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Abstract. We present a new encoder architecture for the inversion of
Generative Adversarial Networks (GAN). The task is to reconstruct a
real image from the latent space of a pre-trained GAN. Unlike previous
encoder-based methods which predict only a latent code from a real im-
age, the proposed encoder maps the given image to both a latent code
and a feature tensor, simultaneously. The feature tensor is key for accu-
rate inversion, which helps to obtain better perceptual quality and lower
reconstruction error. We conduct extensive experiments for several style-
based generators pre-trained on different data domains. Our method is
the first feed-forward encoder to include the feature tensor in the inver-
sion, outperforming the state-of-the-art encoder-based methods for GAN
inversion. Additionally, experiments on video inversion show that our
method yields a more accurate and stable inversion for videos. This offers
the possibility to perform real-time editing in videos. Code is available
at https: // github. com/ InterDigitalInc/ FeatureStyleEncoder .
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1 Introduction

The image synthesis power of Generative Adversarial Networks [12] (GAN) has
been amply demonstrated by a great quantity of work on such architectures.
However, since a GAN only decodes an image from a probabilistic latent space,
a significant research problem is how to encode images into the latent space of a
pretrained GAN, especially in the case of real (photographic) images, as opposed
to synthetic images, which are generated by sampling in the latent space. Recent
studies [34,17,44,35] have shown that it is possible to control semantic attributes
of synthetic images by manipulating the latent space of a pre-trained GAN.
However, an efficient encoding method, necessary for real images, still remains
an open problem especially in the case of these editing tasks.

Among the many studies on GAN inversion, recent works have been pri-
marily focused on style-based generators [22,23,21], because of their excellent
performance in high quality image synthesis. Unlike traditional generative mod-
els which feed the latent code though the input layer only, style-based generators
feed latent code to each scale of the generator to control the style of the generated
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Source Optimize[2]IDGI [50] pSp[33] e4e[37] restyle[5] HFGI[41] Ours

LPIPS ↓ 0.080 0.134 0.143 0.177 0.125 0.109 0.064

Fig. 1. Inversion of a real image in the latent space of StyleGAN2.We compare
our model against state-of-the-art for the inversion of StyleGAN2 [23] pre-trained on
face domain. Our method outperforms the state-of-the-art by up to 20% − 50% in
LPIPS distance[49].

image. This multi-scale generation is one of the main strengths of style-based
generators. It is clear that the architecture’s success is based on the separation
of the latent code, which is a vector that acts globally at each scale, from the
feature tensor, which has a spatial organisation. Exploiting this separation is a
key component of the encoder we propose here.

To invert a pretrained GAN, the current solutions can be divided into two
types: optimization-based methods and encoder-based methods. Optimization-
based methods use some form of gradient descent in the latent space to find the
code that minimizes a reconstruction error. Encoder-based methods, on the other
hand, train a neural network that projects from the image space to the latent
space. While the optimization is straight-forward to perform, it has significant
shortcomings. Firstly, the inverted latent codes do not necessarily lie on the
original latent space, since the optimization is carried out locally with respect
to one image, making them difficult to use for editing tasks, as shown by [37,5].
Secondly, the approach is computationally expensive, requiring an optimization
for each image. The encoder-based approach is much faster and the inverted
latent codes are more regularized and better suited for editing.

Currently, all the encoder-based GAN inversion methods use the latent code
only, ignoring the above-mentioned feature tensors. Unfortunately, while the in-
version results are globally perceptually similar to the input, they lack crisp
finer spatial details and appear over-smoothed. This is coherent, since the la-
tent codes act globally, thus spatially localized details are difficult to preserve.
Several optimization-based approaches have identified this problem, and show
that considering the feature tensors leads to results of better perceptual qual-
ity. However, they present all the drawbacks of optimization-based approaches
mentioned above (slow, unconstrained latent code).

To have the best of both worlds, we consider an encoder-based approach
which modifies both the latent code and the feature tensors simultaneously, an
approach that currently does not exist in the literature. We learn an encoder
which maps an image to a feature tensor and a latent code, simultaneously. This
design significantly improves the perceptual quality of the inversion and achieves
a balanced trade-off between reconstruction quality and editing capacity. The
main contributions of our paper can be summarized as follows:
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– We propose a new GAN encoder architecture, which is the first feed-forward
encoder to include the feature tensor in the inversion. To train the encoder,
we present a new training process, which learns two inversions simultane-
ously, on both real and synthetic images, which significantly improves the
perceptual quality;

– We present a novel latent space editing approach, which allows us to lever-
age existing editing methods for style-based generators. This way, we achieve
editing results that are comparable to state-of-the-art methods while preserv-
ing the high fidelity inversion;

– We conduct extensive experiments to show that our model greatly outper-
forms state-of-the-art methods on inversion and editing tasks on images and
videos. In particular, we improve the perceptual metrics by a very large
margin (50%). In addition, we show that the video inversion results of our
method is more consistent and stable, which favors further editing on videos.

2 Related works

The goal of our work is to learn an encoder for projecting real images to the latent
space of a pre-trained GAN. Much of the recent literature on GAN inversion pays
particular attention to style-based generators [22,23,20,21], as their latent spaces
are better disentangled and have improved editing properties.
Style-based Generator. Karras et al . proposed the first style-based gener-
ator, named StyleGAN [22]. Unlike traditional generative models which feed the
latent code though the input layer only, a style-based generator feeds latent code
through adaptive instance normalization at each convolution layer to control the
style of the generated image. The perceptual quality and variety of the Style-
GAN synthetic images surpassed previous image generative models [19,7]. In
StyleGAN2 [23], the image quality was improved further by introducing weight
demodulation and path length regularization and redesigning the generator nor-
malization. The StyleGAN2-Ada [20] explored the possibility to train a GAN
model with limited data regimes, by using an adaptive discriminator augmen-
tation mechanism that significantly stabilizes training. The third generation,
alias-free GAN [21], addressed the aliasing artifacts in the generator, by employ-
ing small architectural changes to discard unwanted information and boost the
generator to be fully equivariant to translation and rotation.
Latent Space Editing. The motivation of GAN inversion is to achieve real
image editing using the latent space of a pretrained GAN model. Various stud-
ies show it possible to edit synthetic images by manipulating the corresponding
latent code. Local semantic editing can be achieved by optimizing the latent
code directly [2,27]. To explore high level semantic information in the latent
space, learning based techniques have been proposed. These techniques include
unsupervised exploration [39], learning linear SVM models [34], principle com-
ponent analysis on the latent codes [17], and k-means clustering of the activation
features [10]. To achieve better disentangled editing, [3,30,47,36,14] proposed to
learn neural networks in the latent space. The recent works [35,40] discovered
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interpretable transforms by directly decomposing the weights or feature maps of
pre-trained GANs. Additionally, [6,26] modify the style-based GAN architecture
and retrain it for better disentanglement in image generation. [31,29,24] train
jointly an encoder and a style-based decoder architecture for image manipula-
tions.
GAN Inversion. The goal of GAN inversion is to encode a real image to the
latent space of a pretrained GAN, so that the image generated from the inverted
latent code is the reconstruction of the input image. Among the rich literature
on GAN inversion [45], the approaches addressing style-based generators can be
classified into two main types: optimization-based methods [1,16,46,51,18] and
encoder-based models [33,37,5,41,43]. There are also hybrid methods [50,8,48]
which mix the two previous ones. The optimization-based methods produce the
inverted latent code by minimizing the reconstruction error on the input image.
For StyleGAN inversion, Abdal et al . [1] proposed to embed the input image
in an extended latent space W+, which offers greater flexibility and improves
the reconstruction quality. Recent works show that including a feature tensor in
the optimization helps preserve more spatial details and improves the perceptual
quality [51,18]. Despite the satisfying reconstruction quality, optimization-based
methods usually present lower editing quality due to the random element of the
optimization process. To better regularize/stabilize the inversion, encoder-based
methods train an encoder to map real images to the latent space of the pre-
trained generator. Richardson et al . [33] proposed the first baseline to learn an
encoder for StyleGAN inversion. To improve editing capacity, Tov et al . [37]
proposed a regularization term which forces the inverted latent code in W+

to lie closer to the original latent space. A recent concurrent work of Wang et
al . [41] formulated the inversion task to a data compression problem and pro-
posed an adaptive distortion alignment module to improve the reconstruction
quality. On the other hand, hybrid methods take the inverted latent code from
a pretrained encoder as initialization and perform optimization on it. Zhu et
al . [50] proposed to learn a domain-guided encoder and use it as a regularizer
for domain-regularized optimization. However, despite the gain in the recon-
struction quality, the optimization step makes hybrid methods less suited for
video inversion and editing.

3 Method

3.1 Overview

A style-based generator, such as StyleGAN [22,23,21], consists of a mapping
network and a generator G. The mapping network first maps a random latent
code z ∈ Z ⊂ R512 to an intermediate latent code w ∈ W ⊂ R512, which is
further used to scale and bias the feature tensors. We denote a feature tensor (also
called feature map) with F ∈ F ⊂ Rh×w×c. The parameters (h,w, c) correspond
to the spatial size and the number of channels of the tensor. Thus, contrary to
the latent codes, the feature tensors have a 2D spatial organisation. Each feature
tensor is the output of an upsampling from a lower resolution, followed by an



Feature Style Encoder 5

Fig. 2. Encoder Architecture. Our model consists of a ResNet backbone and two
output branches: one for latent code prediction, the other for feature tensor prediction.
The inverted latent code w is a concatenation of N latent blocks {w1,w2, ...,wN}, each
controlling a separate convolution layer in the generator. During generation, we replace
the feature tensors at the Kth convolution layer of the generator with the encoded
feature tensor F, and synthesize the inversion with the latent blocks {wK+1, ...,wN}.
K is a fixed parameter, chosen so that reconstruction is accurate and editing can be
performed efficiently

AdaIn layer controlled by the latent codes, and finally a convolution. At the
coarsest layer, the input is a constant feature tensor, which is learned during
training. See Figure 2 for an illustration. In this Figure, we can see the clear
separation between latent codes and feature tensors, which is so important to
StyleGAN’s success.

To project a synthetic image G(w) to the latent space, it is possible to
compute the latent code in the original latent space W and achieve a satisfying
inversion. However, it is much more difficult to project a real image to the
original latent space [23], due to the gap between the real data distribution
and the synthetic one. An alternative is to project real images to an extended
latent space W+ [1], where w ∈ W+ is a concatenation of N latent blocks
{w1,w2, ...,wN}, each controlling a feature tensor in the generator.

Current encoder based methods for GAN inversion learn only the latent
codes. Their inversion results are globally perceptually similar to the input but
fail to capture finer details. Therefore, it is preferable to include a learned feature
tensor to preserve these spatial details. The optimization-based methods [51,18]
show that including these feature tensors in the optimization process help to
preserve spatial details. Performing optimization on both the latent code and
feature tensors yields near perfect reconstruction on real images.

In our work, we aim to have the best of both worlds: we wish to achieve this
high reconstruction fidelity, while maintaining the speed and editing capacity of
an encoder. Thus, we propose an encoder architecture which projects an image
to a latent code w ∈ W+, and a feature tensor F ∈ F . This feature tensor is
chosen at a fixed layer K of the generator.
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3.2 Encoder Architecture

The basic structure of our encoder is modelled on the classic approach used by
most previous works on style-based GAN inversion [33,37,5,43,41], which employ
a ResNet backbone. Different from the existing methods, as shown in Figure 2,
we have two output branches:

– A latent prediction branch to encode the latent code w ∈ W+. The ResNet
backbone contains four blocks, each down-sampling the input tensors by a
factor of 2. Given an input image, we extract the tensors after each block.
Then the four groups of tensors are passed through an average pooling layer,
concatenated and flattened to produce the latent prediction. This is then
mapped to the latent code w = {w1,w2, ...,wN}. Each latent block wi

is generated from a different mapping network, expressed by a single fully
connected layer.

– A feature prediction branch, where the ResNet tensors, extracted after the
penultimate block of the ResNet backbone, are passed through a convolu-
tional network to encode the feature tensor F ∈ F (see Figure 2). This net-
work is implemented with two convolutional layers, with batch normalization
in between. Please note that the ResNet tensors are not the same as those of
StyleGAN. We refer to the StyleGAN tensors (which control the generation)
as feature tensors. Let G(w1:K) denote the feature tensors at the Kth convo-
lution layer of the generator. We replace G(w1:K) with the encoded feature
tensor F, and use the rest of the latent codes {wK+1, ...,wN} to generate
the inversion G(F,wK+1:N ). We choose K = 5 for a balance between the
inversion quality and editing capacity, leading to F ⊂ R16×16×512.

To summarize the entire process, our encoder produces theKth feature tensor
of the StyleGAN generator, simultaneously with all the latent codes. Due to the
sequential nature of StyleGAN, G(w1:K) and {wK+1, ...,wN} completely deter-
mine the output image. Another way of seeing this is that we have “started” the
generation from layerK, ignoring the previous layers. Note that even if the latent
codes of previous layers {w1, ...,wK} are not used for the inversion, they will be
used later for editing. The choice of K is crucial to achieve a balance between
good reconstruction and style editing. We have studied this choice carefully, and
show results for different values in the Supplementary Material.

3.3 Editing

In a style-based generator, the styles corresponding to coarse layers control high-
level semantic attributes, the styles of the middle layers control smaller scale
features, and the last layers control micro structures. Given a latent code w, let
us consider that we have a modified latent code w̃ = w+∆w corresponding to
a desired editing, obtained from a latent space editing method [34,17,35].

Contrary to the case of inversion, we now wish to modify the latent codes of
all layers, to achieve editing. For this, we start by obtaining the initial inversion of
the input image, which gives us the latent codew and the feature tensor F. Recall
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Fig. 3. Editing process. To edit an input image x, we first encode it to the latent code
w and the feature tensor F. We then use a latent space editing method to transform
w into w̃, which corresponding to a desired manipulation. If we use w̃ and F to
generate the output image G(F, w̃K+1:N ), the changes corresponding to early layers
will be ignored. Therefore, we need to modify F to include these edits. We do this by
extracting the feature tensors at the Kth layer G(w1:K) and G(w̃1:K), computing the
difference and adding it to F to obtain the modified feature tensor F̃. Finally, we use
this new feature tensor F̃ and w̃ to generate the edited image G(F̃, w̃K+1:N )

that the inversion is determined by the feature tensor F and the latent codes
{wK+1, ...,wN}. Thus, the changes corresponding to early layers {w1, ...,wK}
will be ignored. To preserve these editing effects, we need to modify F. As shown
in Figure 3, we do this by extracting the feature tensors at theKth layerG(w1:K)
and G(w̃1:K). We suppose that the difference between them should be close to
that between F and the modified feature tensor F̃. Therefore, we can find F̃ as
follows:

F̃ = F+G(w̃1:K)−G(w1:K). (1)

Finally, we use this new feature tensor F̃ and the rest of the modified latent
codes {w̃K+1, ..., w̃N} to generate the edited image G(F̃, w̃K+1:N ).

4 Training

Previous methods on GAN inversion [33,37,5,41,43] use only real images as train-
ing data. However, the perceptual quality of their inversion results is not as good
as the synthetic images generated by StyleGAN. An intuitive explanation is that
there is a difference between the data distributions of the real and synthetic im-
ages. Recall that the encoder project a given image to the extended latent space
W+ while synthetic images can be reconstructed from the original latent space
W. If synthetic images are not viewed by the encoder, the resulting latent codes
may not perform in the same way as those of the original latent space. Therefore,
we use both synthetic and real images as training data.
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4.1 Losses

As mentioned above, the proposed encoder inverts an input image x to a latent
code w, and a feature tensor F. To ensure the editing capacity of the latent
code, the encoder is trained on two inversions simultaneously - one generated
with only the latent code x̃1 = G(w) and the other generated with both the
feature tensor and the latent code x̃2 = G(F,wK+1:N ).
Pixel-wise reconstruction loss In the case of a synthetic image, the recon-
struction is measured using mean squared error (MSE) on x̃1 only. In this special
case, the ground-truth latent code exists so theoretically a perfect inversion can
be obtained. For a real image, the ground-truth latent code may not exist, so a
per-pixel constraint may be too restrictive. The loss is expressed as:

Lmse = ||G(w)− x||2. (2)

Multi-scale perceptual loss A common problem of the previous methods is
the lack of sharpness of the inversion results, despite using the per-pixel MSE. To
tackle this, we propose a multi-scale loss design which enables the reconstruction
of finer details. Given an input image x and its inversion x̃, the multi-scale
perceptual loss is defined as:

Lm lpips(x̃) =

2∑
i=0

||V(⌊x̃⌋i)−V(⌊x⌋i)||2, (3)

where ⌊.⌋i refers to downsampling by a scale factor 2i and V denotes the feature
extractor. This design allows the encoder to capture the perceptual similarities
at different scales, which favors the perceptual quality of the inversion. This loss
is applied on both inversions.
Feature reconstruction To ensure the possibility of using Eq. (1) to edit the
encoded feature tensor F, F should be similar to the feature tensors at the Kth

convolution layer of the generator, denoted by G(w1:K). Therefore, we propose
a feature reconstruction loss, which favors the encoded feature tensor to stay
close to the original feature space. This term is defined as:

Lf recon = ||F−G(w1:K)||2. (4)

The total loss is defined as:

Ltotal = Lmse + λ1Lm lpips + λ2Lf recon, (5)

where λ1 = 0.2 and λ2 = 0.01 are weights balancing each loss.
Face Inversion For the inversion of a styleGAN model pre-trained on face do-
main, we adopt the multi-layer identity loss and the face parsing loss introduced
by [43]. Given an input image x and its inversion x̃, the multi-layer identity loss
is defined as:

Lid(x̃) =

5∑
i=1

(1− ⟨Ri(x̃),Ri(x)⟩), (6)
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where R is the pre-trained ArcFace network [11]. The face parsing loss is defined
as:

Lparse(x̃) =

5∑
i=1

(1− ⟨Pi(x̃),Pi(x)⟩), (7)

where P is a pre-trained face parsing model [52]. These two above-mentioned
losses are applied on both inversions. Hence the total loss for face inversion is:

Lface = Ltotal + λ3Lid + λ4Lparsing, (8)

where λ3 = 0.1 and λ4 = 0.1 are weights balancing the identity preserving and
face parsing terms.

4.2 Implementation details

We train the proposed encoder for the inversion of several style-based generators
pre-trained on various domains, specifically, for StyleGAN2 [23] on faces and
cars, and StyleGAN2-Ada [20] on cats and dogs. In addition, we show preliminary
results for the inversion of StyleGAN3 [21] on faces. For each generator pre-
trained on a specific domain, a separate encoder is trained. During the training,
we use a batch size of 4, each batch containing two real images and two synthetic
images. The model is trained for 12 epochs, using 10K iterations per epoch. The
learning rate is 10−4 for the first 10 epochs and is divided by ten for the last 2
epochs. For the face domain, we minimize Eq. (8), using FFHQ [22] for training,
and CelebA-HQ [19] for evaluation. For the car domain, we minimize Eq. (5),
using Stanford Cars [25] training set for training, and the corresponding test
set for evaluation. For the cat/dog domain, we minimize Eq. (5), using AFHQ
Cats/Dogs [9] train set for training, and the corresponding test set for evaluation.

5 Experiments

In this section, we compare our method with the current state-of-the-art GAN
inversion methods. We conduct the evaluation from two aspects: inversion quality
and editing capacity. We also show results on videos as well as ablation studies.

5.1 Inversion

We evaluate our model against the current state-of-the-art encoder-based GAN
inversion methods: pSp [33], e4e [37], restyle [5] and HFGI [41]. We first per-
form comparisons for the inversion of the StyleGAN2 model pre-trained on the
FFHQ dataset. For each method we use the official implementation [32,38,4,42]
to generate the results.
Qualitative Results Figure 4 shows the inversion results of the different
methods. Overall, visual inspection shows that our method outperforms other
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Source pSp [33] e4e [37] restyle [5] HFGI [41] Ours

Image Patch Image Patch Image Patch Image Patch Image Patch

MSE ↓ 0.012 0.013 0.019 0.014 0.012 0.009 0.009 0.011 0.008 0.009
LPIPS ↓ 0.152 0.350 0.203 0.301 0.117 0.323 0.111 0.324 0.066 0.201

Fig. 4. Inversion of StyleGAN2 pretrained on face domain. We compare our
model against state-of-the-art encoder-based methods [33,37,5,41] for the inversion of
StyleGAN2 pre-trained on face domain. Our inversion results are visually more faithful
and zoom-in patches show that they exhibit much more details and sharpness. Pixel-
wise reconstruction errors (MSE error, lower is better) and perceptual quality (LPIPS
distance, lower is better) confirm this visual conclusion on these examples

Source Inversion Source Inversion Source Inversion

Fig. 5. Inversion of StyleGAN3 pretrained on face domain. We show prelimi-
nary inversion results of the 3rd generation of StyleGAN [21] on face domain. Compared
with StyleGAN2, the architecture of StyleGAN3 has several important changes. De-
spite the architectural changes, our method still yields satisfying inversion results

models. Firstly, faces are more faithfully reconstructed globally. Secondly, zoom-
in patches show that more details are preserved and that the images produced by
our framework are significantly sharper than those of the concurrent methods.

Inversion of StyleGAN3 We show preliminary inversion results of the third
generation of StyleGAN [21] pretrained on FFHQ. Compared with StyleGAN2,
the architecture of StyleGAN3 has several important changes. The input tensor
passed into the generator is no longer constant, but synthesized from the latent
code. The spatial size of the input tensor is increased from 4× 4 to 36× 36. As
shown in Figure 5, despite the architectural changes, our proposed encoder still
yields satisfying inversion results.

Quantitative Comparison We evaluate our approach quantitatively against
the aforementioned encoder based methods [33,37,5,41] and a hybrid method
(in-domain GAN) [50]. We compare each method on the inversion of StyleGAN2
pretrained on FFHQ, using the first 1K images of CelebA-HQ as evaluation
data. To measure the reconstruction error, we compute SSIM, PSNR and MSE.
To measure the perceptual quality, we measure the LPIPS [49] distance. Ad-
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Table 1. Quantitative evaluation. We use SSIM, PSNR and MSE to measure the
reconstruction error, and LPIPS [49] for the perceptual quality. We also measure the
identity similarity (ID) between the inversion and the source image, which refers to
the cosine similarity between the features in CurricularFace [15] of both images. To
measure the discrepancy between the real data distribution and the inversion one, we
use FID [13]. Overall, our method outperforms the state-of-the-art baselines by up to
10%− 20%. In terms of perceptual quality (LPIPS), we improve the result by 50%

Method SSIM ↑ PSNR ↑ MSE ↓ LPIPS ↓ ID ↑ FID ↓
IDGI[50] 0.554 22.06 0.034 0.136 0.18 36.83

pSp[33] 0.509 20.37 0.040 0.159 0.56 34.68

e4e[37] 0.479 19.17 0.052 0.196 0.51 36.72

restyle[5] 0.537 21.14 0.034 0.130 0.66 32.56

HFGI[41] 0.595 22.07 0.027 0.117 0.68 26.53

Ours 0.641 23.65 0.019 0.066 0.80 19.03

Source e4e [37] restyle [5] Ours Source Inversion Source Inversion

(a) Inversion on car domain. (b) Inversion on cat/dog domain.

Fig. 6. Inversion on other domains. In (a), we show the inversion results of Style-
GAN2 pre-trained on car domain. Our method captures better the details than e4e [37]
and restyle-e4e [5]. In (b), we show the inversion results of StyleGAN2-Ada pre-trained
on the cat and dog domains, respectively

ditionally, we measure the identity similarity (ID) between the inversion and
the source image, which refers to the cosine similarity between the features in
CurricularFace [15] of the two images. To measure the discrepancy between the
real data distribution and the inversion one, we use the Frechet Inception Dis-
tance [13] (FID). Table 1 presents the quantitative evaluation of all the methods.
Our method significantly outperforms the state-of-the-art methods on all the
metrics. In terms of perceptual quality (LPIPS), improvement can attain 50%.

Inversion for other domains Figure 6(a) shows the inversion for Style-
GAN2 pretrained on the car domain. We train the encoder with Stanford Car
dataset [25]. Compared with e4e [37] and restyle-e4e[5], our inversion achieves
a better reconstruction quality, preserving better the details. Figure 6(b) shows
the inversion for StyleGAN2-Ada pretrained on AFHQ Cat/Dog dataset [9]. Our
encoder achieves nearly perfect inversions. Here we did not compare with [37,5],
as the official pre-trained model is unavailable.
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Source pSp [33] e4e [37] restyle [5] HFGI [41] Ours
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Fig. 7. Latent space editing. For each method, we apply InterFaceGAN [34] to
perform latent editing for facial attribute manipulation. Our method yields plausible
editing results, while at the same time preserving better the identity and the sharpness.
More editing results are presented in the Supplementary Material

5.2 Editing

In this experiment, we consider the task of real image editing via latent space
manipulation. We compare our approach with the state-of-the-art encoder-based
GAN inversion methods [33,37,5,41] on the facial image editing via the latent
space of StyleGAN2 pretrained on the FFHQ dataset. As such, for each inversion
model, we generate the inverted latent codes for the first 10K images of CelebA-
HQ, and use InterFaceGAN [34] to find the editing directions in the latent space.
Figure 7 shows facial attribute editing results for all methods. Compared with
the state-of-the-art, our method yields visually plausible editing results, while
preserving better the identity and sharpness.

Additionally, we show style mixing results in Figure 8, generated from the
latent code of one image with the feature tensor of another image. From this
experiment we observe that the geometric structures such as pose and facial
shape are encoded by the feature tensor, while the appearance styles like eye
color and makeup are encoded by the latent code.

5.3 Video inversion

In this section, we discuss the possibility of integrating our proposed encoder
into a video editing pipeline [47]. We compare the inversion quality and stability
of different encoders on videos. Figure 9 shows the inversion results on several
images extracted from the same video sequence. The last two frames are extreme
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xA G(FA,wA) G(FA,wB)G(FB ,wA)G(FB ,wB) xB

Fig. 8. Style mixing. The 2nd and 5th column show the inversions of two images
xA and xB , denoted by G(FA,wA) and G(FB ,wB), respectively. The 3rd column
is generated from the feature tensor of xA and the latent code of xB , denoted by
G(FA,wB), and vice versa for the 4th column, denoted by G(FB ,wA). This shows
that the feature tensor encodes the geometric structures such as pose and facial shape,
whereas the latent code controls the appearance styles like eye color and makeup

Source pSp [33] e4e [37] restyle [5] HFGI [41] Ours

Fig. 9. Video inversion. For each method, we show the inversion results of several
frames extracted from a video sequence. Our inversion method preserves better the
identity along the video and yields a better reconstruction for the extreme poses

poses. As can be observed, other methods [33,37,5,41] fail to invert non-frontal
poses, thus damaging the consistent reconstruction along the sequence. Our ap-
proach yields consistent inversion of high fidelity, which favors further editing on
videos. Please refer to the supplementary material for the video editing results.

We evaluate our encoder quantitatively against the state-of-the-art for video
inversion on RAVDESS [28], a dataset of talking face videos. From which we
sample randomly 120 videos as evaluation data. For each method, we perform
the inversion on each video and compute the quantitative metrics on the in-
version results. As shown in Table 2, our approach outperforms the competing
approaches on both the reconstruction error and the perceptual quality.

5.4 Ablation study

We conduct an ablation study on the training setup to analyze how each part of
the losses contributes to the inversion quality. We compare the inversion quality
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Table 2. Quantitative evaluation on video inversion. We sample randomly 120
videos from RAVDESS dataset[28], perform the inversion using each method and com-
pute the quantitative metrics. Our method outperforms the competing approaches on
both the reconstruction error and the perceptual quality

Method SSIM ↑ PSNR ↑ MSE ↓ LPIPS ↓ ID ↑
pSp [33] 0.736 22.30 0.025 0.196 0.687

e4e [37] 0.713 20.57 0.037 0.220 0.620

restyle [5] 0.761 23.17 0.021 0.189 0.781

HFGI [41] 0.783 24.04 0.017 0.182 0.810

Ours 0.818 26.64 0.009 0.122 0.895

in the case of removing the per-pixel loss in eq.2, the identity loss in Eq. (6) and
the face parsing loss in Eq. (7). We also compare the multi-scale perceptual loss
in Eq. (3) to a normal LPIPS loss [49]. We further analyze the importance of
the feature prediction branch and the choice of training data. Please refer to the
supplementary material for the quantitative analysis of the ablation study.

5.5 Limitations

The main limitation of the proposed encoder lies in its global manipulation
capacity. In the architecture of StyleGAN, the global attributes are controlled
by lower layers, while the smaller local styles are controlled by higher layers. Our
method yields better editing results on the attributes controlled by layers > K.
To handle the attributes controlled by lower layers, we have proposed to modify
the feature tensor using Eq. (1) to include the changes in the feature tensor.
However, if the difference between the original feature tensor and the inverted
one is important, this simple subtraction may generate artifacts. Moreover, the
details reconstructed solely by the feature tensor are hard to change. In the
future, it could be helpful to study further improvements for the feature tensor
editing, e.g ., by including masks for the area of interest, or by training another
network to generate the corresponding editing for the feature tensor.

6 Conclusion

In this paper, we propose a new encoder architecture for style-based GAN in-
version and explore its editing capacity on images and videos. To the best of our
knowledge, this is the first feed-forward encoder to include the feature tensor in
the inversion, which significantly improves the perceptual quality of the inversion
results, outperforming competitive state-of-the-art methods. Next, we introduce
a novel editing approach, which makes the proposed encoder amenable to exist-
ing latent space editing methods. Experiments show that the editing capacity of
our encoder is comparable to state-of-the-art methods while the editing results
are of higher perceptual quality. Moreover, the experiments on video inversion
show that our method yields a more accurate and stable inversion for videos.
This could significantly facilitate real-time editing in videos.
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