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This supplementary material provides more details in six aspects: Section A gives
more details about network architectures and the training procedure. Section B
gives more details about how to automatically get color annotations. Section C
presents details about exploring binary (i.e. weak) annotation to guide the se-
mantic dimension disentangling for texture. Section D discusses the comparison
between our method and other general GAN inversion-based editing methods.
Section E shows details about testing of continuous editing ability. Section F
shows more results about the disentangled dimension of color, texture, and
shape, more comparisons with existing methods, and more visual results.

A Network Architectures and Training Procedure

Network Architectures for Hair Color and Texture Editing. The net-
works of color and texture have two parts, encoders (EC , ET ) and decoder (DX).

The encoder EC of color is designed as a fully connection architecture with
3 hidden layers, as shown in Fig. 1. It takes hair feature X as input to get
the latent representations ZC . The encoder ET of texture is designed as a fully
connection architecture with 4 hidden layers, as shown in Fig. 2. It takes hair
feature X as input to get the latent representations ZT . A single decoder DX

is used to generate the edited hair feature X̂ from edited latent representations
ẐC , ẐT of color and texture. The network architecture of the decoder DX has 4
hidden layers, as shown in Fig. 3.

During optimization of the encoder and decoder, adversarial training with
Lreal is needed to ensure the reality of edited feature X̂. So, a discriminator δX
is introduced as described in Section 3.2 of our paper. The discriminator has a
similar architecture with ET and shares network weights as shown in Fig. 2 for
saving parameters and better extracting common features.

Network Architecture for Hair Shape Editing. The networks for the shape
editing are designed as convolution architecture considering that shape is posi-
tion sensitive, consisting of the shape encoder and the shape adaptor. Since the
input segmentation mask has no position information for convolution operation,
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Algorithm 1: Training of CtrlHair

input : Images set ΩI = {I} with its hair appearance features ΩX = {X},
color label ΩZ̃C

= {Z̃C} and portrait masks ΩS = {S};
output: Encoders EC , ET , ES , decoders DX and shape adaptor Γ ;

1 Initialize EC , ET , ES , DX , Γ and discriminators δX , δS , δZS ;
2 while not converge do

// training encoders and decoder for color and texture

3 Sample a batch of latent representations ẐC , ẐT ∈ N (0, I);

4 Generate X̂ using Eq. (4);
5 Sample a batch of appearance features X ∈ ΩX with its color labels

Z̃C ∈ ΩZ̃C
;

6 Update EC according to Ldist
C , ET according to Lreal,Lrec

T ,Ldist
T , and DX

according to Lreal,Lrec
C ,Lrec

T ,Ldist
T ;

// training encoder and adaptor for shape

7 Sample a batch of masks from ΩS and extract their hair masks SH ;
8 Sample another batch of masks from ΩS and extract their face and

background masks (SF , SB);

9 Generate adjusted portrait mask Ŝk from SH , SF , SB using Eq. (2) and (5);

10 Update ES according to Lreal,Lrec
S ,Ldist

S , and Γ according to Lreal,Lrec
S ;

// training discriminators

11 Sample a batch of true appearance feature Xr ∈ ΩX , portrait mask
Sr ∈ ΩS and true latent representations Zr

S ∈ N (0, I);
12 Update δX , δS , δZS according to their respective adversarial training losses;

13 end

inspired by NeRF [6], 1st ∼ 10th order sine and cosine position embeddings are
additionally concatenated for each input segmentation mask.

The shape encoder ES takes the above-mentioned input to obtain the shape
latent representation ZS , and the encoder’s network architecture is shown in
Fig. 4. Then, the shape adaptor Γ takes latent representation ẐS of edited shape,
face mask SF , and background mask SB as input, to generate edited portrait
mask Ŝ. The shape adaptor Γ ’s network architecture is as shown in Fig. 7.

During training, adversarial training is employed to ensure the reality of
edited portrait mask Ŝ by Lreal and the standard multivariate gaussian distri-
bution of encoded shape latent representation ZS by Ldist

S . So two discriminators
δS and δZS

are designed. The network architectures are shown in Fig. 5 and 6.

Training Details. We use Adam optimizer [5]. The batch size is set as 16. For
loss weights, we set λreal = 1, λrec

C = λdist
C = 10−2, λrec

T = 102, λdist
T = 10−2,

λrec
S = 102, λdist

S = 1. For all encoders, decoders, and the shape adaptor, the
learning rate is set as 2 × 10−4. For all discriminators, the learning rate is set
as 1× 10−4. The training procedure is shown in Algorithm 1. To achieve better
results, the shape branch can also be trained separately, i.e., separating the steps
related to shape editing for better controlling the network parameters.
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Fig. 8. The scatter plot of hair pixels for each image

B Details about Automatic Hair Color Annotation

In Section 3.2 of our paper, we briefly describe that the latent representation of
hair color is designed as a 4-dimensional vector ZC , indicating the major HSV
values and color variance. They are automatically calculated as below, with no
need for manual labeling.

For HSV color values, as denoted in our paper, the mean of pixels in the hair
region is used. Besides mean, we also try median and mode, but their effects
are slightly worse than the mean. For color variance, we observe that for most
images, all pixels of hair region are roughly distributed on a one-dimensional
manifold in RGB space for a single portrait as shown in Fig. 8. Based on this
observation, for each image, we employ PCA to calculate its first principal com-
ponent (containing about 97.0% energy of hair color pixels on average) and take
the variance corresponding to the first principal component as the color variance.

C Details about Hair Texture Editing guided by Binary
Annotation

As denoted in Section 3.2 of our paper, unsupervised training of hair texture dis-
entangling and editing is able to achieve continuous and fine editing of different
dimensions of the texture. However, each dimension of the learned latent repre-
sentation ZT does not necessarily correspond to an explicit semantic meaning.
This is because the texture hardly obtains continuous label for supervised train-
ing, which is quite different from the color that is easy to obtain a continuous
label.

However, sometimes binary annotation (which is discrete and weak) can be
obtained, such as wavy or straight. With this kind of weak label, our method
is also easily compatible for better editing by introducing an additional binary
classification loss like that in [4], detailed in the following.

Taking the curliness factor as an example, a small number of samples are
binarily labeled, including 1180 images labeled as wavy and 727 images labeled
as straight. Specifically, one dimension in the texture latent representation ZT is
used to represent curliness, denoted as Zcur

T , and the rest 7 dimensions of ZT re-
main unchanged, i.e. still in an unsupervised manner. In addition to adopting the
constraints indicated in Eq. (9), (10), (11) of our paper for texture, additionally,
a binary classification loss is introduced for curliness.
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Firstly, a binary label Ŷ is assigned for the edited latent representation Ẑcur
T ,

i.e. Ŷ = I(Ẑcur
T ⩾ 0). Then, the decoded feature X̂ is input to a pre-trained

binary classifier P to get its prediction. After that, the classification loss between
the estimated prediction and the binary label is calculated as follows:

min
DX

Lrec
T,cur = EẐC ,ẐT∼N (0,I)

[
−Ŷ logP (X̂)

]
, (1)

where P is the pre-trained binary classifier for curliness Y from the hair feature
X trained by using truly labeled data. This loss can enforce that the change of
latent representation is consistent with the binary label, which roughly guides
the learning of continuous editing ability for curliness.

D Comparison with GAN Inversion-based Editing
Methods

General GAN inversion-based editing methods, such as [1,2,3,7], also have the
ability of continuous editing of portrait images and show compelling results.
However, these methods are not quite the same as ours in terms of tasks. Usually
for hair editing, only those editing that can manipulate the semantic variation of
hair such as hair shape, structure, etc., are considered meaningful. The general
GAN inversion-based editing methods can only achieve continuous editing, but
not meaningful editing. BarberShop [10] and LOHO [8], also as GAN inversion-
based methods, are designed specifically for hair, which is meaningful but loses
continuity as discussed in the text of our paper. In one word, on premising
meaningful editing, our method is continuous while existing methods are not.

E Details about Testing of Continuous Editing Ability

In section 4.3 and Fig. 8 of our paper, we test the ability of continuous editing,
specifically, taking saturation of color, length of shape, and volume of shape as
three examples. In testing, rough true values of the three attributes are used
as criteria for evaluation. Here we introduce how these values are calculated in
detail.

Saturation of Color : The mean of the saturation of all pixels in the hair
region is directly used to represent the saturation of hair color.

Length of Shape: The length is mainly reflected in the vertical distance of
the hair shape. In order to estimate the length and avoid being too sensitive
to outliers, we use the standard deviation of the vertical axis coordinates of all
pixels in hair region to reflect the length of hair, i.e. the larger the deviation is,
the longer the hair is.

Volume of Shape: The hair volume reflects the amount of hair, which is
reflected by the ratio of hair area and the whole image to roughly approximate
hair volume.

The calculation of the three criteria is not exactly the same as the ground
truth, but it is certainly proportional to the ground truth. So the relationship
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Table 1. Summary of attributes and fine-grained factors of our method

Attributes Color Texture Shape

Dimensions 4 8 16

Fine-grained Factors

Hue
Saturation
Brightness
Variance

Curliness
Smoothness

Hair-strand-thickness

Length
Volume
Bangs

Direction

between the above criteria and the corresponding latent representation in Fig. 8
of our paper can show whether continuous editing ability is correctly achieved.

F More Visual Results

In total, our method can edit 3 attributes (i.e. color, texture, and shape) of hair,
with 28 controllable dimensions. Among them, 11 dimensions are observed to
be with obvious semantics as shown in Table 1. Besides, more visual results are
shown for a better understanding of our method.

Fig. 9 shows a group of editing examples by using CtrlHair’s Demo. These
results illustrate that our method is convenient and friendly for user interaction
by sliding bars.

Fig. 10 shows more comparison results with existing methods on hairstyle
transfer with a reference image. From the figure, the effect of our method on
color and texture is comparable to other methods. While our method is obviously
superior to MichiGAN [9] and LOHO [8] in shape transferring.

Fig. 11 shows more editing of fine factors of all attributes simultaneously and
separately from our CtrlHair. Fig. 12∼22 show more editing results of each fine
factor of attributes. These figures illustrate the ability of fine and continuous
editing of our method.

Finally, Fig. 23 shows the result of hair editing with a wide variety for a given
person, which illustrates the arbitrariness of style achieved by our method.
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(a) Editing color

(b) Editing shape and texture

(c) Hybrid Editing of transfering and fine-tuning with sliding bars

Fig. 9. A group of editing examples using CtrlHair’s Demo with User Interface. Please
click on the images to open the animation

https://github.com/XuyangGuo/xuyangguo.github.io/blob/main/database/CtrlHair/resources/demo1.gif
https://github.com/XuyangGuo/xuyangguo.github.io/blob/main/database/CtrlHair/resources/demo2.gif
https://github.com/XuyangGuo/xuyangguo.github.io/blob/main/database/CtrlHair/resources/demo3.gif
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Mask Reference Input MichiGAN LOHO BarberShop Ours

superior in shape alignment and inpainting

Fig. 10. Comparison with existing methods on hairstyle transfer with a reference image
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Fig. 11. Editing fine factors of attributes simultaneously and separately. For a given
portrait in the upper left corner of each subfigure, CtrlHair can edit the hair by sliding
a set of bars
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Input Continuous Editing

Fig. 12. Continuous editing of hue of color

Input Continuous Editing

Fig. 13. Continuous editing of saturation of color
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Input Continuous Editing

Fig. 14. Continuous editing of brightness of color

Input Continuous Editing

Fig. 15. Continuous editing of variance of color
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Input Continuous Editing

Fig. 16. Continuous editing of curliness of texture

Input Continuous Editing

Fig. 17. Continuous editing of smoothness of texture
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Input Continuous Editing

Fig. 18. Continuous editing of hair-strand-thickness of texture

Input Continuous Editing

Fig. 19. Continuous editing of length of shape
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Input Continuous Editing

Fig. 20. Continuous editing of volume of shape

Input Continuous Editing

Fig. 21. Continuous editing of bangs of shape
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Input Continuous Editing

Fig. 22. Continuous editing of direction of shape
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Fig. 23. A wide variety of hair is obtained for the person in the red box
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