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1 Ablation study

We conduct an ablation study on the training setup to analyze how each part of
the losses contributes to the inversion quality. As shown in Table 1, we compare
the inversion quality in the case of removing the the per-pixel loss in eq.(2) (config
A), the identity loss in eq.(6) (config B) and the face parsing loss in eq.(7) (config
C). In config D, we replace the multi-scale perceptual loss in eq.(3) by a normal
LPIPS loss [16], and change its weight λ1 to scale the loss value to a similar
magnitude as before. In config E, we discard the feature prediction branch and
generate the inversion with only the latent code. In config F, we use only real
images as training data.

As presented in Table 1, we observe a decrease in the perceptual quality in
the case of no pixel-wise loss Lmse, no identity preservation Lid or no face parsing
term Lparse. For D, we observe a comparable result on the distortion metrics,
but a much higher FID compared to our baseline. E confirms that the feature
tensor helps to generate an inversion with better fidelity. F demonstrates that
including synthetic data in the training helps improving the perceptual quality
of the inversion results. Overall our baseline achieves better perceptual quality
and comparable performance on the distortion metrics.

2 Editing

2.1 Choice of K

In this part, we discuss the choice of the feature tensor insertion layer K. As
mentioned in the main paper, to perform full editing on the output image, we
need to edit the encoded feature tensor F using eq.(1). One essential condition
is that F remains close to the synthetic feature tensor G(w1:K), justifying the
feature reconstruction loss in eq.(4).

Intuitively, a larger K favors a better reconstruction. However, when K is too
large, the feature reconstruction error remains high, which makes it impossible to
perform editing using eq.(1). A smaller K favors a lower feature reconstruction
error, thus favors better editing results. Meanwhile, K should not be too small,
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Table 1. Ablation study on the experimental setup. We conduct experiments
on different configurations. For each metric, values indicating lower performance are
underlined. Overall our baseline achieves better perceptual quality and comparable
performance on the distortion metrics

Configuration SSIM ↑ PSNR ↑ LPIPS ↓ ID ↑ FID ↓
A. w/o Lmse 0.627 23.02 0.242 0.846 19.68

B. w/o Lid 0.603 22.65 0.242 0.618 19.26

C. w/o Lparse 0.619 22.98 0.248 0.834 20.03

D. w/o Lm lpips 0.647 24.01 0.056 0.874 22.63

E. w/o feature tensor 0.489 19.44 0.192 0.635 35.28

F. w/o synthetic data 0.644 23.67 0.065 0.873 20.45

G. our baseline 0.641 23.65 0.066 0.867 19.03

otherwise the feature tensor cannot capture enough spatial details. In order to
study the corresponding tradeoff, we consider values K = 4, K = 5, K = 6 and
K = 7. A different model is trained for each configuration.

To analyze each choice, we compare the inversion and style mixing results.
Given a source image and a reference image, the style mixing result is generated
from the feature tensor of the source image and the latent code of the reference
image. Figure 1 shows qualitative results for inversion and style mixing. We
observe that using K = 4 yields good style mixing effects but low reconstruction
quality. Using K = 6 or K = 7 generates high fidelity reconstruction but the
style mixing effects are less obvious. This is because nearly all the information is
encoded in the feature tensor, which limits the editing process. Our final choice of
K = 5 achieves a balance between the inversion quality and the editing capacity.

2.2 Feature Tensor Analysis

We compare the inversion and editing results of using only the latent code and
our proposed approach in Figure 2. As can be observed, the inversion result with
the feature tensor G(F,wK+1:N ) captures better the identity and the spatial
details compared with the inversion with only the latent codeG(w). We compare
also the editing results using our proposed approach G(F̃, w̃K+1:N ) with the
editing result generated only from the modified latent code G(w̃). Results show
that our approach achieves comparable editing capacity while preserving better
the spatial details of the original source image.

2.3 Additional Results

We show additional facial attribute editing results in Figure 4. The latent edit-
ing directions are computed using InterFaceGAN [11], except the last attribute
‘pose’, computed with SeFa [12]. SeFa is a method that decomposes the pre-
trained weights of the generator and further discovers interpretable directions.
As can be observed, our method can handle editing of attributes which are con-
trolled by lower layers, such as smile, eyeglasses and pose.
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Fig. 1. Choice of the feature tensor insertion layer K. The first column shows
the source image (yellow frame) and two reference images for style mixing. In the
second to last column, the first row is the inversion results of each configuration, the
second and third rows are the style mixing results, generated from the feature tensor of
the source image and the latent code of the reference image. Using K = 4 yields good
style mixing effects but low reconstruction quality. Using K = 6 or 7 encodes nearly
all the information in the feature tensor, which is limiting for editing. Our choice of
K = 5 holds a balance between the editing capacity and the reconstruction quality.

We also present additional editing result for StyleGAN2 pre-trained on the
car domain in Figure 5 and StyleGAN2-Ada pre-trained on cat domain in Fig-
ure 6 and on dog domain in Figure 7. As the attributes of the car dataset [8]
and the cat/dog dataset [3] are not annotated, all the latent editing directions
are computed with SeFa [12]. Please note that the directions discovered by SeFa
are not necessarily disentangled. Overall, our model generates better inversion
results and yields satisfying editing results.

3 Inversion

We show additional visual results for the inversion of StyleGAN2 pre-trained on
face domain in figs. 8 to 12. We compare our model against the optimization
based method [1], state-of-the-art encoder based methods [10,13,2,14] and a hy-
brid method [17]. As can be observed, reconstructions using our framework are
visually more faithful and zoom-in patches show that they exhibit much more
details and sharpness.

We show more inversion results for StyleGAN3 [6] pre-trained on FFHQ [7].
Compared with StyleGAN2, the architecture of StyleGAN3 has several impor-
tant changes. First, the input tensor passed into the generator is no longer con-
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Source Inversion G(w) G(F,wK+1:N ) (ours)
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Fig. 2. Feature tensor analysis. The image on the top left is the source image. The
second image of the first row is the inversion result with only the latent code G(w),
the third one is the inversion result with the feature tensor G(F,wK+1:N ). The second
and third rows show the editing results of attribute ‘Heavy Makeup’ and ‘Smiling’.
G(w̃) is the editing result corresponding to the inversion G(w), and G(F̃, w̃K+1:N )
corresponds to our proposed editing approach – edit both the latent code and the
feature tensor. As can be observed, our approach achieves comparable editing capacity
while preserving better the spatial details of the original source image.

stant, but synthesized from the latent code. The spatial size of the input tensor
is increased from 4× 4 to 36× 36. Additionally, the noise inputs are discarded.
As shown in Figure 13, despite the architectural changes, our proposed encoder
still yields satisfying inversion results.

4 Video results

We provide qualitative video results on inversion and editing in this link . In each
subfolder, ‘inversion.avi’ is the inversion result, ‘edit attribute.avi’ is the latent
editing result. Please open the videos to better visualize the results. The videos for
evaluation are collected from the FILMPAC library [5]. The inversion and editing
results are generated using the video manipulation pipeline proposed in [15]. In

https://drive.google.com/file/d/1ebih6TZxb2eLKxJdbO8GnsInDKSegfYL/view?usp=sharing
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Fig. 3. Identity consistency of video inversion. For each method, we compute the
proposed metric identity consistency for each inverted video and plot the results in a
box-plot. Our averaged identity consistency is the closest to that of the source videos.

each video, the first row shows the original video, the result of pSp [10] and that
of e4e [13]. The second row shows the result of restyle [2], that of HFGI [14] and
our result. Overall our model generates a more consistent inversion, that further
favors consistent editing.
Inversion Consistency Additionally, to evaluate the consistency of the in-
version, we propose a new metric Identity Consistency, which refers to the aver-
aged identity similarity between the reconstructed frame x̃i and frame x̃0 along
a video sequence:

IC =
1

N

N∑
i=1

⟨R(x̃i),R(x̃0)⟩, (1)

where R is the pre-trained ArcFace[4] network. We compute this metric for our
encoder and state-of-the-art methods for video inversion on RAVDESS [9]. From
this dataset we sample randomly 120 videos as evaluation data. For each method,
we perform the inversion and compute this metric on each inverted video and
present the results with a box-plot. Figure 3 shows that the averaged identity
consistency of our inversion is the closest to that of the source, which proves the
stability of our inversion.
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Source Inversion Age Smile Eyeglasses Chubby Pose

Fig. 4. Editing on face domain. We show additional facial attribute editing results.
The latent editing directions are computed using InterFaceGAN [11], except the last
attribute ‘pose’, computed with SeFa [12].
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Source Inversion Edit Direction 1 Edit Direction 2 Edit Direction 3

Fig. 5. Editing on car domain. We show latent space editing results on car domain.
We compute the latent editing directions with SeFa [12]. The first column is the source
image, second column is our inversion result, the third to last column correspond to the
semantic directions found with SeFa [12]. Our model yields satisfying editing results
on car domain.
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Source Inversion Edit Direction 1 Edit Direction 2 Edit Direction 3

Fig. 6. Editing on cat domain. We show latent space editing results on cat domain.
We compute the latent editing directions with SeFa [12]. The first column is the source
image, second column is our inversion result, the third to last column correspond to the
semantic directions found with SeFa [12]. Our model yields satisfying editing results
on cat domain.
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Fig. 7. Editing on dog domain. We show latent space editing results on dog domain.
We compute the latent editing directions with SeFa [12]. The first column is the source
image, second column is our inversion result, the third to last column correspond to the
semantic directions found with SeFa [12]. Our model yields satisfying editing results
on dog domain.
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Source Optimization [1] In-domain [17] pSp [10]

e4e [13] restyle-pSp [2] HFGI [14] Ours

Fig. 8. Inversion on face domain. We compare our model against state-of-the-art
GAN inversion methods [1,17,10,13,2,14] for the inversion of StyleGAN2 pre-trained
on face domain. Reconstructions using our framework are visually more faithful and
zoom-in patches show that they exhibit much more details and sharpness.
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Source Optimization [1] In-domain [17] pSp [10]

e4e [13] restyle-pSp [2] HFGI [14] Ours

Fig. 9. Inversion on face domain. We compare our model against state-of-the-art
GAN inversion methods [1,17,10,13,2,14] for the inversion of StyleGAN2 pre-trained
on face domain. Reconstructions using our framework are visually more faithful and
zoom-in patches show that they exhibit much more details and sharpness.
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Source Optimization [1] In-domain [17] pSp [10]

e4e [13] restyle-pSp [2] HFGI [14] Ours

Fig. 10. Inversion on face domain. We compare our model against state-of-the-art
GAN inversion methods [1,17,10,13,2,14] for the inversion of StyleGAN2 pre-trained
on face domain. Reconstructions using our framework are visually more faithful and
zoom-in patches show that they exhibit much more details and sharpness.
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Source Optimization [1] In-domain [17] pSp [10]

e4e [13] restyle-pSp [2] HFGI [14] Ours

Fig. 11. Inversion on face domain. We compare our model against state-of-the-art
GAN inversion methods [1,17,10,13,2,14] for the inversion of StyleGAN2 pre-trained
on face domain. Reconstructions using our framework are visually more faithful and
zoom-in patches show that they exhibit much more details and sharpness.



14 X. Yao et al.

Source Optimization [1] In-domain [17] pSp [10]

e4e [13] restyle-pSp [2] HFGI [14] Ours

Fig. 12. Inversion on face domain. We compare our model against state-of-the-art
GAN inversion methods [1,17,10,13,2,14] for the inversion of StyleGAN2 pre-trained
on face domain. Reconstructions using our framework are visually more faithful and
zoom-in patches show that they exhibit much more details and sharpness.
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Source Inversion Source Inversion

Fig. 13. Inversion of StyleGAN3 pretrained on face domain. We show prelimi-
nary inversion results of the 3rd generation of StyleGAN [6] on face domain. Compared
with StyleGAN2, the architecture of StyleGAN3 has several important changes. De-
spite the architectural changes, our method still yields satisfying inversion results
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