..., rN , ⟨EoS⟩], (1)

where N is the total number of rooms and doors, ⟨BoS⟩ and ⟨EoS⟩ are the
starting and ending token of the sequence, respectively. Room or door vector
is represented by ri = [xL

i , y
T
i , x

R
i , y

B
i ]. Geometric coordinate embedding Xg is

learned through a learnable embedding layer which projects the original quan-
tized coordinates to an embedding space.
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Fig. 3: Left: the process of parsing an original bubble diagram to a connectivity
graph adapted for GCN. Right: the process of transforming the room connec-
tivity matrix A into the sequence connectivity matrix AS .

Also, the room categories corresponding to the objects in the layout sequence
are encoded in a separate room category sequence. Following [7], we encode the
categories c as discrete values in the range of [256, 256+Nc], whereNc is the num-
ber of room categories. Then, a category embedding Xc is also learned through
a learnable embedding layer sharing weights with the geometric embedding layer
to convert quantized category values to the embedding space.

Encoding connectivity graph with GCN To encode the connectivity re-
lationships, we build a connectivity graph AS which considers the connectivity
between rooms via doors from the input bubble diagram. Throughout the paper,
we treat all doors as special cases of rooms, as the nodes of the input graph.
As illustrated in the left side of Fig. 3, two nodes are parsed as connected by
an edge if there are two rooms connected via a shared door or if a room and
a door are connected. Inspired by the success of GCN [14] in various tasks, we
propose to encode the connectivity graph from the bubble diagram with a GCN.
The GCN takes the input geometric embedding Xg as well as a pre-computed

sequence connectivity matrix AS as input. Let ÃS = AS+I, where I is the iden-
tity matrix indicating that each room is connected to itself, we adopt a learnable
layer W to get the updated feature representation XG

g using the row-normalized

connectivity matrix ÂS as:

XG
g = f(Xg, AS) = ÂSXgW, ÂS = D̃− 1

2 ÃSD̃
− 1

2 , D̃ii =
∑

j
ÃSij

. (2)

Now we present how to generate the sequence connectivity matrix AS as in
the right side of Fig. 3. For efficient processing by GCN, we adapt the original
room connectivity matrix A ∈ N×N , whereN is the room number, to a sequence
connectivity matrix AS for the vectorized floorplan sequence. We then flatten
the quantified N × 4 bounding boxes to a sequence of 1-D vectors with length
4N + 2, including special tokens ⟨BoS⟩ and ⟨EoS⟩. For each element ri, we get
its connectivity value with another element rj by querying Ai′ j′ as ASij = Ai′ j′ ,

where i
′
and j

′
are the room indexes of ri and rj . For ⟨BoS⟩ and ⟨EoS⟩, we fox

their connectivities to other elements as 0. AS is used as the input of GCN. Note
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that during an intermediate step t of the autoregressive generation process, only
the generated sequence embeddings Xg1:t and a partial graph AS1:t

are used
as the input of GCN. Thus, the initial floorplan generated in the draft stage
may not fully utilize the information of the entire sequence and neglect certain
connectivities between rooms. We discuss how to resolve this issue in Sec. 3.2.

Autoregressive generation with self-attention transformer Following
previous autoregressive generation works [7,16,20], we generate the floorplan
sequence through an iterative process. The joint distribution of autoregressive
generation can be represented by the chain rule:

p(s1:4N+2) =

4N+2∏
i=1

p(si|s1:i−1). (3)

A transformer network is applied for autoregressive generation, with a teacher-
forcing strategy during training. For the input, we have obtained the GCN-
processed geometric embedding XG

g and the category embedding Xc for each
element. To help encode the geometric position of each room inside the floor-
plan sequence, we also build another embedding layer to learn the positional
embeddings Xp [23] for each room element. The input of the transformer is the
summation of the three types of embeddings: X = XG

g +Xc +Xp. At the test
time, student-forcing is used, and only the starting token is used as input to
the transformer network. For the transformer architecture, we apply multi-head
self-attention as in LayoutTransformer [7] and use GPT-1 [21] as our backbone
transformer network. Note that our model is flexible and also compatible with
other transformer models.

3.2 Refining stage with panoptic refinement network

A major limitation of transformer-based autoregressive generation is that, for
each generation step, only previous states can be taken as input. Thus, the model
cannot leverage information from the future states, and may neglect the connec-
tivity between certain elements. For example, in vectorized floorplan generation,
it is challenging to properly place a room or door even for human experts, if
only limited context information is provided. However, if the initial states for all
rooms are given, a transformer model can access the panoptic features and has a
better sense of their relative positions with corresponding categories. This moti-
vates us to design a panoptic refining network to improve the floorplan generated
in the draft stage by encouraging correct global connectivities.

In the refining stage, we introduce a novel panoptic refinement network
(PRN) to refine the initial generations from the autoregressive transformer.
The network is also implemented as a GCN and a transformer network with
multi-head self-attention modules. Although the network architectures of the
two stages are similar, their learning targets are fundamentally different. In the
draft stage, our model aims to predict one element at a time given all previously
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generated rooms; while in the multi-round refining stage, the PRN aims to learn
the refined elements based on the entire sequence.

During training, we use greedy decoding to convert the learned probabilities
into the coordinate sequence with discrete values. Note that we do not include
⟨BoS⟩ and ⟨EoS⟩ in the input of PRN. For the input of the refinement network,
since the category embeddings and positional embeddings remain unchanged,
we directly get them from the input of the draft stage. Only the geometric
embeddings will be updated, which is denoted as Xgr. The refinement GCN
processes Xgr and obtain the GCN-updated embeddings XG

gr. Then the input
embeddings Xr for PRN transformer can be represented in a similar manner as
the draft stage: Xr = XG

gr +Xc +Xp.
Finally, the embedding sequence is passed into the PRN transformer to get

the refined floorplan sequences. The end-to-end refinement process of PRN can
be performed iteratively by taking the refined output from iteration i as the
input of the next iteration i+ 1. More analysis is given in Sec. 4.4.

3.3 Training strategies and losses

Hybrid sorting strategy As shown in previous works [16], ordering is impor-
tant for training autoregressive models. Layout generation methods [7,16] often
sorted the elements by the relative spatial positions. However, this strategy used
in unconditional generation cannot be directly applied to category-conditioned
generation. Since conditional categories are provided as constraints, a category
needs to be strictly associated with a generated element. Thus, we propose a
hybrid sorting strategy for a more effective conditional autoregressive genera-
tion in both training and testing. To leverage categorical spatial information,
we first compute the average spatial position for each room category throughout
the whole training set, then sort room categories by their average positions and
place two types of doors (i.e., interior and front doors) at the end.

Reconstruction loss We apply the standard cross-entropy loss on the gen-
erations from both stages to learn a categorical distribution for the quantized
coordinates. The loss is averaged by the sequence length T and the refinement
iterations Nr, which can be represented as:

Lrecon =
1

T

T∑
t=1

Lar +
1

TNr

T∑
t=1

Nr∑
i=1

Lref , (4)

where Lar denotes for the loss from autoregressive model and Lref denotes for
the loss from panoptic refinement model.

Geometric loss Since the reconstruction loss focuses more on single elements,
the connectivity between rooms is not explicitly measured by the reconstruction
loss. To further encourage correct room layout and connectivity, especially for
the refining stage, we introduce a global geometric constraint by calculating the
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intersection-over-union (IoU) values between the generated and real layouts. To
calculate the IoU values, we need to first transform the predicted probabilities
on the quantized coordinates to continuous values. However, direct conversion
is not differentiable and thus cannot be trained via back-propagation. To enable
end-to-end training, we borrow ideas from the differentiable soft-argmax strategy
originally proposed in the stereo matching task [12]. The ith element’s prediction

xi is then represented as xi =
∑N

j=1 xj · σ(xj), where σ(xj) is the probability
of quantized coordinate xj implemented with the softmax function. Now we can
compute a geometric IoU matrix Ggen for the generated sequence and build a
geometric loss Lgeo measuring the L1 distance between Ggen and its groundtruth
geometric IoU matrix Ggt:

Lgeo =
1

Nl

Nl∑
il=1

||Gil
gen − Gil

gt||1 , (5)

where il and Nl are the index and the total number of pair-wise objects in a
floorplan, respectively. Lgeo is applied in both draft stage and refining stage. Our
final loss objective is the combination of two losses without scaling factors.

4 Experiments

4.1 Dataset and pre-processing

Similar to [18,20], we conducted experiments on RPLAN dataset [24] which
provides vector-graphic floorplans from real-world residential buildings. We fol-
lowed the pre-processing pipeline used in HouseGAN++ with a modification for
bounding-box (bbox) vectorized floorplan generation. When we transformed the
non-standard polygons into rectangular bounding boxes, we found some cases
where frontal doors or interior doors were incorrectly kept inside a room (see
Fig. 1 in supplementary materials as an example). To filter out such noisy cases,
we computed the overlapping between doors and rooms, then discarded a sam-
ple if its frontal doors overlapped with any rooms or any of its interior doors
overlapped with any non-living rooms over a threshold τ = 50%.

4.2 Baselines and evaluation metrics

We compared our method with two state-of-the-art floorplan generation meth-
ods using the same input setting [17,18] as ours. We also compared with Lay-
outTransformer [7] which we adopted as the backbone generation network. For
fair comparisons, we retrained all baseline methods with their official implemen-
tations and applied the same data pre-processing as described in Sec. 4.1.

Following [17,18] which also took bubble diagram as input constraints, we
evaluated our method in terms of realism, diversity, and compatibility. For re-
alism, we invited 10 respondents with architecture design expertise (professors
and graduate students from the architecture department) and 7 amateurs to
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Fig. 4: Sampled floorplan generations from different methods, including real
floorplans and their corresponding input bubble diagrams. We use the same
color legend as in [18]. Areas with salient connectivity issues and visual artifacts
are highlighted with green and black dashed boxes, respectively.

give rankings on 100 generation examples based on visual quality and function-
ality. Our method and two other competing methods [18,7] each generated 100
floorplans and respondents ranked the methods after reviewing each set of 3 gen-
erated floorplans that correspond to the same input bubble diagram. A method
obtained a score +1 for being ranked as 1st, 0 for 2nd, and −1 for 3rd. Diver-
sity was computed as the FID score [8] between the generated floorplans from a
method and the real floorplans, to assess the diversity of the generated floorplans
given the same input. The compatibility [18] validates the connectivity correct-
ness of a generated floorplan by computing the graph edit distance (GED) [1]
between the input graph with the reconstructed graph from the generated floor-
plan. For a generated plan to achieve a high compatibility score, a door must be
correctly placed between two rooms (or between a room and the outside area).
We generated 1, 000 testing samples on each data split and ran each model for
5 rounds to get the mean and standard deviation of FID and GED scores.

For a comprehensive comparison, we evaluated our methods under both the
separate training and mixed training settings. Under the separate training set-
ting [18], floorplans were split into training and testing sets based on different
numbers of rooms. Training was done using any number of rooms except the
number of rooms reserved for testing. Comparisons using the separate training
are provided in Table 2. In addition to the separate training, we also reported
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Table 1: Quantitative comparison between methods using the mixed training.
Diversity and compatibility metrics are reported as “mean/std.”.

Model Visual Realism ↑ Functional Realism ↑ Diversity ↓ Compatibility ↓
LayoutTransformer [7] -0.58 -0.57 12.3/0.2 4.6/0.0
HouseGAN++ [18] 0.12 0.09 15.7/0.2 3.5/0.0
Ours 0.46 0.48 13.8/0.4 2.8/0.1

Table 2: Quantitative comparison between different methods using the separate
training. Integers refer to train on floorplans with other number of rooms and
test with the designated number of room.

Model
Diversity ↓ Compatibility ↓

5 6 7 8 5 6 7 8

LayoutTransformer [7] 21.5/0.3 27.8/0.5 25.6/0.6 28.4/0.8 2.4/0.1 4.0/0.1 5.6/0.1 6.4/0.1
HouseGAN [17] 57.6/1.3 70.1/1.2 61.7/0.9 57.7/0.6 3.5/1.6 4.3/1.7 5.2/1.9 6.1/1.9
HouseGAN++ [18] 24.1/0.6 17.7/0.7 15.0/0.7 22.2/0.4 1.6/0.0 2.5/0.1 2.8/0.0 3.8/0.0
Ours 15.4/0.5 16.4/0.5 14.6/0.4 14.1/0.4 1.3/0.0 1.9/0.0 2.9/0.1 4.6/0.0

metrics calculated using the mixed training. Specifically, we mixed floorplans
with different numbers of rooms together and split them into training and testing
without overlapping in input bubble diagrams. We believe this is a more general
setting since floorplans with different number of rooms should all be available
for training. Comparisons using mixed training are illustrated in Table 1.

4.3 Result Analysis

Table 2 shows the quantitative comparisons among different methods under the
separate training setting. Our method outperforms all the previous methods on
diversity by a large margin. For compatibility, our model is significantly better
than existing approaches on the split containing 5 or 6 rooms, and is comparable
with HouseGAN++ [18] on the 7 room split. Under our proposed mixed training
setting in Table 1, which we believe is more suitable for realistic scenarios, our
method clearly outperforms HouseGAN++ on all metrics. Note that evaluation
of visual and functional realism by ten architecture experts and seven amateurs
was conducted using floorplans generated in the mixed training setting, and the
result on realism comparison is reported in Table 1. One can see that, for re-
alism, our method outperforms [7,18] on both visual quality and functionality
by a large margin. Qualitatively, from the samples shown in Fig. 4, one can
see that LayoutTransformer [7] often fails to generate doors correctly, especially
when the input bubble diagrams are complex. The rooms generated by House-
GAN [17] have salient artifacts due to the limitations of rasterized represen-
tation. There are fewer artifacts in floorplans generated by HouseGAN++ [18],
but non-straight room boundaries still exist. Another non-negligible drawback of
rasterized representation is that several disconnected regions could be generated
for one specific room (e.g., the living room of the 3rd case by HouseGAN++,
Fig. 4). In comparison, our method only generates objects as connected compo-
nents due to the advantage of vectorized representation. Furthermore, as shown
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Fig. 5: Diversity comparison between HouseGAN++ and ours. Salient connec-
tivity issues and visual artifacts are highlighted with green and black boxes.

Table 3: Ablation study of our proposed method. Base refers to the backbone
GPT-1 [21] transformer network. HS, PR, GL represent our proposed hybrid
sorting, panoptic refinement, geometric loss, respectively.

(a) Our proposed components.

Components Diversity (↓) Compatibility (↓)
Base HS GCN PR GL 6 6

✓ 27.8/0.5 4.0/0.1
✓ ✓ 29.8/0.6 3.6/0.1
✓ ✓ ✓ 14.5/0.2 3.7/0.0
✓ ✓ ✓ 14.0/0.3 3.4/0.1
✓ ✓ ✓ ✓ 18.3/0.2 2.1/0.1
✓ ✓ ✓ ✓ ✓ 15.8/0.5 1.9/0.0

(b) Refinement iterations of PRN.

# of iteration
Diversity (↓) Compatibility (↓)

6 6

1-iteration 15.1/0.8 2.7/0.0
3-iterations 14.4/0.3 2.2/0.0
5-iterations 15.8/0.5 1.9/0.0
7-iterations 16.9/0.4 2.1/0.1

in Fig. 5, our model better keeps the fidelity and connectivity while generating
diverse samples than the state-of-the-art HouseGAN++ [18].

4.4 Ablation study

Proposed components. We conducted an ablation study on each of our pro-
posed components, including the hybrid sorting (HS) strategy, the use of GCN
to encode connectivity graph, the proposed panoptic refinement (PR) network,
and the geometric loss (GL). Specifically, we conducted ablation experiments
on the 6 room generation split. The base model corresponds to the result of
LayoutTransformer [7], which we used as the unconditional backbone network.
As shown in Table 3a, applying the hybrid sorting strategy improved the com-
patibility compared with the base model. Adding GCN or refinement model
independently upon the autoregressive model significantly improved the diver-
sity, but had little benefits for compatibility. A possible reason is that, passing a
partial graph containing previously generated elements to GCN can smooth the
feature for past elements, but is not beneficial to the generation for future ele-
ments. Applying the two modules simultaneously greatly improved compatibility
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Fig. 6: Floorplan refinement between ours and [18]. Salient differences across
different iterations are highlighted with black dashed boxes.

since a complete connectivity graph drives GCN to capture the connectivity re-
lationship of the whole sequence, and the refinement transformer can further
exploit global contexts. With the proposed geometric loss on the generated vec-
tors, both diversity and compatibility got further improved as the correct layouts
and room connectivities were encouraged during the training.

Refinement iterations We also demonstrate the effect of applying different
numbers of refinement iterations. As shown in Table 3b, there were no significant
differences in diversity among various iterations. For compatibility, the best re-
sult was achieved when we refined the initial generated sequence for 5 iterations.
We have tried to refine more iterations, such as Nr = 7, but the experiments
showed no further improvement, which may indicate that PRN has adequately
refined the draft floorplan. We also show some qualitative visualizations in Fig. 6
to help examine the effect of our multi-round refinements.

5 Discussion

HouseGAN++ [18] also proposed to refine floorplans iteratively using heuris-
tics and optimizations. Our proposed PRN refinement network is very differ-
ent, however, since it is an end-to-end model which refines the draft floorplan
while keeping correct layouts. As illustrated in Fig. 6, applying one iteration of
PRN refinement (i.e., 1-iteration) significantly improved the generation quality
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compared with no refinement (i.e., ‘Non-refine’). Refining more iterations con-
sistently made details more accurate, such as reducing overlaps, making neigh-
boring objects better aligned, and placing doors more properly. Compared with
the floorplans after multiple refinement iterations by HouseGAN++, the floor-
plans refined by our PRN were more consistent in layout and inherited correct
room connectivities acquired in previous iterations of refinement. Meanwhile,
refinements by HouseGAN++ introduced more drastic changes across different
iterations, and occasionally regions with desirable properties from previous iter-
ations got lost and disappeared in the later iterations.

Although we have achieved superior performance under most settings, our
method still has limitations. First, our model represents rooms as rectangular
boxes, which may not always be optimal in practice. We try to mitigate the issue
by removing overlapping parts between the living room and other rooms, making
the generated floorplan more general. An end-to-end generation with vectorized
multi-edge polygons representing rooms could be a future direction. Second, we
did not achieve better compatibility performance than HouseGAN++ on the
split of 7 or 8 rooms, indicating that our method can be further improved for
modeling longer floorplan sequences. More advanced GNNs and transformers
may perform better in modeling more complex graphs and longer sequences.

During the user study, besides rankings of methods which we used to calcu-
late realism scores, we also collected feedback in the form of free-form comments
from architects. Most of the architects agreed that our method has made sub-
stantial progress in automated floorplan generation, and can potentially change
the way in which initial floorplan designs are created and visualized. They espe-
cially liked that methods like ours can easily generate multiple candidate initial
designs. However, they also mentioned that certain domain knowledge should
be embedded in the generation process, for example, circulation spaces must be
smaller, kitchen and dining must be connected, service blocks like washroom
should be at the edge of the building. We plan to explore how to incorporate
such domain knowledge into the generation process in our future work.

6 Conclusion

In this paper, we propose a novel two-stage vectorized floorplan generation
framework. Floorplans can be generated and refined in an end-to-end fashion
given an input bubble diagram encoding room number, type and connectivity.
Compared to previous state-of-the-art floorplan generation methods which gen-
erate rasterized floorplan images, our proposed vectorized floorplan generation
method generates more realistic and usable floorplan designs. Endorsed by the
architect experts in our user study, we believe our method has great potential
in computer-aided floorplan design.
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