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Abstract. Representing visual signals by implicit neural representation
(INR) has prevailed among many vision tasks. Its potential for edit-
ing/processing given signals remains less explored. This work explores
a new intriguing direction: training a stylized implicit representation,
using a generalized approach that can apply to various 2D and 3D sce-
narios. We conduct a pilot study on a variety of INRs, including 2D
coordinate-based representation, signed distance function, and neural ra-
diance field. Our solution is a Unified Implicit Neural Stylization frame-
work, dubbed INS. In contrary to vanilla INR, INS decouples the ordi-
nary implicit function into a style implicit module and a content implicit
module, in order to separately encode the representations from the style
image and input scenes. An amalgamation module is then applied to
aggregate these information and synthesize the stylized output. To reg-
ularize the geometry in 3D scenes, we propose a novel self-distillation
geometry consistency loss which preserves the geometry fidelity of the
stylized scenes. Comprehensive experiments are conducted on multiple
task settings, including fitting images using MLPs, stylization for im-
plicit surfaces and sylized novel view synthesis using neural radiance.
We further demonstrate that the learned representation is continuous
not only spatially but also style-wise, leading to effortlessly interpolating
between different styles and generating images with new mixed styles.
Please refer to the video on our project page for more view synthesis
results: https://zhiwenfan.github.io/INS.

1 Introduction

Implicit Neural Representation (INR) has gained remarkable popularity in rep-
resenting concise signal representation in computer vision and computer graph-
ics [70,53,58,49,82]. As an alternative to discrete grid-based signal representation,
implicit representation is able to parameterize modern signals as samples of a
continuous manifold, using multi-layer perceptions (MLP) to map between co-
ordinates and signal values. Several seminal works [53,70,83] have verified the
effectiveness of INR in representing image, video, and audio. Followups further
apply INR to more challenging tasks including novel-view synthesis [53,6,7,86],
3D-aware generative model [90,10,9], and inverse problem [16,74]. While implicit
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Fig. 1. Representative visual examples generated by the proposed method.
We show stylized results on three different types of implicit representation, including 2D
coordinate-based mapping function (SIREN [70]), Signed Distance Function(SDF [58]),
and Neural Radiance Field (NeRF [53]).

neural representation reveals multiple advantages compared to conventional dis-
crete signals, a general question of curiosity might be: which and how modern
visual signal processing approaches/tasks designed for discrete signals can also be
applied to continuous representations? Research pursuing this answer has been
conducted on implicit neural representation since its origin. Chen et al. [17] ap-
ply a local implicit function to image super-resolution and they observe that
INR can surpass bilinear and nearest upsampling. Sun et al. [74] demonstrate
the effectiveness of INR in the context of sparse-view X-ray CT. Dupont et
al. [23] propose to store the weights of a neural implicit function instead of pixel
values, which surprisingly outperforms JPEG compression format. [87] further
demonstrate superior video compression using similar ideas.

We investigate a novel setting: to yield visually pleasing stylized examples
under various 2D and 3D scenarios, using a generalized approach leveraging
implicit neural representations. Note that, training a stylized implicit neural
representation still faces many hurdles. On one hand, the aforementioned works
mostly have the access to dense measurements or at least sparse clean data,
which enables training an implicit neural network under the supervision of
target signal. In contrast to those tasks/approaches, current image stylization
mechanisms are mostly conducted in an unsupervised manner, due to the ab-
sence of stylized ground truth data. Consequently, it is still unknown whether
coordinate-based MLP can be optimized without accessing corresponding ground
truth signals. On the other hand, existing style images are mostly based on 2D
scenes, which raises obstacles when being considered as the appearance of 3D
implicit representation. Prior art [19] attempted on marrying stylization with
one specific type of Implicit Neural Representation, the neural radiance field
(NeRF) [53]. Nevertheless, it still captures the statistics of style information
by a series of pre-trained convolution-based hypernetwork to generate model
weights, rather than a direct implicitly encoding stylization. As indicated by
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recent literature [46], training a robust hypernetwork requires a large amount of
training samples, while novel-view synthesis tasks commonly hold no more than
hundreds of views, potentially jeopardizing the synthesized visual quality.

To conquer the aforementioned fragility, we propose a Unified ImplicitNeural
Stylization framework, coined as INS. Different from the vanilla implicit func-
tion which is built upon a single MLP network, the proposed framework divides
an ordinary implicit neural representation to multiple individual components.
Concretely speaking, we introduce a Style Implicit Module to the ordinary im-
plicit representation, and coin the later one as Content Implicit Module in our
framework. During the training process, the stylized information and content
scene are encoded as one continuous representation, and then fused by another
Amalgamation Module. To further regularize the geometry of given scenes, we
utilize an additional self-distilled geometry consistency loss on top of the ren-
dered density, for the stylization of NeRF. Eventually, INS is able to render
view-consistent stylized scenes from novel views, with visually impressive tex-
ture details: a few examples are shown in Figure. 1.

Our contributions are outlined below:

– We propose INS, a unified implicit neural stylization framework, consists of a
style implicit module, a content implicit module, and an amalgamation mod-
ule, which enables us to synthesize promising stylized scenes under multiple
2D and 3D implicit representations.

– We conduct comprehensive experiments on several popular implicit represen-
tation frameworks in this novel stylization setting, including 2D coordinate-
based framework (SIREN [70]), Neural Radiance Field (NeRF [53]), and
Signed Distance Functions (SDF [58]). The rendering results are found to be
more consistent, in both shape and style details, from different views.

– We further demonstrate that INS is able to learn representations that are
continuous not only with regard to spatial placements (including views),
but also in the style space. This leads to effortlessly interpolating between
different styles and generating images rendered by the new mixed styles.

2 Related Works

2.1 Implicit Function

Recent research has exhibited the potential of Implicit Neural Representation
(INR) to replace traditional discrete signals with continuous functions parame-
terized by multilayer perceptrons (MLP), in computer vision and graphics [75,71].
The coordinate-based neural representations [18,49,50] have become a popular
representation for various tasks such as representing image/video [70,23,87], 3D
reconstruction [27,4,57,18,29,49,56,58,62,64], and 3D-aware generative modelling
[10,21,30,33,48,55,65,90]. Analogously, as this representation is differentiable,
prior works apply coordinate-based MLPs to many inverse problems in com-
putational photography [16,12,72,3,66,77] and scientific computing [45,32,89].
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2.2 Implicit 3D Scene Representation

Traditional 3D reconstruction methods utilizes discrete representations such as
point cloud [2], meshes [43,67], multi-plane images [52], depth maps [81,31] and
voxel grids [44]. Recently, INR has also prevailed among 3D scene representa-
tion tasks, which simply adopt an MLP that maps from any continuous input
3D coordinate to the geometry of the scene, including signed distance func-
tion (SDF) [58,41,5,50,29,73,40], 3D occupancy network [49,18], and so on. In
addition to representing shape, INR has also been extended to encode object
appearance. Among them, Neural Radiance Field (NeRF [53]) is one of the most
effective coordinate-based neural representations for photo-realistic view syn-
thesis that represents a scene as a field of particles. Draw inspiration from the
preliminary success made by NeRF, a lot of following works further improve and
extend it to wider application [6,7,8,24,47,84,51,61,13,34,6,7,61,60,78]. Different
from the grid-based approaches, training a stylized implicit representation can
not access ground truth signals, which further amplifies the difficulty of optimiz-
ing the implicit neural representation.

2.3 Stylization

Traditionally, image stylization is formulated as a painterly rendering process
through stroke prediction [88,85]. The first neural style transfer method, pro-
posed by Gatys et al. [26], builds an iterative framework to optimize the in-
put image in order to minimize the content and style loss defined by a pre-
trained VGG network. Due to the frustratingly large cost of training time, a
number of follow-ups further explore how to design a feed-forward deep neu-
ral networks [42,76], which obtain real-time performance without sacrificing
too much style information. Recently, several works extend it to video styliza-
tion [63,37,11,14] and 3D environment [54,36,19,28,35].

Ha-NeRF [15] is proposed for recovering a realistic NeRF at a different time
of day from a group of tourism images, with a CNN to encode the appear-
ance latent code. The most related NeRF-based stylization works: Style3D [19]
and StylizedNeRF [38] still require a CNN-based hypernetwork or decoder to
generate the stylized parameters for neural radiance field. In comparison, our
proposed INS framework can work for more general implicit representations be-
yond neural radiance field, and can also be extended to encoding multiple styles.
Experiments demonstrate that INS generate more faithful stylization on NeRF
compared with Style3D [19].

3 Preliminary

This section introduces the relevant background on several implicit represen-
tations and volumetric radiance representations, including image fitting [70],
neural radiance field [53] and signed distance function [58].
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Fig. 2. The main pipeline of unified implicit neural stylization (INS) frame-
work and its components. We took SDF with the proposed INS, for example, it
inputs with implicit coordinates along with ray directions and style embeddings. Style
Implicit Module (SIM) and Content Implicit Module (CIM) are used to extract con-
ditional implicit style features and implicit scene features. Amalgamate Module (AM)
is applied to fuse features in the two spaces, generating styliezed density and color
intensity of each 3D point. An implicit rendering step is applied on the top of AM (i.e.,
Volume rendering for NeRF, surface rendering for SDF) to render the pixel intensity.

Implicit Image Fitting: The most prototypical example of neural implicit rep-
resentation is image regression [70,75]. Consider fitting a function f : R2 → R3

that encodes the pixel array of a given image I into a continuous representation.
Function f(x) takes pixel coordinates x ∈ R2 as the inputs, and outputs the cor-
responding RGB colors c ∈ R3. Parameterizing f with a multi-layer perception
networks (MLPs), it can be optimized by the mean-squared error (MSE) loss
function L = Ex∼P(I)∥f(x)− c∥22, where P(I) is a probability measure support
in image lattice I.

Neural Radiance Field: In contrast to point-wisely regression of implicit
fields, NeRF [53] proposes to reconstruct a radiance field by inversing a differ-
entiable rendering equation from captured images. Specifically, NeRF learns an
MLP f : (x,θ) 7→ (c, σ) with parameters Θ, where x is the spatial coordinate
in 3D space and θ represents the view directions ∈ [−π, π]2. The output c ∈ R3

indicates the predicted color of the sampled point, σ ∈ R+ signifies its density
value. The pixel color intensity can be obtained using volume rendering [22] by
ray tracing, integrating the predicted color and density along the ray. To render
a pixel on the image plane, NeRF casts a ray r = (o,d,θ) through the pixel and
accumulate the color and density of K point samples along the view direction
in the 3D space. The pixel color intensity can be estimated:

C(r|Θ) =

K∑
k=1

Tk(1− exp(−σk∆tk))ck, (1)

where (ck, σk) = f(xk,θ), xk = o+tkd, tk are the marching distance of sampled

points, and Tk = exp(−
∑k−1

l=1 σl∆tl) is known as the transmittance to model



6 Z. Fan, et al.

occlusion. ∆tk = tk+1 − tk indicates the distance of sampled point in 3D space.
With this approximated rendering pipeline, the model weights are optimized by
minimizing the L2 distance between rendered ray colors C(r) and captured pixel

colors Ĉ(r) as follows:

Θ∗ = argmin
Θ

Er∼P(R)

∥∥∥C(r|Θ)− Ĉ(r)
∥∥∥2
2
, (2)

where R is a collection of rays cast from all pixels in the training set, and P(R)
defines a distribution over it.

Implicit Surface Representation: Signed Distance Function (SDF) [20] f :
R3 → R is an implicit representation of 3D geometries. SDF specifies each spatial
point with the signed distance to the implicit iso-surface, where the sign indicates
whether the point is inside or outside the object. Recent works of [59,69] propose
to employ MLPs to represent this continuous field via direct supervision using
point clouds. To optimize a textured SDF from multi-view images like NeRF
[51], Yariv et al.[83] proposes a neural rendering pipeline, named IDR, which
enables rendering images from an SDF. With this framework, one can indirectly
supervise SDF using its multi-view projections. Suppose given a camera pose,
we can cast rays r = (o,v) through each pixel to trace an intersected point with
the surface:

x̂ = o+ t0v − v

∇f0 · v0
f(o+ t0v), (3)

where t0, v0 and f0 are initial states when performing ray tracing (see [83]). After
obtaining the intersection x̂ of ray and surface, IDR also lets the SDF network
f output an appearance embedding γ̂, and computes the normal n̂ = ∇f(x̂).
Then the ray color can be rendered by another rendering MLP conditioned on
both point coordinate x̂ and normal n̂:

C(r|Θ) = r(x̂, n̂,d, γ̂). (4)

Similar to NeRF [51], f and r are simultaneously optimized by photometric loss
between captured image pixels and rendered rays (see Equation 2).

4 Method

We next illustrate the main pipeline of Unified ImplicitNeural Stylization (INS).
INS consists of a Style Implicit Module (SIM) to transform the input style em-
bedding into implicit style representations, a Content Implicit Module (CIM) to
map the input coordinates into implicit scene representations, and an Amalga-
mate Module (AM) which amalgamates the two representation to predict RGB
intensity. To preserve the geometry fidelity while generating the stylized texture
of rendered views, a self-distilled geometry consistency regularization is applied
upon the INS framework.
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4.1 Implicit Style and Content Representation

Generating the stylized images Y can be formulated as an energy minimization
problem [26]. It consists of a content loss and a style loss, defined under a pre-
trained VGG network [68]. We build upon the prior work and thus propose our
implicit stylization framework for SIREN, SDF and NeRF.

Content Representation The content loss in 2D images stylization pipeline [26]
Lcontent is defined as:

Lcontent(C,Y ) =
1

Ci,jWi,jHi,j

∑
(i,j)∈J

∥Fi,j(C)− Fi,j(Y )∥2F , (5)

whereC denotes the content ground truth image and Y denotes synthesized out-
put, Fi,j denotes the feature map extracted from a VGG-16 model pre-trained
on ImageNet, i represents its i-th max pooling, and j represents its j-th convolu-
tional layer after i-th max pooling layer. Ci,j , Wi,j and Hi,j are the dimensions
of the extracted feature maps. We adapt the content loss to the intermediate
layer of INS pipeline to preserve the content of the predicted color image patch,
we choose i = 2, j = 2 by default.

Style Representation To extract representation of the stylized information,
[68] introduces a different feature space to capture texture information [25].
Similar to the content loss, the feature space is built upon the filter response
in multiple layers of a pre-trained VGG network. By capturing the correlations
of the filter responses expressed by the Gram matrix Gi,j ∈ RCi,j×Ci,j between
the style image S and the synthesized image Y , multi-scale representations can
be obtained to capture the texture information from the style image and endow
such texture on the stylized image. Here, we define our style loss Lstyle using the
same layers of VGG-16 with [26] on the top of the prediction of implicit neural
representations and the given style image:

Lstyle(S,Y ) =
∑

(i,j)∈J

∥Gi,j(S)−Gi,j(Y )∥2F , (6)

where [Gi,j ]c,c′(Y ) =
1

Ci,jWi,jHi,j

H×W∑
k=1

Fi,j(Y )c,kFi,j(Y )c′,k, (7)

where J are the indices of selected feature maps. In practice, we choose J =
{(1, 2), (2, 2), (3, 3), (4, 3)} in our experiments.

Conditional INS Stylization Conditional encoding has been widely applied
in convolutional networks [39,80]. Similarly, we propose the conditional implicit
representation by input with style conditioned embeddings using and extracting
style-dependent features to render stylized color and density, which is shown in
Figure 2. In training, we prepare n style images with an n dimensional one-hot
style-condition vector. A mini-batch is constructed with the combinations of one
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content training patch and all candidate style images. The one-hot vector is fed
into SIM to extract the w-dimensional style features, they are then concatenated
with the implicit representations output from CIM. The following layers of AM
take the two features, aggregate them to render the pixel intensity and scene
geometry along the rays. A pre-trained VGG [68] is appended on the top of
the INS pipeline to apply implicit style and content constraints during training.
During the inference stage, we discard the VGG network, the INS framework
becomes a pure MLPs-based network.

4.2 Geometry Consistency for Neural Radiance Field

 

Coordinates

RGB

Density 

Density 
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Style Embeddings 
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CIM

AMC
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Volumetric
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Fig. 3. The proposed self-distilled ge-
ometry consistency. The CIM weights in
the grey box are from a pre-trained NeRF
and are kept fixed since then. During fine-
tuning, the output density of the fixed CIM
serves as geometry constrains for the styl-
ized density from the output of AM.

NeRF [53] learns reasonable 3D ge-
ometry inherently due to the partic-
ular design of implicit radiance field
and the supervision from multiple
views. However, the INS framework
is expected to integrate style statis-
tics from 2D image into 3D radiance
field, where no multi-view style im-
ages accessible during training pro-
cess. To specialize INS for neural ra-
diance fields, we propose to regularize
INS with proper geometry constraint
to produce faithful shape and appear-
ance. As the ground truth of target
geometry is unavailable in most novel
view synthesis benchmarks, we seek
help from the self-distillation frame-
work [79]. Concretely speaking, we
first train the content implicit module
(CIM) only to obtain a clean geome-
try σ1, following the vanilla NeRF training pipeline. After that, we copy the
trained weight of CIM and keep that fixed (as shown in the grey block in Fig-
ure 3). In the next, we turn to optimize the whole INS framework (SIM, CIM
and AM) with implicit stylization constrains. Meanwhile, a self-distilled geom-
etry constraint between the original geometry σ1 produced by the fixed CIM
weight and the final stylized geometry σ2 reconstructed by the implicit neural
stylization framework. The objective of self-distilled geometry consistency loss
is formulated as Lgeo = |σ1 − σ2|, where we adopt the mean-absolute error for
the densities of each sampled point.

Sampling-Stride Ray Sampling Neural Radiance Field casts a number of
rays (typically not adjacent) from camera origin, intersecting the pixel, into the
volume and accumulating the color based on density along the ray.

While our model input with rays intersected with an image patch of size
P ∈ K × K, predicting the stylized patch P ′ ∈ K × K with its texture closed
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to the given style images. 2D style transfer methods [11,37] typically crop the
patch larger than 256×256. However, it is too expensive for the neural radiance
field as it queries the MLPs more than 256× 256×N times of the MLP for each
step [53], where N indicates sampled points number along each ray.

Similar to [65,48], we adopt a Sampling-Stride Ray Sampling strategy to en-
large the receptive field of the sampled patch to capture a more global context.
The illustration of the ray sampling can be found in our supplementary materi-
als, where a sampling stride larger than 1 result in a large receptive field while
keeping computational cost fixed.

4.3 Optimization

Let F (T ) denote an INS model parameterized by Θ, which synthesizes an image
(patch) from the view specified by the camera pose T ∈ R4×4 by marching and
rendering the rays for all the pixels on the image (patch). Given multi-view
images and the corresponding camera parameters T = {Ci,T i}Ni=1, as well as a
set of style images S = {Si}Mi=1, we train the INS using a combination of losses
including reconstruction loss Lrecon, geometry consistency loss Lgeo, content loss
Lcontent and style loss Lstyle:

Ltotal(Θ|T ,S,Θvgg) = E(C,T )∼P(T ) [λ0Lrecon(F (T ),C) + λ1Lgeo(F (T ))] (8)

+ ES∼P(S) E(C,T )∼P(T ) [λ2Lcontent(F (T ),C|Θvgg) + λ3Lstyle(F (T ),S|Θvgg)] ,

where λ0, λ1, λ2, λ3 control the strength of each loss term, Θvgg denotes the
parameters of the VGG network, and P(·) defines a distribution over a support.

5 Experiments

5.1 Stylization on SIREN MLPs

As one representative example, we apply INS on fitting an image via SIREN [71]
MLPs. We reuse the original SIREN framework [70] as CIM and follow its train-
ing recipes to fit images of 512×512 pixels. Besides that, we also incorporate
the SIM and AM on SIREN. A pre-trained VGG-16 network is appended on
the output to provide style and content supervisions during training. As seen in
Figure 4, the proposed framework successfully in representing the images with
the given style statistics in an implicit way.

5.2 Novel View Synthesis with NeRF

Experimental Settings We train our INS framework on NeRF-Synthetic [53]
dataset and Local Light Field Fusion(LLFF) [52] dataset. NeRF-Synthetic con-
sists of complex scenes with 360-degree views, where each scene has a central
object with 100 inward-facing cameras distributed randomly on the upper hemi-
sphere. Both rendered images and ground truth meshes are provided in NeRF-
Synthetic dataset. LLFF dataset consists of forward-facing scenes, with fewer im-
ages. We implement INS on the same architecture and training strategy with the
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SIREN SIREN+INS Style Image SIREN+INS Style Image

Fig. 4. Visual examples generated by applying INS to SIREN [70]. Given
an input image used for fitting and style images, SIREN+INS can express the style
statistics via an implicit manner(i.e., MLPs).

Color Image Style Image INS(view1) INS(view2) INS(view3)

Color Image Style Image INS(view1) INS(view2) INS(view3)

Color Image Style Image INS(view1) INS(view2) INS(view3)

Fig. 5. Multi-view examples rendered by applying INS to the neural radi-
ance field. The rendered scenes and objects show consistent stylized texture under
different views.
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Color Image Ours(view1) [42](view1) Style3D [19](view1) Adain [37](view1)

Style Image Ours(view2) [42](view2) Style3D [19](view2) Adain [37](view2)

Fig. 6. Qualitative comparisons. We compare INS with several methods on novel view
synthesis datasets. Three scenes with different style images are demonstrated, we can
see our proposed INS method preserves the learned geometry better (e.g. with clean
background) and capture global context while achieving the desired styles.

original NeRF [53]. λ1, λ2 and λ3 are set as zero in the first 150k iterations and
then set as 1e6, 1 and 1e8 in the following 50k iterations. The self-distilled density
supervision depicted in Figure 3 is generated from the CIM with 150k iterations
pre-training. Adam optimizer is adopted with learning rates of 0.0005. Hyper-
parameters are carefully tuned via grid searches and the best configuration is
applied to all experiments. All experiments are trained on one NVIDIA RTX
A6000 GPU. We retrain Style3D [19] in NeRF-Synthetic and LLFF datasets us-
ing their provided code and setting. We train all methods using the same number
of style images for fair comparisons.

Results In Figure 5, we can see INS generates faithful and view-consistent re-
sults for new viewpoints, with rich textures across scenes and styles. We fur-
ther compare INS with three state-of-the art methods, including 3D neural
stylization [19], image-based stylization methods [37,42]. As is shown in Fig-
ure 6, We can see that stylizations from image-based methods produce noisy
and view-inconsistent stylization as they transfer styles based on a single im-
age. Style3D [19] generates blur results as it still relies on convolution networks
(a.k.a. hypernetwork) to generate the MLP weights for the subsequent volume
rendering. Our proposed implicit neural stylization method is trained to pre-
serve correct scene geometry as well as capture global context, generating better
view-consistent stylizations.

5.3 Stylization on Signed Distance Function

Experimental Settings DeepSDF [59] only learns the 3D geometry from given
inputs. Later work IDR [83] extend it to reconstruct both 3D surface and appear-
ance. We follow IDR [83] to implement the implicit neural stylization framework.
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Color Image Style Color w/ SS Color w/o SS Depth w/ SS Depth w/o SS

Fig. 7. Qualitative evaluation on the effectiveness of Sampling Stride technique (SS).
We can see INS with a larger receptive field generate more satisfying stylization.

Color Image Style Image SDF(view1) SDF(view2)

Color Image Style Image SDF(view1) SDF(view2)

Fig. 8. Visualization results of applying INS to the Signed Distance Func-
tion. Given multi-view color images and style images, the proposed INS can learn the
style statistics for the disentangled geometry and appearance.

To encode style statistic onto IDR, we project the learned textured SDF into
multi-view images and implement our style loss on the rendered results. In the
experiments, we picked 2 scenes from the DTU dataset [1], where each scene
consists of 50 to 100 images and object masks captured from different angles.
Similar to NeRF, we pre-train the IDR model for chosen scenes by minimizing
the loss between the ground truth image and the rendered result. Then both the
SDF network and rendering network are jointly optimized the proposed frame-
work from projected views. Note that due to IDR’s architectural design, we are
no longer able to impose self-distilled geometry consistency loss. Instead, we em-
ploy content/style loss in the masked region, which is similar to [83]. Besides, we
observe that the SDF representation is more sensitive to parameter variations.
To maintain intact geometries, we adjust the learning rate for the SDF network
to 10−11 times smaller than the rendering network.

Results As are shown in Figure 8, the visualizations of two-view SDF rep-
resentation demonstrate that both the learned appearance and geometry have
deformed to fit the given style statistics.
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Color Image [1, 0, ..., 0] [0.9, 0.1, ..., 0] [0.8, 0.2, ..., 0] [0.7, 0.3, ..., 0] [0.6, 0.4, ..., 0]

Style Images [0.5, 0.5, ..., 0] [0.4, 0.6, ..., 0] [0.3, 0.7, ..., 0] [0.2, 0.8, ..., 0] [0, 1, ..., 0]

Fig. 9. Visualization of the mixture of two styles using different mixture weights. We
can see the style smoothly transfers from one style to another.

Color Image Color w/ GC Color w/ GC Depth w/ GC Depth w/ GC

Style Image Color w/o GC Color w/o GC Depth w/o GC Depth w/o GC

Fig. 10. Qualitative results of the self-distilled geometry consistency(“GC”). Both the
rendered images and depth maps are shown for validation.

5.4 Conditional Style Interpolation

Training with style-conditioned one-hot embedding, we can interpolate between
style images to mix multiple styles with arbitrary weights. Specifically, we train
INS on NeRF with two style images along with a two-dimensional one-hot vector
as conditional code. After training, we mix the two style statistics by using a
weighted two-dimensional vector. As is shown in Figure 9, the synthesized results
can smoothly transfer from the first style to the second style when we linearly
mix the two style embeddings at inference time.

5.5 Ablation Study

Effect of Updating NeRF’s Geometry Field The geometry modification in
the density branch enables a more flexible stylization, by stylizing shape tweaks
on the object surface. As shown in Figure. 11, only updating the color branch
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(a). w/ updating density (b). w/o updating density (c). w/ updating density (d).w/o updating density

Fig. 11. Ablation study of optimizing style-conditioned density and color. By updating
the density, it can render richer textures than only updating the color branch.

easily collapses to the low-level color transformation instead of the painterly
texture transformation, violating our original goal. This phenomenon is also
addressed in the previous 3D mesh stylization [43], where they explicitly model
the 3D shape by deforming the mesh vertexes.

Effect of Self-distilled Geometry Consistency To evaluate the effectiveness
of the proposed geometry consistency regularizer, we visualize the front and
back viewpoints of the synthesized color images and depth maps. As is shown in
Figure 10, the proposed self-distilled geometry consistency learns a good trade-
off between stylization and clean geometry.

Should INS Learned with Larger Receptive Field? To investigate the ef-
fect by using the Sampling Stride (SS) Ray Sampling strategy, we conduct a
comparison of ray sampling with and without sampling stride for NeRF styliza-
tion. For a fair comparison, we set the ray number as 64×64 in both settings. INS
with sampling stride covers the content resolution of (64×s) × (64×s) where s
indicates sampling strides depicted in Section 4.2 and here we set s=4. Figure 7
shows that INS with SS achieves significantly better visual results, as it results
in a higher receptive field in perceiving content statistics.

6 Conclusions

In this work, we present a Unified Implicit Neural Stylization framework (INS)
to stylize complex 2D/3D scenes using implicit function. We conduct a pilot
study on different types of implicit representations, including 2D coordinate-
based mapping function, Neural Radiance Field, and Signed Distance Func-
tion. Comprehensive experiments demonstrate that the proposed method yields
photo-realistic images/videos with visually consistent stylized textures. One lim-
itation of our work lies in the training efficiency issue, similar to most implicit
representation, rendering a style scene requires several hours of training, preclud-
ing on-device training. Addressing this issue could become a future direction.
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